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ABSTRACT 

This study explores ways to conceptualize the variability of winds in southern 

Delaware by analyzing annual wind observations from 29 weather observation 

stations. Wind speeds were interpolated to a standard height of 114 meters using the 

Log Law by determining the surface roughness at each station using the Danish Wind 

Industry Land Roughness Criteria.  This criteria specifies the height of vegetation and 

various terrain aspects surrounding a weather observation station and provides a 

corresponding roughness length to aid in the calculation of winds aloft accounting for 

local wind speed influences.  

These station data then were analyzed  using several different techniques and 

subsequently interpolated to a 4.73-km grid using inverse distance weighting.  Values 

of the mean, median, mean-median difference, standard deviation, upper and lower 

quartile, and quartile deviation were calculated for each grid point and mapped.  This 

led to the characterization of four distinct regions of wind in southern Delaware – the 

Bay, Coastal, Inland, and Southwest corridors – the identification of which was 

assisted by auto- and cross-correlations between and among the stations to identify 

station-to-station similarity.  The applicability of the Normal and Weibull 

distributions, as well as wind roses, for each of the four regions also was examined.   

Results indicate in the assessment of wind power resource availability, 

particularly in areas with highly variable winds, reliance on the mean wind speed and 

the assumptions implicit in the mean about the normal distribution of the wind speeds 

may cause some biases, due to the degree of skewness in wind speed data.  

Consequently, the mean-median difference may prove to be a more useful tool in 

assessing the applicability of the accuracy of the mean wind speed in representing 



 xiv 

winds over a given area.  Moreover, the Weibull distribution better represents wind 

speeds than the Normal distribution and the quartile deviation is better than the 

standard deviation at describing variable wind patterns.  As expected, the Coastal and 

Bay corridors represented the best sites for potential wind farms while the southwest 

corner of the state may also be useful for on-shore wind farms.  
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Chapter 1 

BACKGROUND 

This project was designed to shed light on a common ambiguity within the 

wind energy industry related to wind resource assessment.  Within the wind energy 

industry wind speeds are typically represented by annual averages.  This method does 

not accurately represent seasonal variability within the winds and this lack of 

information may mislead developers’ primary assessments of the wind resource at a 

specific location.  This project aims to clarify aspects of wind variability through a 

variety of analytical techniques and developed metrics.  

1.1 Growth of Wind Energy in the US 

Earliest references to wind energy and its capabilities date back to before the 

second century AD and Hero of Alexandria (Manwell et al. 2010).  Since this time, 

wind energy has been exploited for travel in sailing ships, agriculture in grind mills 

and,  within the last century, for generating electrical power. The use of wind for 

power generation in the United States (US) dates back to the late 1880s when Charles 

Brush developed the first noteworthy electrical generator powered by a wind mill 

(Manwell et al. 2010).  Sadly, the wind energy sector’s method of generating 

electricity and its many advantages were somewhat ignored in America from Brush’s 

time until the 1970s when California invested in wind energy in response to the 1970s 

oil crisis (US Department of Energy (USDOE) 2008).  Wind energy expanded in 

California to over 1.2 gigawatts (GW) of installed capacity which, at the time, was 
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over 90% of the installed wind capacity in the world.  This wind generation expansion 

in the US lasted until 1986 when government incentives expired and the European 

market took the lead in wind energy production. Wind energy in the US showed little 

growth until recent years (as early as 2005) when new federal and state incentives 

coupled with advances in turbine technology made wind energy more financially 

attractive once again (United States Department of Energy (USDOE) 2008). This is 

evidenced by the decrease in the levelized cost in the US of wind energy in good and 

excellent sites by over 33% between 2008-2013 (USDOE 2015).  

Wind energy in the US has been making strides over the last decade to catch 

up with Europe’s wind industry. Between 2008 and 2013, $13 billion (B) US dollars  

has been invested annually in wind warm development (USDOE 2015).  In 2015, wind 

power investment was $14.5B with 8.6 GW of newly installed capacity, representing 

41% of all new power generation additions (Wiser and Bolinger 2015). In 2016, an 

additional 8.2 GW with a value of $13.8B in investment was installed with 79% of 

this capacity being completed in the final quarter of 2016, the second strongest 

installation quarter on record as shown in Figure 1.1 (America Wind Energy 

Association (AWEA) 2017).  Total US wind energy capacity is 82.2 GW located 

throughout the US including Guam and Puerto Rico with 47 new projects recently 

commissioned in the 4th quarter of 2016 (AWEA 2017). Within the US, 12 states have 

10% or more of their energy produced via wind power (Wiser and Bolinger 2015).  

