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ABSTRACT 

The state of Delaware is in the middle of the Atlantic Flyway of migratory 

waterfowl. This poses a problem for the poultry industry because waterfowl are the 

primary reservoir for avian influenza, which threatens the health of commercial 

poultry. When waterfowl migrate through and overwinter within Delaware, 

Delawarean poultry are at risk of exposure to the virus. Supplying industry 

stakeholders with locations of waterfowl can help improve their surveillance and 

biosecurity efforts. I created the Delaware Waterfowl Tracker as an interactive web 

application that provides maps of the distribution and density of overwintering 

migratory waterfowl in Delaware and the surrounding region. I developed the app 

using protocols that were used to develop the California Waterfowl Tracker, a similar 

web application developed to produce maps of waterfowl in California. I used weather 

surveillance radar data from the Dover (KDOX) radar to quantify waterfowl 

distributions by sampling them in the air as they take off for evening feeding flights 

during November through March of 2008-2016.. I built Boosted Regression Tree 

statistical models in R to predict radar-observed waterfowl distributions based on 

environmental and geographic variables (e.g. temperature, land cover, proximity to the 

Delaware coast) and produce maps of predicted waterfowl distributions throughout the 

MD and DE portions of the Delmarva Peninsula for each month and year combination, 

which are available to view on the web app.  
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INTRODUCTION 

Every year, over five hundred bird species migrate through the natural super-

highway of the Atlantic Flyway. The Atlantic Flyway stretches from the Arctic to 

South America, sweeping across the entirety of the east coast of the United States. A 

flyway is any geographical region that indicates the corridor in which movement of an 

avian species occurs, and became a widely used concept in the twentieth century to 

better identify issues facing migratory birds and countries that can work to protect and 

manage those populations (Boere, 2006). Delaware is located in the middle of the 

flyway. This poses a problem for the poultry industry (Karesh et al., 2012; Newell et 

al., 2010), since waterfowl are the primary reservoir for avian influenza. Delawarean 

poultry could be at risk of exposure to the virus (Olsen et al., 2006).  

 This app has been based off of the methods and format used by the California 

Waterfowl Tracker. The California Waterfowl Tracker is a web-based application that 

allows poultry producers, risk managers, and backyard poultry enthusiasts alike to 

visualize waterfowl locations to assess any possible risk of the vectoring of avian 

influenza into the poultry stock of California’s Central Valley. This app was 

developed by Dr. Jeff Buler’s Aeroecology Program at the University of Delaware and 

Dr. Maurice Pitesky’s lab at the UC Davis School of Veterinary Medicine-

Cooperative extension.   



 2 

The Delaware Waterfowl Tracker and the California Waterfowl Tracker use 

weather surveillance radars within the United States to measure reflectivity as an 

index to bird density in order to map bird distributions during their onset of nocturnal 

migratory flights (Buler et al. 2012). Weather radar data can be retrieved from the 

National Oceanic and Atmospheric National Climatic Data Center (NOAA-NCDC) 

radar archive and can be visually screened to filter out nights with precipitation or any 

such data that is not obviously migrating birds (Buler et al. 2012). These data can thus 

be processed through RStudio and ArcGIS to produce visual maps of migrating birds. 

 My objective was to create an interactive, public web application that provides 

maps of the distribution and density of migratory waterfowl in Delaware and the 

surrounding region. Those who use the app may be those who study overwintering 

migratory waterfowl in the Delmarva Peninsula or poultry production stakeholders 

from backyard enthusiasts to factory farmers. Wildlife biologists may find the 

Delaware Waterfowl Tracker useful as well in order to pinpoint stopover sights and 

habitat for overwintering migratory waterfowl. This would assist ecological efforts in 

providing sizable and useful habitat for migrating birds, as well as showing if the birds 

are using already designated habitats. If a sizable enough avian influenza pandemic 

were to break out in major poultry producing countries such as the United States, the 

global export price of chicken meat could increase by 9.63% (Djunaidi, 2007). 

Creating an app to help assess the locations of waterfowl in Delaware is both 

applicable and useful to poultry producers and risk managers, as waterfowl serve as a 
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primary reservoir of Avian Influenza. By supplying stakeholders with locations of 

waterfowl, we can help better their surveillance and biosecurity efforts.  
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STUDY AREA 

Delaware is divided into two distinct physiographic provinces, the 

Appalachian Piedmont Province making up the northernmost 5% and the 95% 

remaining Atlantic Coastal Plain Province (Hess 2000). One third of Delaware’s 

wetlands are estuarine or coastal, and nearly 

all occur in the Coastal Plain. The average 

monthly temperature of the state ranges from 

0-24.3°C and includes temperate continental 

humidity and an average precipitation of 

114.3 cm (Ziemecki, 2018). 

