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Abstract

Absence seizures are characterized by brief lapses in awareness accompanied by a

hallmark spike-and-wave discharge (SWD) electroencephalographic pattern and are

common to genetic generalized epilepsies (GGEs). While numerous genes have been

associated with increased risk, including some Mendelian forms with a single causal

allele, most cases of GGE are idiopathic and there are many unknown genetic modi-

fiers of GGE influencing risk and severity. In a previous meta-mapping study, crosses

between transgenic C57BL/6 and C3HeB/FeJ strains, each carrying one of three

SWD-causing mutations (Gabrg2tm1Spet(R43Q), Scn8a8j or Gria4spkw1), demonstrated an

antagonistic epistatic interaction between loci on mouse chromosomes 2 and

7 influencing SWD. These results implicate universal modifiers in the B6 background

that mitigate SWD severity through a common pathway, independent of the causal

mutation. In this study, we prioritized candidate modifiers in these interacting loci.

Our approach integrated human genome-wide association results with gene interac-

tion networks and mouse brain gene expression to prioritize candidate genes and

pathways driving variation in SWD outcomes. We considered candidate genes that

are functionally associated with human GGE risk genes and genes with evidence for

coding or non-coding allele effects between the B6 and C3H backgrounds. Our ana-

lyses output a summary ranking of gene pairs, one gene from each locus, as candi-

dates for explaining the epistatic interaction. Our top-ranking gene pairs implicate

microtubule function, cytoskeletal stability and cell cycle regulation as novel hypothe-

ses about the source of SWD variation across strain backgrounds, which could clarify

underlying mechanisms driving differences in GGE severity in humans.
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1 | INTRODUCTION

Absence seizures are brief lapses in behavioral responsiveness accom-

panied by spike-and-wave discharges (SWDs) seen on an electroen-

cephalogram (EEG) and are a feature of several generalized genetic

epilepsies (GGEs), including Childhood Absence Epilepsy, Juvenile

Absence Epilepsy and Juvenile Myoclonic Epilepsy.1,2 Patients with

any of these syndromes have SWDs caused by abnormal synchronous

neuronal firing in the cortico-thalamic loop, resulting in a characteris-

tic 3 Hz waveform in humans.3,4 Mouse models with absence seizures

also have SWDs with a higher frequency of �4–9 Hz.5–7 From

genome-wide association studies (GWAS), it is now clear that GGEs

are complex traits. In a recent meta-GWAS, novel common risk vari-

ants in STAT4, GABRA2, KCNN2, ATXN1, GRIK1, STX1B, FANCL,

BCL11A and ZEB2 were associated with GGE at the genome-wide sig-

nificance level.8 However, these genome-wide significant loci only

account for a small fraction of the heritability of GGE and the mecha-

nisms by which they alter risk is unknown. In contrast, a proportion of

GGE cases are caused by large-effect but rare variants in single genes,

including GABRA2, GABRG2 and SCN1A, which have been detected in

rare-variant screens, large family studies and linkage studies.9,10

In total, the genetic evidence demonstrates that there are some men-

delian forms of GGE, but most cases are sporadic and highly poly-

genic. In the sporadic cases, genetic risk factors represent modifiers of

disease pathology that alone are insufficient to cause disease but can

aggregate into an GGE susceptible state. Identifying these modifiers

and their mechanistic interconnections is necessary to fully character-

ize the mechanisms of GGE that could eventually become therapeutic

targets.

Mouse models are a critical system for identifying genetic modi-

fiers of GGE because we can stringently control the background

genetics and the environment. One of the authors11 published a

modifier screen of SWD in mice using three different Mendelian

SWD-causing mutations that were fixed onto two distinct genetic

backgrounds: C57BL/6J (B6) and C3HeB/FeJ (C3H). The three

mutant alleles—Gabrg2tm1Spet(R43Q), Scn8a8j and Gria4spkw1—cause

SWD through distinct mechanisms, respectively encoding a GABA

receptor,12 a voltage gated sodium channel,13 and a glutamate recep-

tor.14 Tyler et al found that independent of SWD-causing mutations,

the C3H strain had more frequent and longer SWDs, demonstrating

that the C3H strain has variants relative to B6 that are potentially uni-

versal modifiers of SWD severity. Using a combination of backcross

and intercross breeding, they mapped several quantitative trait loci

(QTL) influencing SWD frequency and duration, including large-effect

loci on chromosomes 2 and 7 (Figure 1A). Moreover, the loci on chro-

mosomes 2 and 7 had an epistatic interaction across the entire com-

bined mapping population, suggesting that the modifier variants in

these loci act in the same pathways.

