
A comparative study of

Lagrangian Methods using

axisymmetric and deforming blobs.∗

Louis F. Rossi†

Technical Report No. 2003-09

DEPARTMENT

OF

MATHEMATICAL SCIENCES

University of Delaware
Newark, Delaware

∗This work was supported by National Science Foundation grant DMS-9971800.
†Copyright 2003 Louis F. Rossi. Department of Mathematical Sciences, University of Delaware.

Newark, DE 19716, USA (rossi@math.udel.edu)

A COMPARATIVE STUDY OF LAGRANGIAN METHODS USING

AXISYMMETRIC AND DEFORMING BLOBS. ∗

LOUIS F. ROSSI†

Key words. Convection-diffusion, particle methods, computational fluid dynamics, deforming
blobs

AMS subject classifications. 35Q30, 41A25, 65M12, 65M60, 76D05

Abstract. This paper presents results from a head-to-head comparison of two Lagrangian
methods for solutions to the two-dimensional, incompressible convection-diffusion equations. The
first Lagrangian method is an axisymmetric core spreading method using Gaussian basis functions.
The second method uses deforming elliptical Gaussian basis functions. Previous results show that
the first method has second-order spatial accuracy and the second method has fourth-order spatial
accuracy. However, the deforming basis functions require more computational effort per element,
so this paper examines computational performance as well as overall accuracy. The test problem is
the deformation and diffusion of ellipsoidal distribution of scalar with an underlying flow field that
has closed circular streamlines. The test suite includes moderate, high and infinite Peclét number
problems. The results indicate that the performance tradeoff for the sample flow calculation occur
at modest problem sizes, and that the fourth-order method offers distinct advantages as a general
approach for challenging problems.

1. Introduction. Lagrangian schemes for solving convection-diffusion equations
are naturally adaptive in the sense that information about the computed field closely
follows physical path lines. These schemes are a natural reduction from vortex meth-
ods for Navier-Stokes and other nonlinear schemes, and differ only in the sense that
the velocity is specified rather than determined from the computed field. Since these
methods express the computed field as a linear combination of basis functions, some-
times called blobs, that move with the local flow velocity, one can argue that com-
putational resources are dedicated only where the computed field is substantial and
nowhere else. To boost the efficiency of Lagrangian methods, many investigators have
explored anisotropic and dynamically deforming computational elements as a way to
use fewer elements in complex flow geometries. For instance, Marshall & Grant,
Meiburg and Teng have specified anisotropic vortex elements to develop more effi-
cient means of capturing boundary layers and mixing layers [9, 10, 18]. Furthermore,
it makes sense that improvements to the accuracy of moving, localized basis func-
tions should come through local corrections in the shape of the basis function. Teng,
Leonard, Moeleker, and Rossi have developed methods that permit the computational
elements to deform dynamically based on linearized deviations in the flow velocity
[8, 11, 15, 19, 20]. All these papers report improved accuracy though not necessarily
an order of spatial convergence beyond the anticipated second-order and not neces-
sarily improved computational performance. Since anisotropic and deforming basis
functions require more computational resources than simple anisotropic elements, one
would hope that the more sophisticated scheme will have substantial improvements in
accuracy to justify the additional cost. To the contrary, Moeleker & Leonard report
that the increased computational effort over calculations with axisymmetric elements
for the convection-diffusion equations does not justify the cost of using dynamically
deforming elements [11]. It is important to note that Moeleker & Leonard use a

∗This work was supported by National Science Foundation grant DMS-9971800.
†Copyright 2003 Louis F. Rossi. Department of Mathematical Sciences, University of Delaware.