I created a study area encompassing all 

of Delaware and some parts of Maryland, 

which encompasses the counties within the 

Delmarva Peninsula that are close to the 

KDOX radar in Dover, DE (Figure 1). The 

KDOX radar is signified by the blue dot in 

Figure 1. 
 

Figure 1: Map of study area (grey) within 
the Delmarva Peninsula, showing mean 
waterfowl density (reflectivity measured in 
cm2/ha from December 2015). 
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METHODS 

Bird distribution data: 

Radar data are used to map wintering waterfowl distribution by sampling them 

as they take off from daytime roosting areas for evening feeding flights (Buler et al. 

2012). I used data that was processed by a previous Summer Scholar Daniel Day, who 

quantified winter waterfowl densities in Delaware using the Dover (KDOX) Weather 

Surveillance Radar data from the winter months (November – March) of 2008-2016 

downloaded from the National Oceanic and Atmospheric National Climatic Data 

Center (NOAA-NCDC) radar archive.  He screened data for contaminations such as 

precipitation, clutter, or anomalous propagation within 100 km of the radar. For 

suitable days free of contamination by non-avian reflectivity, he determined the peak 

of evening takeoff time for waterfowl after sunset, also known as “peak exodus.”  The 

data were interpolated to the peak exodus time and corrected for range bias following 

methods of Buler and Diehl (2009). I calculated mean bird density across sampling 

days by month and year and aggregated the radar data into a 1x1 km grid of the study 

area. Of all possible sampling nights during the winter seasons from 2008-09 through 

2015-16, we identified 20% (240 of 1210 nights) as suitable for analysis. I excluded 

the remaining 80% due to contamination from precipitation (73%), missing data (4%), 

anomalous beam propagation (2%), and clutter (1%).  

During early March of 2019, a team from Dr. Buler’s Aeroecology Lab and I 

ventured to Woodland Beach (a pinpointed hot spot in the app) to conduct twilight 
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ground surveys using thermal imaging and night vision cameras. Our goal was to 

attempt to identify species engaging in nighttime feeding flights to confirm waterfowl 

radar detection. We observed several flocks of Canada geese (Branta canadensis) and 

snow geese (Chen caurulescens), each flock containing an estimate of 100 individuals. 

We also noted the presence of mallards (Anas platyrhynchos). 

Predictive Modeling:  

I built Boosted Regression Tree (BRT) models from radar-observed monthly 

mean bird density to predict waterfowl distributions within 1x1 km grid cells across 

the entire study area based on a set of 18 predictor variables and created raster maps of 

predicted bird densities. The boosted regression tree is a combination of regression 

trees and boosted analysis that serves as an additive regression model to show the 

relationships between individual and multiple predictors as trees (Elith 2008). Because 

of probable spatial autocorrelation among neighboring grid cells, I partitioned the data 

into 25 subsets where data cells for each partition were 5 km apart. Thus, I fit 25 BRT 

models and averaged results across the models when producing predictive maps. I 

used the gbm step function to fit BRT models. This function builds the ensemble of 

trees with 50% of the data (i.e., training data) and performs cross validation with the 

remaining 50% of the data (i.e., test data) to optimize model fit by preventing 

overfitting of the training data. I set the model tree complexity to 10 to allow for 

complex interactions among predictors and tuned the learning rate to produce a final 

ensemble of about 1500 trees for each BRT model.  
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Predictor variables included measures of land cover, geographic position, 

weather, and time quantified within the 1 km grid cells for each month and year (Table 

1). The predictor variables included:   year, month, mean monthly temperature, 

monthly total precipitation, distance from radar, latitude, longitude, presence of corn, 

distance to bright light, distance to Atlantic coast, wetlands, elevation relative to radar 

antenna height in meters, fraction of open water, and measures of the proportion 

various land cover types within a 5 km radius landscape including emergent marsh, 

agricultural land, coniferous forest, hardwood 

forest, and urban land. I had to change one of 

our main agriculture covariates from rice to 

corn and soy, as Delaware’s primary 

agricultural output is corn and soy rather than 

rice. Waste grains, especially corn, have been 

an important source of autumnal foods for 

wildlife (Warner 1989). Migratory waterfowl in 

California rely on fallow rice fields as 

foraging habitat, which also may benefit 

farmers, as foraging behavior increases rice 

straw decomposition (Bird 2000). The NARR 

data were sourced from the National Oceanic and Atmospheric Administration 

website. The land cover data were sourced from the National Land Cover Dataset, and 

the bright light data came from the Defense Meteorological Satellite, in which Falchi 

Figure 2: The California Waterfowl 
Tracker showing daily exposure risk 
of poultry farms from waterfowl. 
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et al. 2016 identified bright areas where artificial light (sky brightness) was 5 times the 

natural level (Falchi et al. 2016). I used those past data to build statistical models in 

RStudio to predict waterfowl distributions based on environmental and geographic 

variables to produce maps of waterfowl distributions that are posted in the web app.  