The US offshore wind industry is budding with the recent installation of the United 

States’ first offshore wind farm at Block Island (AWEA 2017), and future project 

commitments such as the South Fork 90 MW wind farm recently proposed by New 
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York Governor Andrew Cuomo approved to be completed by 2022 representing a 

committed investment of $740 million (Koeneman 2017). 

Currently the wind resource in the United States has been extensively mapped 

by the National Renewable Energy Laboratory (Fields et al. 2016) located in Golden 

Colorado. NREL is part of the USDOE Office of Energy Efficiency and Renewable 

Energy and provides substantial resources for prospective wind developers and power 

companies with respect to wind resources and their related topics (Fields et al. 2016).  

1.2 Current Maps and Methods 

NREL has mapped the entire US wind resource at 80-meter (m) heights with a 

2.5-kilometer (km) resolution and has even completed individual state analysis for 19 

states as recently as 2010 (Wind Exchange 2010). Figure 1.2 shows an NREL map of 

the 80-m wind resource available within Delaware while Figure 1.3 shows the 

offshore wind resource available off the coast of Delaware at 90-m height.  These 

resource maps are state of the art and of the highest quality available within the wind 

energy market, and are created via combining observational and model based data to 

generate wind maps showing annual representative wind speeds (Fields et al. 2016).  

 One dilemma for current NREL projections is that the initial 80-m wind speed 

assessment is becoming obsolete.  80-m hub heights are becoming outdated as 

developers design new wind turbines with hub heights in excess of 100 m to take 

advantage of faster wind speeds higher aloft in the atmosphere (Wind Exchange 

2010), a prime example of this being MidAmerica energy beginning construction on 

the tallest turbine tower in the US in 2016 which when completed will have a tower 

height over 110 m (MidAmerica 2017).  NREL has generated capacity projections 
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using current industry standards up to heights of 110 m and 140 m, but has not yet 

revised the available wind resource maps. 

Another issue in wind resource assessment is that wind variability is not yet 

characterized spatially in a generalized manner.  This may be because in preliminary 

site analysis, the annual mean wind speed provides an indication of where the highest 

generation potential exists (NYSERDA 2010).  This may be enough to satisfy industry 

professionals’ financial reservations in preliminary project spending in that industry 

professionals in large part desire to spend no more than 1% of total project cost on 

resource assessment (Fields et al. 2016).  

However, this does not provide much information about the distribution of 

wind speeds.   Wind speeds can be highly variable, on numerous time scales.  For 

example, an average daily wind speed of 5 m/s can mask the temporal distribution of 

those wind speeds. Consider Station A where the wind is 2.0 m/s for half the time and 

8.0 m/s for the other half while Station B has evenly distributed wind speeds of 4.0 

m/s and 6.0 m/s. For both Station A and Station B, the average wind speed is 5.0 m/s 

and, using just the average wind speed metrics, they have identical wind 

characteristics (Figure 1.4).  In practice, however, the difference between these two 

stations is substantial and the potential output from a wind Turbine at each of these 

locations may vary greatly.  That is why after a preliminary site is identified, wind 

farm developers install wind monitoring towers, often at great expense, to measure the 

actual winds at the site (NYSERDA 2010).  These data are then used along with the 

details of the proposed turbines, to calculate actual power generation (Fields et al. 

2016). 
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Since one of the largest obstacles facing the wind energy industry is 

accounting for variability within the wind resource (NYSERDA 2010, USDE 2015), it 

is of interest to explore techniques that would allow wind developers to have a 

preliminary assessment of the wind variability, potentially as a map, when performing 

initial site selection. Accounting for variability of wind speeds during the planning 

phase of wind farm installation will improve prediction of wind farm generation 

potential and may assist with the integration of wind into the electrical grid (Office of 

Efficiency & Renewable Energy (OERE), 2016).  Thus, characterization of wind 

variability might enhance penetration of wind power generation into national and 

regional electricity generation.   

There are many ways to characterize wind speeds and their variability. The 

most common form of displaying wind speeds is mean wind speeds represented 

annually, as is the case in Archer and  Jacobson (2003), or for a specific sub-annual 

time period such as monthly mean wind speeds (Garmashov and Polonskii 2011). 

Using the mean as a reference, both of these studies, as is the industry norm (Holttinen 

2008), represented variability using standard deviation.   

Power spectral analysis is another technique used to characterize variability in 

wind speeds and has been used extensively in predicting power generation fluctuations 

cause by wind variability within existing wind farms. This is shown in the analysis 

conducted by Sorensen et al. (2002) of modeled wind farm production, and the 

analysis of two separate wind farms over the course of a 10-day period conducted by 

Apt (2007). Autoregressive integrated moving average models (ARIMA) are used to 

identify shorter time period variability and have experienced success, although are 

only applicable to smaller time scales as demonstrated by Yunus et al. (2016) in their 
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ARIMA study of modeled 10-minute wind speed data in three locations located in the 

Baltic Sea. Other statistical approaches have also been employed such as empirical 

orthogonal function analysis, showcased by Davy et al. (2010) in their analysis of 2 

years’ worth of modeled data, and principal components analysis, used by Klink and 

Willmott (1988) to analyze annual wind speeds of 68 weather observation stations 

across the United States. 