Newark, DE 19716, USA (rossi@math.udel.edu)

1

method that uses velocity data measured at the basis function centroid to control the
motion and deformation of the computational elements. Recently, Rossi determined
that the general category of method used by Moeleker & Leonard has second-order
spatial correctness so that the deforming method and axisymmetric methods have
the same order of convergence. However, this same analysis indicates that a curva-
ture correction to the velocity field coupled with the adaptive deformations achieves
fourth order spatial accuracy [16]. Tests using deforming methods with and without
the correction conclusively show that the theoretical convergence rates are indicative
of the method’s actual convergence rate, and that the method using curvature cor-
rections outperforms the same method without the corrections. What remains to be
studied is whether it is better to use the more expedient axisymmetric elements or
the more accurate but computationally intensive deforming basis functions for rea-
sonably challenging problems. This paper makes a head-to-head comparison between
Lagrangian methods with axisymmetric blobs and high-order deforming blobs to un-
derstand flow-dependent performance tradeoffs between the efficiency and accuracy
of the two techniques when solving problems that are challenging on current desktop
machines.

This paper focuses on solutions to the two-dimensional, incompressible, convection-
diffusion equations,

∂tρ+ (~u · ∇)ρ =
1

Pe
∇2ρ, (1.1a)

∇ · ~u = 0, (1.1b)

on the unbounded plane where ρ is a passive scalar quantity that moves and diffuses
with the flow. The ~u is a known fluid velocity field and Pe is the Peclét number, a
dimensionless quantity expressing the ratio of convective to diffusive effects in the flow.
Both the method using axisymmetric blobs and the method using deforming blobs are
known as core-spreading methods because the width of each computational element
grows with time to capture the diffusive term. Core-spreading methods are known to
be inconsistent except when Pe = ∞ because the growth of the core is governed by
the Peclét number (or Reynolds number for vortex methods) and cannot be reduced
below a nontrivial value. C. Greengard discusses the matter in some detail in [2].
Regarding practical issues when computing flows, Kida et. al. have since shown that
there are important applications where these spatial errors are considerably smaller
than other sources of numerical error so meaningful calculations can be performed
with these inconsistent techniques [3, 4, 5]. Essentially, the inconsistent formulation
is useful for applications where the timescale of interest is much smaller than the
growth in core size. If one strives for consistency, there are a number of ways to check
the growth of core widths including remeshing onto a regular array elements (see [1]
for a survey), as well as adaptive refinement and merging [13, 14], but this is secondary
to considerations of the accuracy and performance of the underlying method.

This comparative study has two goals. First, we will determine roughly where
the high spatial order method outperforms the low order method. It worth knowing
whether or not the method has concrete advantages over lower order but more effi-
cient methods for reasonable applications on current computing platforms. Second,
we use this study to highlight quantitative and qualitative differences in the conver-
gent behavior of the two methods. While both methods are inconsistent methods,
using deforming elements extends the range of applicability before one must apply
corrections to the method. In other words, both algorithms are naturally adaptive in

2

the sense that computational effort is expended only where the field is non-trivial, but
the scheme using deforming elements is more adaptive than the method using rigid
elements in a concrete sense that will be explored in section §4.

These goals are similar but not identical to Legras & Dritschel’s comparison of
contour surgery and psuedo-spectral methods [7]. Both Legras & Dritschel’s study
and this work represent an effort to understand the strengths and weaknesses of a new
method by comparing it to an established method. This study has a more intense
focus on the computational performance and efficiency of the methods in addition
to their convergence toward an exact solution. In Legras & Dritschel’s study, they
examine a complex flow with the two numerical schemes and compare the results to
one another. In this paper, we test two similar Lagrangian methods on a flow problem
using three different Peclét numbers by comparing approximate solutions to a highly
resolved reference solution. Where the Lagrangian methods are general algorithms,
the reference solution is calculated using a spectral scheme that is customized for
this particular problem geometry. Legras & Dritschel’s study compares quantities
such as contour moments and area increments to measure the relative proximity of
solutions. This paper will present the root-mean-squared distances (L2) between the
two methods that are being tested and the reference solution. Legras & Dritschel use
two levels of refinement, coarse and fine. This paper examines solutions over different
flow parameters at six distinct resolutions to establish convergence properties and
performance trends.

This paper is organized as follows. This section (§1) describes the background of
the problem and provides a review of relevant works by other investigators. In §2,
we will present the two methods under examination and discuss the time integration
scheme used by both. In §3, we define the fluid flow problems in the test suite and
the practicalities of the error measurements used in this paper. The results of these
tests are in §4. Finally, §5 contains summary remarks and future directions in this
work.