F IGURE 1 Identifying genetic modifiers within loci causing an epistatic interaction modifying spike-and-wave discharge (SWD) in mice using
network-based functional prediction (NBFP) integrating human and mouse data. (A) SWD meta-mapping population performed by Tyler et al.11

Three SWD-causing mutations were fixed onto a B6-C3H background, and through a series of intercrosses and a backcross, N2 and F2 animals
were generated and phenotyped for SWD severity. (B) Adapted from Tyler et al, antagonistic epistasis between loci on chromosomes 2 and
7, where a C3H allele at either of the loci alone worsens SWD frequency and duration relative to B6, but C3H alleles at both loci combined does
not further exacerbate SWD severity. (C) NBFP integration of genetic generalized epilepsies risk genes from genome-wide association studies8

and thalamocortical gene–gene networks17,25 relevant to SWD to produce functional scores for the entire mouse and human genomes.
(D) Filtering for loci on chromosomes 2 and 7 and identifying gene pairs with high joint ranking of individual genes and strong function connection
to each other. Created with Biorender.com
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The pattern of interaction between the loci on chromosomes 2 and

7 implicates antagonistic epistasis, that is, the effect of having C3H

alleles at both loci is less extreme than would be predicted by adding

the single-allele effects (Figure 1B). Antagonistic epistasis strongly sug-

gests that the causal variants within these alleles have effects in series

in some shared pathway.15,16 Thus, the interaction between the loci on

chromosomes 2 and 7 implicates causal genes within a universal SWD-

modifier pathway that is responsible for worse outcomes in C3H mice

compared with B6 mice. However, these mapping studies result in QTLs

containing hundreds of positional candidate genes and variants. Thus,

we require auxiliary data to prioritize among these positional candidates

for mechanistic follow up.

The problem of prioritizing among possible causal genes within a

QTL is typically underdetermined, meaning the data at hand are not

sufficient to strongly identify a small number of candidates. Here, we

use the following assumptions to guide the integration of auxiliary

data: (1) The majority of putative GGE risk genes from human GWAS

are modifiers of GGE pathology; (2) The causal modifiers of SWD

within the mouse QTLs on chromosomes 2 and 7 should be function-

ally associated with these human GGE GWAS genes; (3) The thalamus

and cortex represent biologically important brain regions contributing

to SWD whose corresponding functional gene–gene networks cap-

ture relevant tissue-specific interactions; and (4) The antagonistic

epistasis between loci on chromosomes 2 and 7 implies that the

causal genes are strongly connected to each other within GGE-

associated gene networks. Together, these assumptions underlie our

approach to seek gene pairs, with one gene from each locus, that are

strongly functionally associated with human risk genes within SWD

thalamic and cortical tissue networks as well as strongly functionally

connected to each other (Figure 1). In this study, we address the limi-

tation of low mapping resolution using a combination of bioinformatic

gene interaction networks and brain gene expression data, which we

integrate to identify gene pairs meeting the above four criteria.

The major component of our prioritization pipeline uses network-

based functional prediction (NBFP), wherein we fit machine learning

models with tissue-specific gene interaction networks to rank all

genes in the genome for functional association to GGE GWAS genes

(Figure 1C). Here, we use gene networks, where individual genes are

connected to each other by weighted edges, to represent interactions

between genes within a specific tissue. These functional gene–gene

networks capture relationships between genes by integrating multiple

types of functional genomic data including gene expression profiles,

molecular interactions and prior knowledge of gene functions. NFBP

is an unbiased way to rank all genes in the genome for their functional

association to GGE risk genes. With these rankings, we could identify

mouse genes that are critically involved in GGE risk pathways, inde-

pendent of whether there are risk alleles for those genes in the human

population. We then filtered candidates to the loci on chromosomes

2 and 7 and ranked gene pairs for jointly associating with GGE as well

as interacting with each other (Figure 1D). Finally, we merged these

prioritizations with differential gene expression data and

variant-effect predictions to arrive at a plausible list of strong candi-

dates for potential follow up.

2 | METHODS

Network-based functional prediction (NBFP) has previously been used

to identify leading candidate genes in multiple contexts, including Alz-

heimer's disease, autism spectrum disorder, inflammatory bowel dis-

ease and histamine hypersensitivity.17–22 Here, we used NBFP to

narrow the field of candidate genes within two loci (chromosome 2:

116.97–136.97 Mb and chromosome 7: 85.46–105.46 Mb) involved

in an antagonistic epistatic interaction driving differences seen in

SWD in a meta-mapping population in mice with SWD-causing muta-

tions11; The term meta-mapping, in this case, refers to the fact that

multiple distinct mapping populations (two backcrosses and one inter-

cross) were combined to boost statistical power to detect modifier

genes that are independent of SWD etiology. We integrated known

human GGE risk genes from GWAS and tissue-specific gene networks

to rank all genes in the human and mouse genomes by the strength of

their functional association to GGE GWAS genes within SWD

networks.

2.1 | GGE GWAS

The International League Against Epilepsy Consortium on Complex

Epilepsies conducted a genome-wide mega-analysis of common epi-

lepsies.8 The heritability of GGE suggests that common variants have

a large aggregate role in modifying risk. While other large scale whole

exome sequencing studies have also identified ultra-rare variants,23

like those conducted by the Epi25 Collaborative, these data address a

different component of genetic risk, namely a causal mutation for

GGE, and not the modifier effects from the genetic background.

Therefore, we used statistical information about common variants as

input for our pipeline. GWAS summary statistics for GGE sub-

phenotypes of childhood absence epilepsy (CAE), juvenile absence

epilepsy (JAE) and juvenile myoclonic epilepsy (JME) were down-

loaded from http://www.epigad.org/gwas_ilae2018_16loci.html. We

used Multi-marker Analysis of GenoMic Annotation (MAGMA) to map

SNP-level p-values to gene level p-values using the Genome Refer-

ence Consortium Human Build 37 (hg37) genetic reference and a

10 kb window on either side of each gene.24 The CAE, JAE and JME

GWAS had 313, 279 and 468 genes, respectively, that reached a

nominal level of significance (p < 0.01, File S1). These genes, termed

GGE GWAS genes, were used to train the machine learning classifier

for NBFP.