The numerous techniques studies for quantifying wind variability hint at the 

reality that wind erraticism is still in need of clarification.  Therefore, in this project I 

explore developing a new way of analyzing and characterizing local and regional 

winds such that wind variability can be easily understood, and taken into account 

earlier in the assessment process of potential wind farm sites.  Within this study, one 

year’s worth of wind speed and directional data was taken from 29 weather 

observation stations located within the lower 2 counties of Delaware.   

This data was then analyzed using the following statistics, which fall into three 

classes Basic, dispersion, and similarity:  mean, median, wind rose plots, upper 

quartile and lower quartile; standard deviation, quartile deviation, mean-median 

difference, skewness, and Weibull and Normal distributions; Pearson correlation and 

autocorrelation statistics.  

1.3 Study Area 

Although Delaware is one of the smallest states in the United States, it still 

boasts one of the densest weather monitoring networks in the nation, the Delaware 

Environmental Observing System (DEOS 2016).  As a result, Delaware is an ideal 

location to test new methods for assessing various meteorological phenomena, 

including wind variability. 
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The research area chosen for this study (Figure 1.4) is comprised of Kent 

County and Sussex County Delaware, the southernmost two counties in the State. This 

area was chosen because it is a coastal plain environment possessing generally lower 

relief and more uniform topography. New Castle County, the northern county in the 

state transitions into the Piedmont with higher relief terrain, and was excluded from 

this study due to associated meteorological complications induced by this topography 

(Delaware-Map 2015). Along the coast in Sussex County, Delaware, notable 

urban/suburban development exists although this decreases considerably away from 

the coast, where the prominent land classification is farmland. 

1.4 Spatial Variations in the Wind 

The research area was expected to subdivide according to known influences on 

the wind into three major types.  The sub-areas were initially identified as Bay, 

Coastal and Inland and each had a corresponding roughness coefficient based off the 

terrain features present.  Roughness coefficients are a measure of surface obstruction 

and serve to limit wind speeds such that areas with high roughness coefficients will 

have lower wind speeds than areas with lower coefficients (Manwell et al. 2010). It 

was expected that roughness effects on Bay winds will be less than Inland winds and 

therefore Bay observed wind speeds were expected to be higher than Inland wind 

speeds with Coastal wind speeds between the two.  An additional point of interest in 

this study was how local winds would be effected via the predominant winds in the 

region. Generally winds in the Delaware region are characterized by northwesterly 

winds that dominate in the winter months while southerly winds are more prevalent in 

the summer season, see Figure 1.6 (Hughes and Veron 2015). Additionally, along the 
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coast and bordering locations within the Bay and Inland areas, sea breeze effects have 

a daily influence on wind speeds and direction (Hughes and Veron 2015).  

1.5 Project Summary 

This study explored many different methods of assessing wind variability on 

multiple scales using observed wind data from three different observing networks.  

The stations were assessed individually, and then grouped geographically, to observe 

spatial variations in the wind field.  Correlations among stations were explored.  

Finally maps of various analyses were produced using ArcGIS to further refine our 

understanding of the characteristics of the wind resource available in southern 

Delaware. 

Using results from this study, two metrics for quantitatively defining wind 

variability are proposed for use in future wind farm siting and planning:   mean-

median difference (MMD) and quartile deviation (QD).  These metrics would enable 

planners to better evaluate average wind speed for a given site by providing simple 

and easily calculated statistics thus enhancing planning efforts.  The MMD metric 

provides an assessment of how representative mean wind speed is for a given site.  For 

example, when the MMD is positive (as is usually the case), the peak of the 

distribution is shifted (i.e., longer tail) toward higher wind speeds.  Since the mean is 

more sensitive to the higher outliers, the difference between the mean and the median 

is indicative of the degree to which the wind distribution is asymmetric.  Thus, the 

greater the MMD, the more asymmetric the distribution. 