2. The semi-discrete systems and temporal integration. This study com-
pares two methods, one using spreading Gaussian blobs and the other using deform-
ing elliptical Gaussian blobs. As noted before, both methods are inconsistent when
Pe <∞ but can be corrected with adaptive refinement or remeshing. The spreading
term arises when we capture the diffusive term in teh same discrete dynamical system
used to capture the convective terms in (1.1). Some popular alternatives for captur-
ing the diffusive term include field redistribution and random walks, but these suffer
from a lack of adaptivity in the former, and low efficiency and accuracy in the latter.
Both require operator splitting with the associated splitting errors. The advantages
of core spreading methods are that they are fully deterministic, naturally adaptive
and the particle dynamics capture the underlying partial differential equation without
splitting the operator.

In this paper, we define ρ̂ to be the approximation using a linear combination of
moving basis functions:

ρ̂ =

N∑

i=0

γiφ(~x− ~xi, . . .) (2.1)

The shape of the basis function is determined by φ, and most often is chosen to
be axisymmetric. For instance, if one is trying to solve the Navier-Stokes equations
where ~u and ρ are related via a Biot-Savart integral, then radial symmetry makes

3

σ a ii

σi /a i

θ i

Fig. 2.1. A schematic diagram of an elliptical Gaussian basis function as defined in (2.3a).
The ellipse is representative of a single level set.

the velocity integration much simpler. The first of the two methods, which we shall
refer to as the Axisymmetric Blob Method, is the simplest available core spreading
method.

φ(~x, t; ~xi, σi) =
1

4πσ2
i

exp

[
−
|~x− ~xi|

2

4σ2
i

]
, (2.2a)

d~xi
dt

= ûi, (2.2b)

dσ2
i

dt
=

1

Pe
. (2.2c)

where ~x =

[
x
y

]
. This method can use centroid velocity data (ûi = ~u(~xi)) with no

penalty to its spatial accuracy. We shall refer to the second method in this study as
the Deforming Blob Method.

φ(~x; ~xi, σi, ai, θi) =
1

4πσ2
i

exp

{
−
|Aθi,ai

(~x− ~xi)|
2

4σ2
i

}
, (2.3a)

d

dt
~xi = ûi, (2.3b)

d

dt
(σ2
i) =

1

2Pe
(a2
i + a−2

i), (2.3c)

d

dt
(a2
i) = 2[d11(c

2
i − s

2
i) + (d12 + d21)sici]a

2
i +

1

2σ2Pe
(1− a4

i), (2.3d)

d

dt
θi =

d21 − d12

2
+

[
d21 + d12

2
(s2i − c

2
i) + 2d11sici

]
(a−2
i + a2

i)

(a−2
i − a2

i)
. (2.3e)

where dij are the constituent elements of D~u, the matrix of partial derivatives of the
velocity field ~u, ci = cos(θi), si = sin(θi), and

Aθ,a =

[
cos θ/a sin θ/a
−a sin θ a cos θ

]
. (2.4)

So, in addition to the usual parameters, these basis functions have an orientation (θi)
and an aspect ratio (a2

i) as shown in Figure 2.1. The system (2.3) is larger and more
complex than (2.2), and so there is a computational penalty for using the Deforming
Blob Method. Also, to have fourth order spatial accuracy [16], the velocity field is

4

adjusted away from centroid velocity data as

ûi = ~u(~xi) + σ2
i (~uxx(~xi)Mxx + 2~uxy(~xi)Mxy + ~uyy(~xi)Myy) , (2.5)

where

Mxx = c2i a
2
i + s2i /a

2
i , (2.6a)

Mxy = cisi(a
2
i − a

−2
i), (2.6b)

Myy = c2i /a
2
i + s2i a

2
i . (2.6c)

There are no known advantages to curvature corrections in D~u when using this
method, though this was explored somewhat in [16].