2.2 | Network-based functional prediction

We performed NBFP to functionally score and rank all genes in the

human and mouse genomes as previously described.19,21,22 In the

context of functional gene networks, the term “functional” refers to
the biological activities or processes that genes are involved in

beyond the physical interactions between genes. Functional gene

networks capture relationships between genes based on biological
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pathways and cellular processes. Genes that are strongly connected

to each other by their edge weights are predicted to be strongly

functionally related. Briefly, we trained an ensemble of 100 linear

SVM classifiers to discriminate GGE GWAS genes from the rest of

the genes in the genome using the network connectivity as input

features (Figure 2). Formally, this is a positive-unlabeled learning

problem, where we have GGE GWAS genes from the three disor-

ders (CAE, JAE, JME) as positively labeled disease-associated genes,

while the functional association of the remainder of the genes is

unknown. We used human and mouse cerebral cortex and thalamic

functional networks downloaded from HumanBase (top edges for

‘cerebral cortex’ and ‘thalamus’) and Functional Networks of Tis-

sues in Mice (‘cerebralcortex_top’ and ‘thalamus_top’).17,25 These

four functional gene–gene networks are composed of genes con-

nected by edge weights encoding predicted probabilities for the

genes' functional interaction within the specific tissue based on

multiple streams of genomic data including expression profiles and

prior knowledge of gene function. Human GGE GWAS genes were

converted to mouse orthologs using gProfiler26 to be used in the

mouse networks.

For every gene, g, the output of each SVM model is an arbitrarily

scaled score,m gð Þ, where m gð Þ>0 indicates that the gene is function-

ally similar to GGE GWAS genes, while m gð Þ<0 indicates that the

gene is functionally dissimilar to GGE GWAS genes. We scaled

the raw SVM scores by computing the unlabeled-predicted-positive rate

(UPPR), which is the positive-unlabeled learning version of false dis-

covery rate. For a gene g, UPPR is computed as the ratio

UPPR gð Þ¼# g0 unlabeled :m g0ð Þ≥m gð Þf g
# g0 :m g0ð Þ≥m gð Þf g ,

that is, the fraction of unlabeled genes with a score higher than that

of gene g. Intuitively, the lower the UPPR, the more confident that

gene g is functionally related to the positively labeled genes. We con-

verted the UPPR to a final functional score, FS, using the negative of

the logarithm

F IGURE 2 Network-based functional prediction (NBFP). (A) Identification of nominally significant genome-wide association studies (GWAS)
genes from previous studies to serve as gold standard disease-associated genes. (B) Tissue-specific gene–gene interaction networks selected for

their relevance to disease. Nodes represent genes and edges are weights denoting the interaction among those genes. (C) The network
represented as an adjacency matrix where each gene occupies a space along the rows and columns, and the connections between them are
specified as the network edge weights, which are values between zero and one. (D) The extracted feature matrix where GWAS genes represent
positively labeled genes (P) associated with disease, and all other genes are unlabeled (U). (E) We trained an ensemble of linear support vector
machines (SVM) to identify positively labeled genes based on their weighted connections within the relevant tissue networks. Highly connected
genes that were previously unlabeled were classified as candidate disease genes if they were strongly annotated to the disease network, as
defined by their functional score (FS).
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FS gð Þ¼� log10 UPPR gð Þð Þ:

High functional scores for all human and mouse genes correspond

to how well connected each gene is to the GGE GWAS genes within

the cortical and thalamic SWD sub-networks.

2.3 | Pathway analysis

NBFP outputted rankings for all genes in human and mouse genomes

for 12 models, which were derived from the three GGE GWAS gold

standard training sets (CAE, JAE, JME) within the four functional tis-

sue networks (human cerebral cortex and thalamus, and mouse cere-

bral cortex and thalamus). For each of these 12 models, all genes in

the genome are ranked based on their functional score within that

model. To build sub-networks of the top-ranking genes from these

12 models that contained the strongest functional connection, we

aggregated the top 100 genes ranked by functional score into four

representative networks: human cerebral cortex, human thalamus,

mouse cerebral cortex, mouse thalamus (File S2). These four networks

contained �300 top-ranked genes each, and represent the underlying

SWD functional network of genes corresponding to that consolidated

model. This process of aggregating the models and taking the top-

ranking genes within them allowed for these four representative net-

works to emerge, with which we could perform pathway analysis to

better describe the contents of these networks. These four gene net-

works were then clustered into modules using a fast greedy modular-

ity optimization algorithm.27 Gene set enrichment analysis was

performed on each of the modules using g:GOSt and Cytoscape.26,28

The four networks were plotted as an adjacency matrix sorted by

functional scores with top significant Gene Ontology (GO) terms. To

visualize common enrichments across the SWD networks, we plotted

p-values of significant shared GO enrichment terms across the human

and mouse cortical and thalamic networks.