The QD  metric is useful in that it provides the dispersion of wind speed 

around the median.  The QD is chosen over the standard deviation because it is less 

sensitive to outliers since distributions of hourly wind speeds are typically asymmetric 
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due to irregular distributions inherent in wind speeds.  Thus, the QD is a measure of 

the range of wind speeds and, can consequently yield insight into the relative 

consistency of power output in a given area. 
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1.1 Wind Power Capacity Growth 2001-2016 (source: AWEA 4th Quarter Report 

2016). 
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1.2 NREL 80-m wind resource for the state of Delaware (source: NREL 2017). 
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1.3 Offshore wind resource map from NREL for a hub height of 90-m (source: NREL 

2017). 
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1.4 Hypothetical example of 2 different wind series with same average wind speed. 
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1.5 Map of the Delmarva Peninsula highlighting the location of Kent (blue) and 

Sussex (green) Counties.   
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1.6 Figure 5 from Hughes and Veron (2015) showing the typical distribution of wind 

speeds and direction at buoy 44009 by synoptic type. 

 

 

  



 16 

Chapter 2 

DATA AND METHODS 

Wind speed can be observed using numerous techniques, ranging from 

standard 3-cup anemometer measurements to satellite remote sensing.  The most  

frequently used method employs a 3-cup anemometer, sometimes coupled with a wind 

vane, which can be placed in almost any environment with relative ease at a low cost 

as evidenced by the Department of energies anemometer loan program (Fields et al. 

2016). Despite their ease of installation and wide spread use, anemometers have been 

known to produce data plagued with ambiguity due to lack of quality control and 

regular maintenance of observation systems. In this study, all of the observations were 

taken by cup anemometers mounted on meteorological towers of varying height. 

Several other methods of sampling in situ wind data are available, two 

common forms of which are using ultrasonic anemometers and GPS tracked weather 

balloons.  Ultrasonic anemometers are stationary devices that use sound pulses 

between emitter and sensor that are modified by passing winds interacting with the 

ultrasonic anemometer to measure wind speeds and direction (NYSERDA 2010). 

These ultrasonic anemometers require very little maintenance, although they can be 

expensive.   

A final method often used to measure profiles of atmospheric characteristics is 

in-situ sampling with radiosondes.  Radiosondes are measurement devices hung under 

a weather balloon that report atmospheric conditions of the atmosphere as they rise 

through it.  Radiosondes are affordable and useful for spot sampling the atmosphere, 

however because they are launched at specific times and can take up to 2 hours to 

profile the atmosphere, they are not a good tool for providing continuous sampling of 
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the near-surface atmosphere. In addition, they can be heavily influenced by local 

weather, especially winds, in terms of where they observe (Hall et al. 1984).   

 Meteorological towers are structures similar to scaffolding that are used to 

mount a series of instruments at a desired height or heights in a professionally selected 

setting. These towers are installed and maintained by a parent organization that is 

usually responsible  for numerous towers. Typical quantities measured at a 

meteorological tower include atmospheric temperature, humidity, and pressure, along 

with wind speed and direction, among others. Meteorological tower observations are 

quality controlled and the tower is maintained by the organization that owns it, thus 

these towers tend to produce more reliable quality-controlled data than an aggregated 

group of independently owned anemometers (DEOS). Unfortunately, the installation 

of a meteorological tower can be expensive, especially at tower heights beyond 10-m. 

Any meteorological tower that has the capability of hosting instrumentation at 

multiple levels are more expensive than towers with a single set of instruments and are 

thus not as widely employed (NYSERDA 2010).  

There are other ways of observing atmospheric properties, such as wind speed, 

through remote sensing techniques by sensors on both ground based and satellite 

platforms.  Sonic Detection and Ranging, or SODAR, is one of these methods.  

SODAR technology has been around for over 50 years but has become a popular 

method of measuring wind speeds due to the needs presented by the wind energy 

industry (Fields et al. 2016). SODAR applications are ground based with a range of 

roughly 200 meters, and rely on interpreting the Doppler Shift of sound waves 

interacting with different air densities within the atmosphere, thus wind speeds can be 

derived from the change in Doppler shift detected (Hasager et al. 2008).  An additional 
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ground based data gathering technique employs 915 MHz profilers.  These profilers 

behave in a similar way to SODAR in that they rely on the Doppler shift to calculate 

wind speeds, although they rely on radio waves instead of sound waves (NYSERDA 

2010).  One detriment of 915 mhz profilers is that they can be highly influenced by 

precipitation as demonstrated in the work conducted by Lambert et al. (2003).  

Doppler LIDAR (Light Detection and Ranging) is another surface remote 

sensing technique that has been recently adapted to measure wind speeds in a given 

volume. Doppler LIDAR has become more feasible and applicable to modern wind 

resource assessment as LIDAR technology has improved (Korb et al. 1997).  In fact, 

the International Electrotechnical Commission (IEC 2017) just published a new 

standard, that allows LIDARs as an alternative or supplementary measurement 

technique to cup anemometers mounted on a meteorological tower, a sign that 

LIDARs are becoming accepted in the wind energy community (IEC 2017). 