When we approximate solutions to (1.1) using one of these schemes, we must
choose a temporal integrator. For a problem where the velocity field is known and
easy to compute, a Runga-Kutta method might be appropriate. However, there are
many nonlinear problems where Lagrangian methods would be desirable, and in these
cases, the velocity field might be expensive to compute. For instance, in vortex
methods, the velocity field depends upon ρ̂ though a Biot-Savart integral. This is the
most expensive part of the computation, even if one is using fast summation. To be
general and open to the reality of extended applications, we perform the study with
an explicit multistep integrator.

We use a third order Adams-Bashforth multistep integrator for the trajectories
in this comparative study. Also, we use a composite scheme because the deformation
of the elements can occur on a timescale that is much faster than changes in the flow
field. The deformation of each element occurs on half-steps because we would like to
remain flexible and achieve second-order accuracy if the velocity were to depend upon
ρ (even though it does not in this paper). Thus, the time-stepping algorithm is as
follows:

1. Integrate either (2.2b) for the Axisymmetric Blob Method or (2.3b) for the
Deforming Blob Method to move particles forward one half a time step using
an explicit stepper. Evaluate the velocity field.

2. Integrate (2.2c) for the Axisymmetric Blob Method or (2.3c-2.3e) for the
Deforming Blob Method to deform basis functions for a full timestep. Since
(2.2c) has a simple analytic solution, numerical integration is not necessary,
and we find that the axisymmetric implementation runs about five times faster
because of this feature. Thus, there is a substantial performance advantage to
using the lower order method.1 Evaluate the velocity field.

3. Integrate (2.2b) or (2.3b) to move particles forward one more half time step.
Evaluate the velocity field.

4. To continue, return to step 1.
It can be shown that this simple splitting technique is second-order correct in time
though it would be worthwhile to investigate whether or not there is a high order
multistep method for the entire system. The algorithm is implemented in a modular
program, and the codes are identical except for the evolution equations governing the
computational elements. That is, input/output, the looping structures and all other
routine tasks are absolutely identical in both methods.

1In the case of (2.3c-2.3e), an adaptive fourth order Runge-Kutta algorithm is used with half-
stepping for error control. We experimented with an adaptive Cash-Karp error control algorithm
as outlined in [12], but found this to be less efficient than a simple half-stepping for this particular
application.

5

3. The test problem. To examine the performance of the two methods, each
will approximate the solution of (1.1) with an underlying differentially rotating flow
given by the streamfunction

ψ =
π

4
r2 + δ(r2 + c1r

4 + c2r
6), (3.1a)

~u =

[
∂ψ
∂y

−∂ψ
∂x

]
(3.1b)

where δ = 3/10, c1 = −7/6 and c2 = 1/10 on an unbounded domain. This is the same
flow field used in [16], but these tests will use different initial data. Where we applied
axisymmetric initial data in previous work so that an exact solution could be used for
convergence studies, in this study we will use a normalized, anisotropic distribution
of scalar,

ρ(~x, 0) =
32

π
e−32(x2/8+8y2), (3.2)

so that, in the absence of dissipation, fine filaments will be generated after a small
number of rotations as seen in Figure 3.1. We select this sample problem because one
uses Lagrangian methods when the quantity of interest, ρ, occupies a fraction of the
computational domain at any given time during the simulation. While axisymmetric
structures are useful for a convergence study, it is unlikely anyone would choose a
Lagrangian method if the computed field was expected the fill the domain of interest.
Instead, a performance measurement should involve a distribution that is more typical
for the method being tested.

With this flow structure, the turnover time near the origin is about 3 but the
turnover time near the edge of the structure is roughly 9

2
. The computation is per-

formed until T = 9 so that the inside of the initial distribution is twisted a full
revolution relative to the edges as seen in Figure 3.1. To test the two Lagrangian
methods, the calculation is performed with Pe = 104, Pe = 105 and Pe = ∞. The
initial data for both methods is identical. Since the initial data has infinite support,
we initially arrange computational elements over the domain

8(x2/8 + 8y2) ≤ 1, (3.3)

beyond which ρ has decayed to less than 2% of its initial maximum value. The
strength of each element is determined using an exact deregularization procedure, as
discussed in [17], so that the growth of spatial errors in solving (1.1) are much greater
than the growth of initial errors. Isotropic particles are arranged on the domain (3.3)
in a regular square lattice of width σ0

2
where σ0 is the initial core width for the trial

simulation. Both methods were tested in trials with initial core widths of 8 × 10−4,
4× 10−4, 2× 10−4, 10−4, 5× 10−5 and 2.5× 10−5.