2.4 | Ranking gene pairs from loci on mouse
chromosomes 2 and 7

We subset each of the 12 ranked lists to genes within the chromo-

some 2 and 7 epistatic interaction loci. For the human networks,

genes were converted to mouse orthologs to score positional candi-

dates using gProfiler.26

To rank possible causal genes for the epistatic interaction

between chr 2 and chr 7, we sought gene pairs for which both genes

had high functional scores, indicating association to GGE etiology, and

a strong direct connection within a network, indicating a functional

interaction between those two genes specifically (File S3). For each

species-tissue combination (e.g., mouse-thalamus), we computed a

combined score, CS, that integrates these two features as follows. For

a gene pair (g1, g2), with g1 in the chr 2 locus and g2 in the chr 7 locus,

we computed the maximum functional score of gi, MFS(gi), for the

three GGE models (CAE, JAE, JME)

MFS gið Þ¼ max FSCAE gið Þ,FSJAE gið Þ,FSJME gið Þð Þ:

The maximum functional score encodes whether a gene is highly

ranked for at least one of the GGE subtype. From the maximum func-

tional scores, we computed a paired functional score, PFS(g1, g2), as

PFS g1,g2ð Þ¼ min MFS g1ð Þ,MFS g2ð Þð Þ:

The paired functional score encodes whether both genes in a pair

are highly ranked for at least one GGE subtype.

For each tissue and every pair of genes (g1, g2), the tissue net-

work has an edge weight, Wg1,g2 , encoding the functional similarity of

those genes.17,25 We integrated the paired functional score with the

edge weight to yield a combined score, CS (g1, g2), computed as fol-

lows. Letting N denote the number of gene pairs spanning the chr

2 and 7 loci,

CS g1,g2ð Þ¼# ~g1,~g2ð Þ :PFS ~g1,~g2ð Þ≤PFS g1,g2ð Þ andW~g1,~g2 ≤Wg1,g2

� �

N
:

Thus, the combined score encodes the 2D empirical cumulative

distribution function of pair functional score and the edge weights.

Intuitively, the combined score counts the fraction of gene pairs that

are worse than g1,g2ð Þ for both scores. Values near one indicate

that a pair is better than nearly all other pairs on both metrics simulta-

neously. Because the distribution of edge weights differed across the

four networks (human and mouse, cerebral cortex and thalamus), we

considered each network independently. Thus, we generated four

separate combined scores (File S3), and considered all four rankings in

the final analysis (Table 1).

2.5 | Gene expression analysis

To augment gene pair prioritization, we performed gene expression

analysis using an RNAseq dataset from adult cortical tissue for the par-

ent strains of the meta-mapping population (three C57BL/6J samples

and three C3H/HeJ samples, File S4).29 Fastq files of paired-end

sequencing reads were downloaded from https://www.ebi.ac.uk/ena/

browser/view/PRJNA707067 and extracted using SRA toolkit (https://

trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=software). Quality

assessment of reads was performed using FastQC (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc/). Adapter trimming was

carried out using Cutadapt,30 and reads were aligned to the reference

genome GRCm38 using Spliced Transcripts Alignment to a Reference

(STAR).31 Read counts were aggregated with MultiQC.32 Differential

gene expression analysis was carried out in R using DESeq2.33

2.6 | Data and code availability statement

All GWAS p-values, functional and combined scores, gene pair scores

and network edge weights, and gene expression p-values (between
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C57BL/6J and C3H/HeJ strains) are provided in the supplementals.

To ensure rigor and reproducibility, all NBFP code used in this study is

available at https://github.com/MahoneyLabGroup.

3 | RESULTS

3.1 | Network-based functional prediction
identifies distinct thalamocortical functional networks
associated with GGE risk genes

To identify the underlying pathways involved in SWD, we performed

NBFP to rank every gene in the genome by how well they connect to

GGE GWAS genes. Briefly, NBFP is a “guilt by association” strategy

that works as follows. Starting with a gene interaction network and a

list of trait-related genes, we train a classifier to discriminate between

trait-related genes and the rest of the genome based on the connec-

tions within the gene interaction network. By assumption, trait-

related genes are expected to be more tightly connected among

themselves than to other genes in the genome. The output of the

classifier is a functional score (FS) that ranks each gene according to

how strongly connected it is to the trait-associated input list.

In this study, we trained an ensemble of SVM classifiers to iden-

tify genes related to human GGE risk using connection weights to

GGE GWAS genes in the cortical and thalamic tissue networks as fea-

tures. We used childhood absence epilepsy, juvenile absence epilepsy

and juvenile myoclonic epilepsy GWAS8 genes (collectively referred

to as GGE GWAS genes) as putative GGE risk genes. We used both

human and mouse cortical- and thalamus-networks.17,25 For mouse

networks, we converted human GGE GWAS genes to mouse ortho-

logs. In total, we trained 12 models, one for each combination of GGE

subtype, species and tissue network. We used the resulting FSs from

these 12 analyses (see Methods) to rank all genes in the human and

mouse genomes.