Web mapping application:  

I developed the app using the same protocols used to develop the California 

Waterfowl Tracker, a similar web application developed to produce maps of 

waterfowl in California (Fig. 2). Once the models were created, I wrote R software 

code and used the web-mapping service Leaflet to map our models, and ultimately use 

Shiny, a web framework for R, to publish the application onto Dr. Buler’s University 

of Delaware faculty and research page. R is a statistical computing program language 

used by statisticians and researchers alike (R Core Team 2017). It allows researchers 

to perform linear and nonlinear modelling and other statistical tests. Leaflet is a simple 

JavaScript library that allows a user to create maps and web applications (Graul 2016). 

I then placed the raster maps put them into Leaflet in order to display them on a 

greater world map in a way that highlights the study area and displays the densities of 

waterfowl using the VIRDIS color palette. Finally, I used Shiny, a web framework for 

R, in order to provide a framework and interactive app that allows the user to display 

various raster files in an interactive web application according to the user’s selection 

of month and year.  
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RESULTS 

The mean cross validation coefficient of BRT models was 0.735, which 

explains about 54% of the variation within our models. Year, emergent marsh within 

five kilometers, and temperature were the three most influential predictors of 

waterfowl density along Delmarva Peninsula, respectively (Table 2). The remaining 

predictor variables had diminishing/negligible influence with varying trends (Figure 

3). The partial response plots depict both emergent marsh within 5 kilometers 

predictor variables and temperature have positive correlations with waterfowl density, 

while the winter plot appeared to generally increase until 2012, and suddenly 

decreasing down until 2015. Further analysis showed that the variables 

emmmarsh5km and ag5km exhibit a significant two-way interaction, in which 

waterfowl density increases with landscapes that have both agriculture and emergent 

marsh cover types (Figure 4). After creating subsequent Leaflet maps for each month 

and year combination and running the Shiny app in R, the app was launched and now 

displays waterfowl density for each model (Figure 5). The month with the highest 

waterfowl densities was January. One can visit the Delaware Waterfowl Tracker using 

the link below. 

 

https://delawarewaterfowltracker.shinyapps.io/Delaware_Waterfowl_Tracker/  

 

 

 

https://delawarewaterfowltracker.shinyapps.io/Delaware_Waterfowl_Tracker/
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Table 1: Predictor variables used in the boosted regression tree models. 

Variable 
Name Description Type 
winter Winter year Temporal 
month Month Temporal 

ppt Total monthly precipitation (cm?) Weather 
tmn Mean monthly temperature (C) Weather 
LAT Latitude Geographic 

LONG Longitude Geographic 
dRdr Distance from radar Geographic 
dAtl Distance to Atlantic coast (kilometers) Geographic 

dBright Distance to bright light (kilometers) Geographic 
relelev Elevation versus radar (meters) Geographic 

emmarsh5km 
Emergent marsh proportion within 5 

kilometers Landscape Composition 

ag5km 
Agricultural land proportion within 5 

kilometers Landscape Composition 
crn Presence of corn Landscape Composition 
wtl Wetland proportion Landscape Composition 

hw5km 
Hardwood forest proportion within 5 

kilometers Landscape Composition 

cnf5km 
Coniferous forest proportion within 5 

kilometers Landscape Composition 
wat Open water proportion Landscape Composition 

urb5km 
Urban land proportion within 5 

kilometers Landscape Composition 
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Table 2: Mean relative influence of predictors/variables across 25 BRT models that predict 
waterfowl density in the study area. 

Variable 
Name Description Relative influence (%) 
winter Winter year 15.10 

emmarsh5km 
Emergent marsh proportion within 5 

kilometers 11.71 
tmn Mean monthly temperature (C) 10.86 

month Month 10.63 
dRdr Distance from radar 9.58 
LAT Latitude 7.05 

ag5km 
Agricultural land proportion within 5 

kilometers 4.33 
crn Presence of corn 4.01 

dBright Distance to bright light (kilometers) 3.87 
ppt Total monthly precipitation (cm?) 3.55 