A high resolution spectral calculation will serve as a reference (“exact”) solu-
tion for the convergence study. The spectral code is implemented in Matlab using
scripts from Trefethan’s monograph [21]. The spectral code takes advantage of the
fact that we know the domain of interest apriori, so we can compute spatial deriva-
tives spectrally on the unit disk (see chapter 11 of the monograph) using Chebyshev
interpolation in the radial direction and trigonometric interpolation in the azimuthal
direction. The spectral code used in this paper modifies Trefethan’s Matlab program
to take advantage of sparsity in the 2D differentiation matrix. Time stepping is per-
formed using third order Adams-Bashforth with timesteps of either 10−3, 6 × 10−5

6

Pe = 104 Pe = 105 Pe =∞

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8
T = 3

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8
T = 3

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8
T = 3

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8
T = 6

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8
T = 6

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8
T = 6

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8
T = 9

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8
T = 9

−0.8 −0.4 0 0.4 0.8
−0.8

−0.4

0

0.4

0.8
T = 9

Fig. 3.1. Solutions for Pe = 104 (left), Pe = 105 (center) and Pe = ∞ (right). The contour
increment is 4 units of ρ per division. The differential rotation of the underlying flow intensifies
gradients while diffusion suppresses gradients. The long, slender filaments at high Peclét number
pose a challenge to any numerical method. The area of detail indicated at the bottom center is
expanded in Figure 4.2.

for Pe = 104 and 105, respectively, depending upon the stability requirements of the
spectral differentiation matrix. Refinement studies indicate that all computations
are temporally resolved. While the purpose of this paper is to examine the tradeoffs
between the Axisymmetric Blob Method and the Deforming Blob Method, it is worth-
while to discuss three notable distinctions between the spectral reference solution and
the Lagrangian solutions.

• The most important difference is that we should achieve spectral accuracy in
space from the spectral code since the exact solution is smooth for all finite
time. That is, we expect the spatial accuracy to scale like C−N where N is
the number of modes used in the computation. The Lagrangian methods are
second- O(σ2) and fourth-order O(σ4) in space, respectively. However, for
very high Peclét numbers, the scalar filaments can become quite sharp, and
the resulting large gradients make the spectral convergence rate very slow.

• The spectral code is designed to take advantage of the simple geometry of
the test problem whereas the Lagrangian code is general and is applicable
to any flow geometry. For instance, if we were to superpose a straining flow
such as ψ2 = Cxy into the flow field, we could directly apply the same

7

Lagrangian code whereas the spectral code would need to be modified for a
new computational domain.

• The spectral method operates on a finite domain where ρ̂ = 0 at r = 1 in
polar coordinates whereas the Lagrangian code operates on an unbounded
domain and the choice of basis function automatically satisfies ρ̂ → 0 as
r → ∞. Since (3.2) decays rapidly and the Peclét number is high, solutions
from either method can be compared to one another.

Solutions to all calculations are compared on a uniform grid that is sufficiently
fine to resolve differences down to four decimal places. For Pe = 104, a 100 × 100 is
sufficient, but for Pe = 105 and Pe =∞, a 400×400 mesh is used. For the Lagrangian
computations, ρ̂ is computed directly at each mesh point. For the spectral reference
solution, we acquire regularly spaced data using the corresponding spectral projection.
To measure the difference between two solutions, u and v, we use an l2 approximation
to the L2 norm:

‖u− v‖2 =

√∑

i,j

(vi,j − vi,j)2∆x∆y, (3.4)

where the sum is over all mesh points, and ∆x and ∆y are the width and height of
the regular adjoint grid cells. Thus, the error in a test calculation is the l2 difference
between the test solution and the reference solution.