To interpret the functional role of highly ranked genes from

NBFP and find plausible candidate pathways related to SWD that

are enriched for modifiers, we performed a graph clustering analysis

on the human and mouse AE-associated networks containing the

top 100 genes from each model. We then used maximum modular-

ity clustering27 to identify significant modules and performed a

pathway analysis on each of the modules. To visualize the resulting

sub-networks of genes from the modularity analysis, we grouped

each by human or mouse and thalamus or cortex and made

weighted adjacency matrices (Figure 3). Within each module, genes

were sorted by functional score. Higher edge weights between

genes within the network corresponds to a stronger functional con-

nection within the network and is represented by brighter colors

(Figure 3). The human networks were denser than the mouse net-

works. Nevertheless, the functional relationship among genes

within each module underscored distinct pathways. Across the four

GGE networks, modules were commonly enriched for brain-related

pathways including nervous system development, neurogenesis, cell

cycle, cell signaling, synaptic signaling, morphogenesis and neuron

development, all of which have plausible association to SWD

severity.

The modularity and pathway analysis resulted in modules with

common enrichments across the cortical and thalamic SWD networks,

even though the gene composition of modules varied. To determine if

the enriched pathways from these GGE-associated networks were

also shared across species, we compared enrichment p-values of sig-

nificant shared GO enrichment terms across human and mouse net-

works (Figure 4). The comparison revealed multiple common top GO

terms including nervous system development, synapse, synaptic and

cell signaling, neurogenesis, morphogenesis and structural develop-

ment, and regulation of cellular and biological processes. The multi-

species concordance of shared enrichments demonstrates that there

are common biological pathways among GGE risk genes in both

humans and mice.

TABLE 1 Plausible candidate gene pairs in spike-and-wave discharge (SWD) pathways.

Ch2 gene

Ch7

gene

Comb

score

Network

EW

FS

(Ch2 gene) Additional evidence

FS

(Ch7 gene) Additional evidence

TUBGCP4 PPME1 0.947 0.174 2.140 KOMP phenotype Splice

variants

2.348 DOWN DEG pv 0.004 KOMP

phenotype Splice variant

DUT DDIAS 0.925 0.180 1.279 Del missense variant 2.053 Del missense variants

SNAP23 RAB6A 0.976 0.397 1.549 UP DEG pv 0.027 1.972 UP DEG pv 0.004

CKAP2L DDIAS 0.958 0.235 1.986 1.533 Del missense variants

Chp1 Rab6a 0.952 0.299 1.222 KOMP phenotype 1.607 UP DEG pv 0.004

Gatm Pak1 0.813 0.173 1.284 UP DEG pv 0.011 1.210 KOMP phenotype

Note: Integrative prioritization of top candidate gene pairs from the four SWD networks with the combined (comb) score and network edge weight (EW),

as well as the functional score (FS) for each individual gene. Bolded genes are among the highest-ranking genes in the whole-genome analysis (see

Section 2, these are the labeled genes in Figure 3), as well as the chromosome 2 and 7 loci. Additional evidence to support their role in this epistatic

interaction include: differential expression of that gene in the cortex from a mouse model (DEG),29 and the existence of missense or splice variants of that

gene with predicted deleterious (del) effects,64 as well as relevant Knockout Mouse Project (KOMP) phenotypes.49 The genes included in this table were

identified for their high rank among all the included criteria, and their function in neurodevelopmental pathways is highlighted in Figure 6.

6 of 14 LARA ET AL.

Version of Record at: https://doi.org/10.1111/gbb.12879

https://github.com/MahoneyLabGroup


3.2 | Functional ranking of genes in modifier loci
on chromosomes 2 and 7

To prioritize among positional candidates within the modifier loci on

chromosomes 2 and 7, we ranked every gene by its functional score.

To visualize high ranking genes within these intervals, we plotted the

positional candidates by functional score (from all 12 models) for both

loci. For the human network models, genes were converted to mouse

orthologs. There were multiple highly ranked genes shared across the

12 models, as well as highly ranked genes that were also GGE GWAS

F IGURE 3 Modularity and pathway enrichments of cortical and thalamic spike-and-wave discharge (SWD) functional networks of highly
ranked genes across the entire human and mouse genome. The four adjacency matrices represent the SWD network of human and mouse
cortical and thalamic-specific functional interactions. Each of the four networks represented have the top �300 genes most strongly associated

with genetic generalized epilepsies genome-wide association studies genes across the whole mouse or human genome. For each of the four
networks, these top �300 genes were clustered into modules, denoted with “M.” Modules are sorted by the strength of a gene's connection to
other genes within the module. Distinct pathway enrichments for each module were performed using Gene Ontology (GO) terms, KEGG
pathways and Human Phenotype (HP) ontology from gProfiler and Cytoscape.26,28 Pathway enrichments are above their respective module. The
genes that have been labeled are part of the �300 top genes in addition to being in the loci on chromosomes 2 and 7, denoting their high ranking
individually within the subnetworks for the epistatic loci. The colors represent the strength of the connection to other genes within the network,
with yellow, orange and red denoting strong connections, and blue denoting weaker connections. Varying the number of highly ranked genes for
visualizing the networks did not appreciably alter the module structure or enriched pathways (data not shown).
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F IGURE 4 Shared pathway enrichments in mouse and human spike-and-wave discharge networks. Scatter plot of �log10 p-values of
significant shared Gene Ontology enrichment terms between mouse and human cortical and thalamic networks. Note that the individual shared
pathways in each tissue correspond to broader common themes, particularly “synaptic function” in the cerebral cortex (left) and
“neurodevelopment” in the thalamus (right).