Advantages of LIDAR are high accuracy and consistent measurement for a given area, 

as well as the ability to sample the atmosphere at various levels without having to 

construct a tower to host the meteorological instruments (Hasager et al. 2008, Korb et 

al. 1997). Despite the numerous advantages of LIDAR measurement techniques, this 

measurement system is overshadowed in large part by relatively high cost associated 

with installing and maintaining these systems on land and thus they are generally not 

the first choice to be used for wind observations.  

Wind speeds can also be remotely observed though various satellite remote 

sensing techniques.  The satellite-retrieved winds are frequently calculated by tracking 

the motion of features such as clouds, water vapor or surface waves and then 

converted to wind speed (Chang and Wilheit 1979).  These methods also employed in 
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tracking tropical cyclones and other large scale atmospheric phenomena and have been 

growing in acceptance and use over the last several decades (Huffaker and Hardesty 

1996).  Satellite remotely sensed data were not used for this study because of the 

generally large coarse spatial resolution (Bourassa et al. 2009) relative to the size of 

the area of study. Additionally, satellite sensing is not generally capable of providing 

the temporal resolution necessary for this study (Pimenta et al. 2008).   

 Due to the large accessibility and quality of observations made by several 

quality observing networks at meteorological near-surface stations in and near the two 

Southern counties in Delaware, the data in this thesis are exclusively from cup 

anemometers mounted on short towers or buoys.   

2.1 Station Data 

In this study, wind speed measurements were obtained from 29 meteorological 

stations for a single year, 2015.  This year was chosen because it has the most 

complete time-series possible for all 29 stations. Although many additional stations 

were considered for use, they eventually were dismissed due to missing or inconsistent 

data.  Figure 2.1 provides a graphical representation of the stations employed in this 

study. Note that there are several stations outside the study area.  These stations have 

been added to the study to evaluate the winds of the stations at the edge of the study 

area.  Even though only one year of data was used to characterize wind variability in 

Southern Delaware, studies have shown that this is sufficient to explain 85-95% of the 

meteorological variability within a potential  wind farm location (Bechrakis et al. 

2004). In comparison to the buoy data shown in Hughes and Veron (2015), this year 

does not appear to be an outlier in terms of annual average wind speed. 



 20 

The data employed in this study came from four different observational 

databases. These databases are the Delaware Environmental Observing System 

(DEOS), the National Data Buoy Center (NDBC), the National Estuarine Research 

Reserve System (NERRS), and the WeatherBug Monitoring System (WB). All 

stations used in this project are designated by their call signs (Table 2.1).  DEOS 

weather stations begin with the letter “D”, NDBC buoy stations are prefixed with 

“BUOY”, the sole NERRS station is BUOY_SCLD1, and the WB station is 

LEWE_MOB.  These stations and their locations are listed in Table 2.1 and are 

geographically represented in Figure 2.1. 

2.1.1 Delaware Environmental Observing System (DEOS) 

DEOS is an environmental data service  provider based at the University of 

Delaware that has been in operation for over 10 years (DEOS 2017).   The DEOS 

program is committed to providing environmental data to private, academic and 

industry professionals to better assist these groups in their varied pursuits.  The State 

of Delaware relies heavily on DEOS to assess various environmental events and 

provide guidance as to steps to take in preparation (DEOS 2017). DEOS operates 50 

different weather monitoring stations throughout the state of Delaware and Chester 

County, Pennsylvania, and archives data from over 200 additional environmental 

observation stations supplied by numerous partnering organizations. Figure 2.2 shows 

a typical DEOS weather monitoring station located at 39.6059°N, -75.7269°W that 

monitors temperature, pressure, humidity, wind speed and direction.  The DEOS data 

can be found at http://www.deos.udel.edu. 

The 20 DEOS stations (see Table 2.1) employed in this study are located in 

various settings ranging from local airports to beachfront property to waste 

http://www.deos.udel.edu/
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management plants. These settings have unique terrains and require individual 

characterization of the surface features for each site.  Each station was assessed using 

the roughness scale developed by the Danish Wind Industry Association which was 

preferred in this study over other roughness coefficient scales due to its highly detailed 

classification scheme (DWIA 2003).  Sensor heights for measuring wind speed were 

recorded and accounted for in all calculations performed s described in section 

2.2.4;all DEOS wind speed instrumentation for these 20 station sampled wind speeds 

at 3-m above ground level with the exception of station DIRL which had sensors 

located at 4.6 meters.  All DEOS observations consist of 5-minute average wind 

speeds and directions.   Table 2.2 lists all DEOS stations with roughness coefficient 

length, and the location of the sensor.  