4. Results. It is no surprise that both Lagrangian methods achieve the predicted
spatial convergence rate as seen in Figure 4.1 and reported in [16] because the only the
flow parameters and initial data have been changed. Examining (2.2) and (2.3), we see
that the core sizes for the deforming elements will always be at least as large as those
of the axisymmetric system. In Figure 4.1, we see that for the same initial widths, the
deforming elements grow substantially larger. Yet, despite having wider elements, the
Deforming Blob scheme realizes better results because elements conform to the local
flow geometry as seen in Figure 4.2. If one extrapolates to a hypothetical situation
where the initial widths are zero, one can see that the final state will correspond to
the Deforming Blob Method having wider elements, but a more accurate solution. In
other words, while both techniques are inconsistent if left uncorrected by remeshing
or adaptive refinement techniques, the Deforming Blob Method suffers less for it.

To measure the performance of both methods, the overall precision of the com-
putation can be seen as a function of computational effort expended to achieve the
resulting accuracy. Typically, the deforming elements require five times the computa-
tional effort of an axisymmetric blob because there are more degrees of freedom and
the evolution of σ2 is coupled to a2 so neither can be solved analytically as is the
case for the axisymmetric elements. In Figure 4.1, we see that the tradeoff between
complexity and accuracy occurs even at small problem sizes of about 10,000 (axisym-
metric) elements at Pe = 104, and the improvements are realized at increasingly large
problem sizes as we increase the Peclét number. This does not correspond to a loss
of performance at large Pe because accurate solutions to larger Pe flow will require
a larger number of computational elements to resolve it. Since it is not unusual for
high performance Lagrangian computations to use millions of computational elements,
these results indicate that the use of deforming elements would benefit many investi-
gations, should lead to significant improvements in accuracy, and will make aggressive
calculations more accessible with modest computational resources.

As a final note, it is also meaningful to report upon the spectral method used to
generate reference solutions. Though the references themselves are not the focal point

8

10
-3

<σ2
>

10
0

l 2 e
rr

or

Axisymmetric blob
Deforming blob
slope m=2
slope m=4

Convergence rate
T = 9 Pe = 10

4

"Theoretical best"

0 0.02 0.04 0.06
CPU time per step (sec)

0.5

1

1.5

l 2 e
rr

or

Axisymmetric blob
Deforming blob

Error vs. CPU time tradeoffs
T = 9 Pe = 10

4

8,827 17,665
axisymmetric
elements

2,219 deforming
elements

10
-4

10
-3

<σ2
>

10
-2

10
-1

10
0

l 2 e
rr

or

Axisymmetric blob
Deforming blob
slope m=2
slope m=4

T = 9 Pe = 10
5

0 0.02 0.04 0.06 0.08 0.1
CPU time per step (sec)

0

0.5

1

1.5

2

2.5

3

l 2 e
rr

or

Axisymmetric blob
Deforming blob

T = 9 Pe = 10
5

4,431
deforming
elements

17,665
axisymmetric
elements

35,357
axisymmetric
elements

10
-5

10
-4

10
-3

<σ2
>

10
-2

10
-1

10
0

l 2 e
rr

or

Axisymmetric blob
Deforming blob
slope m=2
slope m=4

T = 9 Pe = ∞

0 0.1 0.2 0.3 0.4
CPU time per step (sec)

0

0.5

1

1.5

2

2.5

3

l 2 e
rr

or

Axisymmetric blob
Deforming blob
Extrapolation

T = 9 Pe = ∞

35,357
deforming
elements

17,665
deforming
elements

"141,428"
axisymmetric
elements

Fig. 4.1. Convergence rates using logarithmic scales (left) and performance data (right) for
test problems using the Axisymmetric Blob and Deforming Blob Methods. Theoretical convergence
rates are achieved for both Lagrangian methods, and the Deforming Blob Method works better. In
the absence of remeshing or adaptive refinement, both methods are inconsistent meaning that 〈σ2〉
has a lower bound. The “theoretical best” value is extrapolated back to a position where initial core
widths would be zero for the Pe = 104 calculation. By examining the accuracy gained as a function
of ticks of the CPU clock, we can measure the tradeoff between the simpler low-order method and the
more complex high-order method. One can see that the trade-off depends upon the Peclét number.