LONG Longitude 3.34 
dAtl Distance to Atlantic coast (kilometers) 2.84 
wtl Wetland proportion 2.51 

relelev Elevation versus radar (meters) 2.50 

hw5km 
Hardwood forest proportion within 5 

kilometers 2.35 

cnf5km 
Coniferous forest proportion within 5 

kilometers 2.27 
wat Open water proportion 2.05 

urb5km 
Urban land proportion within 5 

kilometers 1.37 
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Figure 3: Mean partial regression plots of all Covariates/Predictors of the 25 BRT 
models. 
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Figure 4: Perspective plot of two-way interaction between emmarsh5km and ag5km. 
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Figure 5: Waterfowl Density in the Delmarva Peninsula in December 2015 as 
displayed in the web app versus the predicted waterfowl density/reflectivity for 
December 2015. 
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DISCUSSION 

Migratory waterfowl are most densely concentrated in several areas along the 

Delaware Bay and Chesapeake Bay coasts, including Blackwater National Wildlife 

Refuge in Maryland as well as Bombay Hook National Wildlife Refuge in Delaware. 

Less densely concentrated areas occur further inland or on islands such as Deal Island. 

Areas with the lowest density occur mostly inland, as can be seen in Northern 

Delaware. During this time, waterfowl are more densely distributed in areas with a 

higher proportion of emergent marsh, as the mean monthly temperature increases, and 

in areas with a higher proportion of agricultural lands. This is explained by the 

tendency for most duck species to depend on shallow-water habitats (Perry 1996). 

This may explain why waterfowl density decreases further inland and increases with 

proximity to coastal habitats and emergent marsh habitat exhibiting shallow water. 

Waterfowl distribution and abundance in the Chesapeake Bay Watershed is also 

affected by human population increases and the encroachment on shallow-water 

habitat, possibly decreasing densities with later years (Perry 1996). Bombay Hook 

almost always exhibits high waterfowl density in December and November, while 

further inland exhibits little waterfowl density. This is most likely due to the higher 

number of national wildlife refuges scattered along the coasts of the Delmarva 

Peninsula, which are pinpointed in Figure 5. Bombay Hook especially exhibits some 

fallow corn and soy fields, which are crucial foraging habitat for waterfowl and many 

other forms of wildlife (Warner 1989). It also exhibits shallow tidal marshes, a land 
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cover type within the refuge itself that many waterfowl species depend on (Perry 

1996). We can attribute both of these facts to the observation of higher densities of 

waterfowl in areas with both emergent marsh and agriculture. However, Prime Hook 

only exhibits low density, showing that it is not nearly as popular a stopover or 

wintering site as Bombay Hook. This may be due a possibility of increased 

recreational use of the refuge, as recreational use of shallow-water habitats such as 

fishing and hunting have been shown to reduce waterfowl use (Perry 1996). One 

noticeable and surprising difference between the California and Delaware models is 

that soil moisture was not as important for Delaware as it was for California due to the 

two states having vastly different ecosystems.  

Waterfowl densities tend to be lowest at Blackwater during the months of 

November and December, which may indicate it used more as an overwintering or 

spring stopover site rather than a fall stopover site. Throughout the entire peninsula, 

January and February show little waterfowl density or stopover on the web application 

but show the greatest relative densities according to the BRT results, perhaps due to it 

being the end of the migration season. December 2015 sees a lot of medium-high 

waterfowl density in upper inland Delaware and in the Elk River, Sassafrass River, 

Earleville Wildlife Management Area, and Sassafrass Natural Resource Management 

Area, but stays low anywhere between 2008 and 2014. Novembers 2009, 2011, and 

2015 we see high levels of density in this area, but in every other year it is either low 

or nonexistent waterfowl density. Northern Delaware also sees low waterfowl density 
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in all years but November 2012, December 2014, December 2010 and all of January 

and February.   

Due to privacy concerns, locations of waterfowl density relation to poultry 

farms are obtainable at the user’s own discretion through the Avian Biosciences 

Center, coded by the producer. While the Delaware Waterfowl Tracker does not 

provide real-time predictions, it is useful for reviewing past waterfowl distributions. It 

still allows users to assess risk of exposure to waterfowl for poultry farmers by way of 

extrapolation and providing past data to give risk management teams an idea of yearly 

waterfowl density in the Delmarva Peninsula.  The current state of the Delaware 

Waterfowl Tracker is much more of a reflection of a “proof of concept” case study. As 

it stands, the app only provides data from 2008 to 2015. However, because the 

Delaware Waterfowl Tracker plays a “proof of concept” effort, it lays the groundwork 

for developing near-time analysis that will be of greater use to farmers in the future. A 

future goal is to analyze radar data in near-real time so that distribution models can be 

made to predict distributions in near-real time as well. By doing this, we could provide 

poultry stakeholders with near-live updates of waterfowl densities, and thus 

biosecurity efforts to prevent avian influenza are much more proactive and are not 

merely modeled off of data from years past.  
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