2.1.2 National Data Buoy Center 

The National Data Buoy Center (NDBC) is part of the National Weather 

Service’s effort to monitor, educate and investigate the variability and dynamic nature 

of the planet’s oceans and its related processes by providing continuous surface 

observations of meteorological and atmospheric phenomena such as wind speed and 

direction, tidal fluctuations, and temperature variation (NDBC 2016). Some of these 

stations are located on moored buoys while others are located on land, in coastal 

waters. NDBC has been around since the late 1960s and aids the scientific community 

and the public in understanding oceanographic processes.  NDBC quality controls all 

data through a series electronic and manned approaches. All NDBC stations receive 

routine maintenance to ensuring all observations adhere to strict tolerance levels listed 

on the NDBC database found at http://www.ndbc.noaa.gov/qc.shtml. Additionally, 

data are cross referenced between stations to ensure similar reporting between stations 

http://www.ndbc.noaa.gov/qc.shtml


 22 

of the same area (NDBC 2016).  Further proof of NDBC data quality was showcased 

in 1987 by Gilhousen who found that wind speed data from buoys within 5 km of one 

another will have only 0.6-0.8 m/s differences in standard deviation between one 

another with reference to mean wind speed. Wind speed and direction data from 7 

buoys or stations in the NDBC network were used in this study.  NDBC Buoy data can 

be found at http://www.ndbc.noaa.gov (NDBC 2016).  

In the region of study, most of the 7 stations utilized in this project are actually 

located on land, as opposed to on an ocean buoy (Figure 2.3).  NDBC stations tend to 

be located near or in open water. Roughness coefficients vary between NDBC station 

locations, and unlike DEOS stations, NDBC sensor heights vary considerably as well.  

Sampling frequency among NDBC stations are uniform with 6-minute averages. Table 

2.3 lists all NDBC stations with ID number, roughness coefficient, and location.  

2.1.3 National Estuarine Research Reserve System 

The National Estuarine Research Reserve System (NERRS) monitoring 

program was implemented by the National Oceanic and Atmospheric Administration 

through the Coastal Zone Management Act of 1972 for monitoring water quality, 

biodiversity, and land-use and habitat changes within estuaries.  The monitoring of 

these resources is accomplished by taking continuous observations of temperature, 

wind speed and atmospheric pressure over long periods of time.  The goal of NERRS 

is to use these monitoring techniques to conceptualize and disseminate knowledge 

about best practices to be used in estuary systems.  The NERRS data used in this study 

can be found at http://cdmo.baruch.sc.edu (NERRS 2016) and has similar quality 

control specifications to those found in the NDBC organization as the NERRS is a 

http://www.ndbc.noaa.gov/
http://cdmo.baruch.sc.edu/


 23 

special project of the NDBC.  Additionally, as a federally funded observing system, 

NERSS is required to adhere to strict federal data management guidelines. 

Observations of wind speed and direction from the NERRS station, 

BUOY_SCLD1, were utilized in this project.  This particular station is located in 

swamp land on the east coast of Delaware. The NERRS station has a 0.1 m roughness 

length, a 4.5-m sensor height and a 15-min sampling frequency. Table 2.4 lists 

BUOY_SCLD1 with roughness coefficient length, location and a brief description of 

the surrounding area.  

2.1.4 WeatherBug 

The WB monitoring system is a widely distributed private weather reporting 

service that provides the public with daily weather reports and safety alerts. Most of 

the stations in this network are privately owned.   

The single station utilized in this study is located on the marine operations 

building on the Lewes Campus of the University of Delaware.  This station has been 

taking meteorological data, such as air temperature, relative humidity, pressure, wind 

direction and wind speed, since 2003 and provides one of the longest coastal wind 

records for this area.  The sensor is located at 16.15-m height and is located very close 

to the water’s edge.  In 2008, station maintenance and data archiving was taken over 

by WeatherBug. The data obtained from the WB database can be accessed on request 

by contacting the General Council Director at EarthWorks at 

https://www.earthnetworks.com. The WB station has a 0.2-m roughness length and a 

5-min sampling frequency. Table 2.4 lists the WB weather station roughness 

coefficient length, location and a brief description of the surrounding area. 

https://www.earthnetworks.com/
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2.2 Methods 

2.2.1 Data Processing and Quality Control 

All data provided by the four networks mentioned above were quality 

controlled to ensure consistency throughout the entire study.  Both the DEOS and 

NDBC monitoring systems already have significant protocols in place to ensure 

quality of the instrumentation and quality and consistency of the data; both networks 

actively maintain and calibrate their instrumentation.  The NERRS database, being an 

offshoot of the NDBC network, similarly maintains its instrumentation in accord with 

NDBC standards. WeatherBug quality control is maintained via the EarthWorks 

company quality control guidelines, which can be found at the Earthworks site 

mentioned above. In this project, an additional quality control was implemented upon 

data retrieval. This method included removing all stations with large sections of 

missing data, thus preventing a given station from inaccurately represent seasonal 

wind speeds.   