of the paper, the efforts required generate them merit some attention. At Pe = 104,
the spectral computation ran with about 100 modes azimuthally and radially in less
than two hours to produce a reference solution that was well below the theoretical best
solution that could be obtained with either Lagrangian method. Like the Lagrangian
methods that were being tested, the spectral algorithm struggled with computations

9

0.55 0.6 0.65
−0.05

0

0.05
T=9 Pe = 105 17,665 axisymmetric blobs

0.55 0.6 0.65
−0.05

0

0.05
T=9 Pe = 105 4,431 deforming blobs

Fig. 4.2. Sample particle positions using the Axisymmetric (left) and Deforming Blob Methods
(right). Particle positions are indicated by oriented X’s whose arms correspond to σa/10 and σ/a/10.
Scalar concentrations are indicated by the solid contour line. The area of detail is indicated in Figure
3.1 in the bottom center figure. The axisymmetric calculation uses more blobs to achieve slightly less
accurate results than the deforming computation on the right. The deforming elements are more
than twice as wide, but they naturally conform to the geometry of the computed field.

at Pe = 105 and Pe =∞. The spectral reference solution at Pe = 105 required more
250 modes azimuthally and radially and needed roughly 28 days of CPU time. Part
of the problem is that the spatial resolution required a small time step of 6 × 10−5

for the time-stepping to be stable. Before being critical about this performance, one
should consider that the Lagrangian method could never reach this accuracy at all
without remeshing or refinement. Also, a crafty spectral guru would know of some
tricks to save memory and clock cycles, or do a better job avoid stability boundaries.
For instance, one might remap the domain to allocate more resolution away from the
outer boundary and possibly dedicate more nodes closer to the filaments (see [6] for an
example). When Pe = ∞, the Lagrangian methods are consistent, and the standard
spectral scheme is prohibitively expensive both in memory and time. The deforming
Lagrangian method was used to generate its own reference solution. Even with close
to 150,000 particles, it ran in three and a half hours, and so was the natural choice
for generating a reference solution.

5. Conclusions. A number of common themes emerge from this quantitative
comparison of low and high order Lagrangian method. The general conclusion is that
there are significant performance advantages in using the Deforming Blob Method over
the Axisymmetric Blob Method for problems of general interest that are accessible
with currently available computing devices. The more specific findings are:

• The performance tradeoff depends upon the Peclét number of the problem,
so the tradeoffs occur at larger problem sizes when diffusion is less dominant.
The other side of this result is that one might be better off using methods
with axisymmetric blobs if the resolution requirements are low.

• While both the Axisymmetric and Deforming Blob Methods are inconsistent
unless one applies a correction method, the Deforming Blob Method has a
better limiting accuracy. Therefore, one can argue that the range of applica-
bility of the Deforming Blob Method is greater than the Axisymmetric Blob
Method, and the Deforming Blob Method requires fewer corrections if one
desires consistency.

10

• Both Lagrangian methods compare very favorably to the reference spectral
scheme at high Peclét numbers, and this really highlights the advantage of
natural adaptivity in Lagrangian schemes. As a general tool for fluid flows,
the Lagrangian algorithm dedicates resources more effectively where the field
is substantial. This is not intended to criticize the use of spectral methods for
high Peclét number flows, but rather to point out that it might require some
apriori knowledge of the solution to tune the spectral scheme. The results in
this paper suggest that these Lagrangian methods are high quality general
tools for flow problems where the field of interest occupies a fraction of the
domain of interest.

These results point toward closely related projects. To go beyond the convection-
diffusion equations, one might solve the nonlinear vorticity equations where ρ would
represent the vorticity of a fluid flow, but one must extract the velocity field from
ρ̂. Some progress in this area has already been made by determining a fourth or-
der asymptotic expression for the Biot-Savart integral of an elliptical Gaussian [15].
Along different lines, one might examine the three-dimensional convection-diffusion
equations using deforming ellipsoidal Gaussian blobs. Many of the ideas and tech-
niques in this paper and in [16] would apply. Finally, most of the work on remeshing
and adaptive refinement has focused on axisymmetric elements. Generalizations to
these techniques for highly anisotropic blobs should be explored to make methods like
these fully consistent in flow calculations with finite diffusivity.