F IGURE 5 Functional gene pair candidates for causal epistatic interaction. Joint ranking of candidate gene pairs aggregated over all models.
Gen pairs are plotted by minimum function score of the pair and interaction strength of the pair within the tissue-specific network. Gene pairs are
ranked by their combined score.
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genes, including Emsy, Chrdl2, Kcnip3, Stard10, Sppl2a, Prom2 and

Ap4e1. Furthermore, several of the top ranked genes were also highly

ranked genes from the genome-wide human and mouse NBFP ana-

lyses, including Ddias, Capn3, Ppme1, Tubgcp4, Vps16, Rab30, Ckap2l

and Cdc25b (genes labeled in Figure 2). The existence of highly ranked

hits from the genome-wide GGE network analysis within the loci on

chromosomes 2 and 7 is consistent with the effect of these QTLs

on SWD.

Beyond individual highly ranked genes within these loci, we

wanted to find gene pairs that explain the antagonistic epistasis

between these loci. Top candidates should have both strong func-

tional association to GGE and a plausible functional interaction with

each other as a mechanism to drive epistasis. To rank all possible gene

pairs, we integrated each pair's functional scores from the species-

and tissue-specific NBFP models with the connection strength of a

gene pair to each other. Specifically, for each gene pair, we computed

a species- and tissue-specific summary functional score (see Section 2).

Plotting this summary functional score against the species- and tissue-

specific network edge weight, we see that some gene pairs have

simultaneously high functional score and a strong network connection

(Figure 5; upper right, yellow dots). To quantify this to produce an

unbiased final pair ranking, we computed a combined score using the

empirical two-dimensional cumulative distribution function that, for

each pair, counts the fraction of all pairs with both lower functional

scores and edge weights (see Methods). Thus, a score of 0.9 indicates

that 90% of all gene pairs have worse scores on both axes (Figure 5,

color bar). We labeled the top 10 gene pairs from the human and

mouse cortical and thalamic networks from the loci on chromosomes

2 and 7.

3.3 | Differential brain gene expression in B6
versus C3H brains

We augmented our network-based ranking with genetic support for

gene pairs with transcriptomic evidence from the B6 and C3H/HeJ

parent strains. (C3H/HeJ is closely related to the C3H/FeJ strain used

in this study.) We reanalyzed an RNAseq dataset of cortical mouse

brain tissue from Lee et al29 to identify differentially expressed genes

(DEGs) between the B6 and C3H strains from their study. We found

that several gene pairs that were highly ranked by combined score

also had variation in gene expression between the B6 and C3H strains

(Table 1).

4 | DISCUSSION

4.1 | Genome-wide network analysis implicates
brain-related pathways

In our genome-wide network analysis, the top-ranked genes impli-

cated brain-related pathways that are consistent across species and

tissues. Shared pathways included nervous system development, cell

cycle, neuronal development, neurogenesis, cellular organization and

synaptic signaling, which all have relevance in GGE.3,34–38 Variations

in the thalamocortical loop, such as changes in neuronal connectivity

and excitatory/inhibitory balance, can promote aberrant thalamocorti-

cal oscillations leading to hypersynchronous firing states and SWDs

(Figure 6A).3,4,39–41 Critically, thalamocortical circuit development

depends on proper axon growth, thalamic input for cortical structure

and intrinsic properties of thalamic projections.42

With this genome-wide assessment of pathways enriched for

GGE risk variants, we prioritized interacting gene pairs within the epi-

static loci affecting SWD in mice. Indeed, even some of the most

highly ranked genes across the whole genome were found in the loci

on chromosomes 2 and 7, including Ddias/DDIAS, Capn3/CAPN3,

Ppme1/PPME1, Tubgcp4/TUBGCP4, Vps16/VPS16, Rab30/RAB30,

Ckap2l/CKAP2L and Cdc25b. (Note that any genes found in the human

networks were converted to mouse orthologs located in the loci on

chromosomes 2 and 7.) Not only does this affirm the candidacy of

these individual genes, but it also corroborates our assumptions that

the epistatic interaction acts through common pathways and

that these genes are connected through underlying sub-networks

related to human GGE.

Of the top ranked genes in the entire genome, several appear

across both species and tissue-specific networks and have multiple

interacting pairs in the epistatic loci. Additional evidence for their can-

didacy also includes differential expression in cortical mouse tissue,

splice or deleterious variants found in mice, as well as neurologically

relevant KOMP phenotypes. While it would have been Ideal to have

cortical and thalamic gene expression data from the mapping popula-

tion, these data do not exist. As an alternative, we used publicly avail-

able gene expression data for the parent strains of the mapping

population for cerebral cortex tissue. To our knowledge, there are no

publicly available gene expression data for these strains for the thala-

mus, which is a limitation of this study. Nevertheless, our integrative

prioritization considers multiple streams of evidence that support the

top-ranking genes. In the remainder of this section, we discuss three

top-ranking candidate pairs in detail for which either both genes in

the pair are highly ranked at the genome scale (defined as being in the

top 100 genes in at least one of the prediction models) or the gene

pair was highly ranked in both humans and mice.