2.2.2 Variations in Temporal Sampling 

 To address the varying time sampling resolutions among data sources, all 

observations were averaged into hourly intervals. In the averaging process, all missing 

data values were excluded from further analysis, the number of missing hourly 

averages are found in Table 2.5 as well as the percentage of available data samples 

each station had per year.  Hourly averages were calculated based on the available data 

and no attempt was made to estimate missing data.   

For the 2015 calendar year, analyses were conducted on annual, seasonal and 

monthly time periods.  Seasonal time periods of the study were based on a single 

month for each season, represented by its center month, similar to Davy et al.’s (2010) 
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use of seasonal time steps to represent 2 individual years of data.  This was done to 

avoid bias found at the edges of transitioning seasons; January, April, July, and 

October were chosen to represent winter, spring, summer and fall, respectively. 

During October 2015 hurricane Joaquin was present off the coast of Delaware 

between October 1 and October 6.  Joaquin never made landfall but significantly 

influenced both Bay and Coastal wind speeds as shown in Figure 2.4 for station 

DBNG in Bethany Beach.  The presence of Hurricane Joaquin in early October made 

this monthly dataset less representative of a typical October.  Therefore, “October” 

was redefined to be between October 7th and November 6th, removing the influence 

of the hurricane from the wind speed time series.  October 7th was selected as the date 

at which wind speeds returned to their normal seasonal level after the hurricane passed 

by.  

2.2.3 Variations in Land Use and Surface Roughness  

The 29 stations used in this study are installed in a variety of terrains ranging 

from open water to highly vegetated sites inland. All measurements were taken 

between 3.0 and 21.1 meters above ground level (Table 2.1). Wind speed 

measurements at or near ground level are influenced by the land surface types, land 

and sea breeze effects, trees and buildings, and other downwind effects, experienced at 

the station location, all of which impact calculating wind speeds aloft, as discussed in 

the following sections. To adjust for the land surface surrounding each stations, site 

roughness coefficients were taken from the Danish Wind Industry Association (DWIA 

2003) roughness classification system shown in Table 2.6.   
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2.2.4 Conversion of Surface Observations to Hub Height 

To standardize the wind speed measurements, which were taken at varying 

heights, and to convert them to hub height for a typical onshore wind turbine, wind 

speeds were extrapolated from anemometer height to 114 meters above ground level 

using the logarithmic wind profile (Bañuelos-Ruedas et al. 2011).  This elevation was 

chosen as it represents the height suitable for the most advanced modern turbines in 

use in the United States (MidAmerica 2017). 

The Logarithmic Wind Profile Law (Equation 2.1) was used to adjust wind 

speeds to a common height (Bañuelos-Ruedas et al. 2011) and can be written as: 

  

𝑣

𝑣0
=

𝑙𝑛(
𝐻

𝑧0
)

𝑙𝑛(
𝐻0
𝑧0
)
___________________________________               (2.1) 

 

where v is the wind speed at the desired height H (here, H=114 m), v0 is the 

wind speed at observation level H0, and z0 is the roughness coefficient length in 

meters.   

There are numerous techniques for extrapolating surface wind speeds to wind 

speed aloft.  The Log Law and Power Law techniques are the two most commonly 

used methods of predicting wind speeds at height based on surface measurements 

(Hiester and Pennell 1981). The Power law (Equation 2.2) is as follows: 
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𝑧𝑟
)
𝑎

 __________________________________________                     __(2.2) 
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where U(z) is the wind speed at height z. U(zr) is the referenced wind speed for 

height zr and a is the power law exponent with a commonly used value of 1/7 for open 

land without obstructions (Bañuelos-Ruedas et al. 2011).  

Both methods have their shortcomings in that they are affected by site 

measurement biases such as elevation, season, temperature and atmospheric stability 

(Zoukmakis 1992, Archer and Jacobson 2003).  Despite these draw backs, the Log 

Law was chosen for use in this study because of its wide acceptance in Europe 

(Bañuelos-Ruedas et al. 2011), the largest wind market in the world, and because of its 

more comprehensive nature that allows for site specific roughness to be included in 

calculations more effectively than the Power Law. The Power Law has also been 

blended with the Log Law to provide a more in depth prediction of winds aloft, 

however in doing so adds complication to the Power Law such that its utility of 

simplicity vanishes and therefore the technique becomes obsolete (Manwell et al. 

2010). 