6. Acknowledgements. The author would like to thank Prof. Toby Driscoll at
the University of Delaware for his helpful advise on the practicalities of implementing
the spectral code used in this paper.

REFERENCES

[1] G.-H. Cottet and P. D. Koumoutsakos, Vortex methods: Theory and practice, Cambridge
University Press, Cambridge; New York, 2000.

[2] C. Greengard, The core spreading vortex method approximates the wrong equation, J. Comp.
Phys., 61 (1985), pp. 345–348.

[3] T. Kida, Theoretical and numerical results of a deterministic two-dimensional vortex method,
Sadhana, 23 (1998), pp. 419–441.

[4] T. Kida and T. Nakajima, Core spreading vortex methods in two-dimensional viscous flows.,
Comput. Methods Appl. Mech. Engrg., 160 (1998), pp. 273–298.

[5] T. Kida, T. Nakajima, and H. Suemitsu, Second order core spreading vortex method in two-
dimensional viscous flows, JSME Int. J. Series B - Fluids and Therm. Engg., 41 (1998),
pp. 441–446.

[6] D. Kosloff and H. Tal-Ezer, A modified chebyshev pseudospectral method with an O(N−1)
time step restriction, J. Comp. Phys., 104 (1993), pp. 457–469.

[7] B. Legras and D. G. Dritschel, A comparison of the contour surgery and pseudo-spectral
methods, J. Comp. Phys., 104 (1993), pp. 287–302.

[8] A. Leonard, AIAA 97-0204: Large-eddy simulation of chaotic convection and beyond, in 35th
Aerospace Sciences Meeting & Exhibit, American Institute of Aeronautics and Astronau-
tics, 1997.

[9] J. S. Marshall and J. R. Grant, A method for determining the velocity induced by highly
anisotropic vorticity blobs, J. Comp. Phys., 126 (1996), pp. 286–298.

[10] E. Meiburg, Incorporation and test of diffusion and strain effects in the two-dimensional
vortex blob technique, J. Comp. Phys., 82 (1989), pp. 85–93.

[11] P. Moeleker and A. Leonard, Lagrangian methods for the tensor-diffusivity subgrid model,
J. Comp. Phys., 167 (2001), pp. 1–21.

[12] W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery, Numerical Recipes
in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, United
Kingdom, 1992.

11

[13] L. F. Rossi, Resurrecting core spreading methods: A new scheme that is both deterministic
and convergent, SIAM J. Sci. Comp., 17 (1996), pp. 370–397.

[14] , Merging computational elements in Lagrangian simulations, SIAM J. Sci. Comp., 18
(1997), pp. 1014–1027.

[15] , High order vortex methods with deforming elliptical Gaussian blobs 1: Derivation and
validation., Tech. Rep. 2001-11, University of Delaware, 2002.

[16] , Achieving high-order convergence rates with deforming basis functions., Mathemati-
cal Sciences 2003-6, University of Delaware, 2003. Submitted to SIAM J. Sci. Comput.
Available online at http://www.math.udel.edu/research/techrept/tech 2003.html.

[17] L. F. Rossi, J. F. Lingevitch, and A. J. Bernoff, Quasi-steady monopole and tripole at-
tractors for relaxing vortices, Physics of Fluids, 9 (1997), pp. 2329–2339.

[18] Z.-H. Teng, Elliptic-vortex method for incompressible flow at high Reynolds number., J. Comp.
Phys., 46 (1982), pp. 54–68.

[19] , Variable-elliptical-vortex method for incompressible flow simulation., J. Comp. Math.,
4 (1986), pp. 255–262.

[20] , Convergence of the variable-elliptic-vortex method for Euler equations, SIAM J. Num.
Anal., 32 (1995), pp. 754–774.

[21] L. N. Trefethen, Spectral Methods in Matlab, Society for Industrial and Applied Mathematics,
2000.

12