4.2 | Microtubule assembly and stabilization

Included among the top-ranked genes across the entire human

genome, the gene pair Tubgcp4/TUBGCP4—Ppme1/PPME1 was highly

ranked in both cerebral cortex and thalamus SWD-networks.

TUBGCP4 encodes gamma-tubulin complex associated protein

4 (GCP4), which is an essential component of the gamma-tubulin ring

complex (gamma-TuRC).43 Extensive characterization of gamma-TuRC

shows that it is critical to microtubule nucleation, providing the tem-

plate upon which alpha- and beta-tubulin bind to grow microtubules

at the centrosome and other microtubule organizing centers

(Figure 6B–D).44–46 Gene mutations of TUBGCP4 in humans cause a

LARA ET AL. 9 of 14
Version of Record at: https://doi.org/10.1111/gbb.12879



range of clinical manifestations, including congenital microcephaly,

chorioretinopathy, learning difficulties, additional ophthalmic defects,

as well as other neurodevelopmental abnormalities.47,48 Functional

assays in fibroblasts from an individual with a TUBCGP4 mutation

revealed reduced levels of GCP4 and gamma-TuRC, abnormal

microtubule organization and cell morphology, and large nuclei and

binucleated cells.47 Homozygous Tubgcp4 knockout in mice results in

embryonic lethality. In vitro evidence suggests this is caused by cell

division defects, specifically abnormal mitotic spindle formation from

defective gamma-TuRC assembly (Figure 6D).49,50 Heterozygous

F IGURE 6 Neurodevelopmental and thalamocortical processes involved in epistasis driving spike-and-wave discharge (SWD) phenotypes in
mice. Gene pairs identified through network-based functional prediction and filtered for loci on chromosomes 2 and 7 are involved in multiple
brain-related pathways that could contribute to SWD phenotypes. Top candidates are indicated in red. (A) Critical thalamocortical connections
are made during neurodevelopment. (B) Microtubule development and stabilization with the gene pair Tubgcp4 and Ppme1, which involves
microtubule nucleation with gamma-tubulin ring complex (gamma-TuRC), microtubule stabilization with tau proteins, activation of protein
phosphatase 2A (PP2A) by microtubule depolymerization and inactive, Ppme1-bound PP2A. (C) Microtubule dynamics and transportation and
anchoring with the golgi complex in the growth cone of the neuron, where beta-catenin is also present. (D) Cell cycle regulation and mitotic

spindle apparatus with microtubules during neurodevelopment. (E) Apoptotic signaling involving death-inducing signaling complex (DISC) and
caspase-8 as well as DNA damage pathways involving the pair Ddias and Dut. (F) Wnt/beta-catenin signaling pathway turned on (pink) where
beta-catenin is possibly stabilized by Ddias and can enter the nucleus, and turned off (gray) where beta-catenin is degraded by the beta-catenin
destruction complex, which also includes active PP2A. Created with Biorender.com
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Tubgcp4 knockout mice are viable, but exhibit microcephaly and reti-

nopathy, disorganization of the retina and photoreceptor degenera-

tion, and increased autophagy in the retina compared with wildtype

controls.50 Additionally, C3H mice have three splice variants in

Tubgcp4 (rs33279936, rs237335729, rs13465372).51,52

The top interaction partner of Tubgcp4/TUBGCP4 was Ppme1/

PPME1, which encodes protein phosphatase methylesterase 1 (PME1).

PPME1 has high transcript expression in the brain and binds to protein

phosphatase 2A (PP2A).53 PME1 binding has demethylating and inacti-

vating effects on PP2A, whose activity, varied conformations and iso-

forms, and regulation is critically involved in many neurodevelopmental

processes, including microtubule stability in neurons, cell cycle progres-

sion, preventing neuronal degeneration and neuronal tau dephosphory-

lation (Figure 6B).54–56 Downregulated PP2A activity, including

PME1-induced inactive forms of PP2A, decreases microtubule-

associated tau dephosphorylation, which results in tau hyperphosphory-

lation and neuropathological, toxic aggregation of tau, commonly associ-

ated with neurodegenerative tauopathies.57 There are also multiple

neurodevelopmental disorders and phenotypes associated with de novo

variants of genes encoding specific subunits of PP2A, including epilepsy

and intellectual disability.58 In vivo studies have also shown that knock-

outs of subunit-encoding genes for PP2A in the nervous system resulted

in abnormal cortical development and atrophy, microcephaly, increased

apoptosis, hyperphosphorylated tau and tau-related neural defects and

embryonic lethality.59,60 Additionally, homozygous knockout of Ppme1

in mice results in postnatal lethality around the first day of birth, sug-

gesting its critical role in development.49,61 Interestingly, while Ppme1

knockout results in near complete loss of demethylated PP2A as

expected, PP2A activity evidently decreases as well, indicating a

dynamic role for demethylated PP2A in downstream PP2A activity and

regulation.61 Importantly, Ppme1 has downregulated expression in the

cerebral cortex of the C3H strain compared with the B6 strain

(p = 0.004)29 implicating lower levels of PP2A in this background.

The above results are consistent with decreased microtubule pro-

duction and stability in the C3H strain. Intriguingly, it has been shown

that wild-type C3H mice have smaller brains than many other laboratory

strains, demonstrating a connection between C3H variants and brain

size.62 Given the importance of cell division and structure to proper

brain development, C3H variants in Ppme1 and Tubgcp4 are strong can-

didates to alter thalamocortical circuit organization to exacerbate SWD

and support an epistatic interaction between the chr 2 and chr 7 loci.

4.3 | Cell cycle and thalamocortical development

The gene Ddias/DDIAS was included in three high-ranking gene pairs,

including CKAP2L-DDIAS, both of which are high-ranking at the

genome level, and DUT-DDIAS, whose mouse ortholog pair Dut/Ddias

was also highly ranked (Table 1). Ddias/DDIAS encodes the protein

DNA damage induced apoptosis suppressor and is involved in the reg-

ulation of apoptotic signaling and cell survival via multiple distinct

pathways. In vivo and in vitro models of the mouse ortholog, noxin,

support its role in controlling cell cycle progression (i.e., inducing cell

cycle arrest, Figure 6D) and apoptosis in response to cellular stressors

(Figure 6E).63 Downregulation and inactivation of noxin results in

increased cell death, revealing its normal anti-apoptotic activity.

Importantly, C3H mice have three Ddias missense variants that are

potentially deleterious (rs50007671, SIFT 0.04, rs50007671, SIFT

0.01, rs265170948, SIFT 0.04).51,52,64 The role of a dysfunctional ver-

sion of Ddias in thalamocortical development and increased apoptotic

signaling could contribute to increased SWD severity.

Ckap2l/CKAP2L, a highly ranked gene partner of Ddias/DDIAS, is

also involved in cytoskeletal function. CKAP2L encodes cytoskeleton

associated protein 2-like (CKAP2L) and the mouse homolog radmis

protein, so named for radial fiber and mitotic spindle, which is a

microtubule-associated protein enriched in neural stem and progeni-

tor cells (NSPCs) during embryonic and postnatal neurodevelopment

(Figure 6D).65 Radmis overexpression in vitro results in hyper-

stabilized microtubules during mitosis and abnormal mitotic spindles,

and in vivo overexpression reduced NSPC proliferation, whereas rad-

mis knockdown destabilized spindle microtubules, pointing to its criti-

cal role in NSPC cell division during development.65 Familial

sequencing studies have found mutations in CKAP2L that cause Filippi

syndrome, an autosomal recessive genetic disorder with multiple

severe brain-related manifestations, including microcephaly, intellec-

tual disability and seizures, among many others.66 Loss of function

CKAP2L in patient cells caused mitotic microtubule spindle organiza-

tion and chromosome segregation defects, supporting its function in

neurodevelopment and cell division.66 However, while C3H have mul-

tiple missense variants in Ckap2l, so far they are not predicted to be

deleterious by their SIFT scores.51,52 Nevertheless, SIFT scores only

measure evolutionary conservation as a surrogate for deleterious

effects. Given the high rank of CKAP2L to GGE gene networks, we

speculate that C3H variants may have a subtle functional effect dur-

ing neurodevelopment that may influence SWD.

Another highly ranked interaction partner of Ddias/DDIAS was

Dut/DUT, which formed high-ranking pairs in both human and mouse

networks. Dut encodes deoxyuridine triphosphotase (DUT) and plays

a role in apoptotic signaling. Through its enzymatic activity related to

nucleotide metabolism, DUT produces dUMP, a necessary precursor

for thymine nucleotide synthesis for DNA replication, and maintains

dUTP levels, which can accumulate and activate DNA repair pro-

cesses, resulting in DNA fragmentation and cell death (Figure 6E).67

C3H mice also have a potentially deleterious missense variant in Dut

(rs240193814, SIFT 0.0).51,52,64 While Ddias and Dut normally have

similar anti-apoptotic functions (Figure 6E), deleterious variants in

both may not exacerbate SWDs more than their individual contribu-

tions because of compensatory cell preservation and proliferation

mechanisms, for example, possible Dut-independent effects of Ddias

in the Wnt/beta-canenin pathway (Figure 6F).68–72

5 | CONCLUSIONS

Our bioinformatic prioritization of gene pairs resulted in a highly non-

trivial collection of new hypotheses about modifiers of SWD in
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multiple, etiologically distinct models with the potential for these to

translate to human GGE. Candidate gene and variant prioritization is

always an underdetermined problem; we never have enough evidence

to support anything but plausible inferences. Nevertheless, our rank-

ing criteria produced candidate genes that have strong mechanistic

support in the literature. We also note that our criteria were stringent.

Several candidate genes, including Mfap1, Rab6a (Figure 6C) and Pak1

(Figure 6C, D), all appeared in multiple highly ranked pairs. These can-

didates may deserve higher scrutiny, although we argue that the

strong pairwise interactions of DDIAS-DUT, DDIAS-CKAP2L and

TUBGCP4-PPME1 gives the mouse orthologs of these pairs highest

priority as candidates for the epistatic interaction. Our candidate pre-

dictions still require mechanistic follow-up experiments. However, by

systematically dissecting the networks containing these candidates,

we have been able to nominate key cellular processes that can poten-

tially be tested in vitro in advance of expensive and time-consuming

experiments in mice. Thus, our integrative approach above represents

a new paradigm for ranking candidate interactions using information

from functional interaction networks.
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