It should be noted that the Log Law is not a perfect tool and lacks the ability to 

account for variations in stability within the Planetary Boundary Layer (PBL) of 

Earth’s atmosphere. The Log Law assumes that the surface layer and PBL are 

independent of each other even though this has been disproven for some time 

(Tennekes 1972).  The Logarithmic Wind Profile Law is derived from the Monin-

Obukhov equation (Equation. 2.3) outlined in (Johnson 2006) and can be written as: 
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𝑣𝑓
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In the Monin-Obukhov equation, V(z) represents the wind speed at height z, vf 

is friction velocity, K is the von Karman constant, L is the Monin-Obukhov length, 

and z is the elevation above ground.  In practice, the stability term, Q, is usually 

assumed to be for neutral stability when predicting winds at height with the ratio of z/L 

being equal to zero (Bañuelos-Ruedas et al. 2011).  In these calculations, the von 

Karman constant is often assumed to be 0.40, but can actually vary between 0.33 and 

0.40.  For the purposes of this study, the von Karman constant is treated as a fixed 

value at 0.40 as was the case in Tennekes (1972). 

In assuming neutral stability in all calculations, the complexity of the 

atmosphere is significantly simplified, thus allowing for consistent results within the 

study.  However, the atmosphere is not inherently stable. As early as 1970, Paulson 

found that using Log Law relationships do not accurately account for the considerable 

variability within the range of atmospheric stability.  More recently, Archer et al. 

(2016) found that the marine boundary layer in the Nantucket Sound is unstable up to 

61% of the time, suggesting that the power law will only be appropriate for 

extrapolating surface winds to hub height 40% of the time for coastal locations. 

Moreover, stability at the land-ocean boundary can vary considerably as Barthelmie 

(1999) has demonstrated. Despite these shortcomings, Log Law predictions remain a 

constant standard within the industry (NYSERDA 2010).  This remains true because if 

neutral stability is not assumed, substantial data requirements are needed to estimate 

the actual stability conditions and to calculate a revised wind extrapolation from 

observational height to the desired target height.  The vast majority of atmospheric 

datasets do not have sufficient information to calculate accurately the stability 

throughout the atmosphere (Newman and Klein 2014).  Moreover, Blanc (1987) calls 
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into question the utility of buoyancy corrections as the methods to account for stability 

are still subject to error and may not be worth the additional effort. Therefore, this 

study assumes neutral stability in all calculations using the Monin-Obukhov equation.   

Significant wave heights from Buoy 44009 were used to calculate zero plane 

displacement for portions of the study area over water. Zero plane displacement is a 

constant used to enable Log Law calculations to be applied to various surfaces in that 

zero plane displacement is the height at which impacts of a given surface roughness on 

wind speed are null (Harmel et al. 2002). 

  NDBC BUOY 44009 wave heights expressed in hourly averages were used to 

calculate zero plane displacement.  BUOY 44009 was used as a proxy for wave 

heights at the NDBC stations in the Delaware Bay as there were no wave height data 

available at these stations.  This means that the wave heights are likely overestimated 

as the winds in the Bay tend to be lower than at 44009 and the wave heights tend to be 

smaller, thus for this study zero plane displacement values over water may be 

represented as slightly higher than they are in reality.   

 NDBC BUOY 44009 wave heights expressed in hourly averages were used to 

calculate zero plane displacement.  BUOY 44009 was used as a proxy for wave 

heights at the NDBC stations in the Delaware Bay as there were no wave height data 

available at these stations.  This means that the wave heights are likely overestimated 

as the winds in the Bay tend to be lower than at 44009 and the wave heights tend to be 

smaller.   

Using the Monin-Obukhov equation (Equation 2.3) a relationship can be 

derived such that winds at various heights can be predicted relative to a maximum 

standard height. The addition of the zero-plane displacement, d, modifies the Monin-
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Obukhov Equation. Without d, zero wind speed height is assumed to be ground level.   

Equation 2.4 shows this modified wind profile equation with the zero-plane 

displacement, d, indicating the height in meters at which wind speed is zero for a 

given ground cover; 

 

𝑉(𝑧) =
v𝑓

𝐾
𝑙𝑛

𝑧−𝑑

z0
                                 (2.4)  

 

The maximum height used in this study was 114 meters, thus wind speeds at 

114 meters are assumed to be the maximum wind speeds at this location. This 

assumption is true for stable environments.  Wind speed at other elevations can be 

expressed as a percentage of this maximum wind speed to provide planners with the 

ability to consider multiple turbine heights. Figure 2.5 illustrates this in inland areas, 

as well as over the bay and along the coast. Bay area winds are stronger than inland 

winds throughout the study, due in large part to minimal surface roughness within this 

region.  For this reason, wind speeds in this region decrease the least with height 

(Figure 2.5). Coastal wind speeds are lower relative to Bay wind speeds, due to higher 

surface roughness, which means that winds aloft will also be lower, while inland 

station wind patterns exhibit a similar yet more exaggerated trend due to increased 

surface roughness. 

 The wind speeds aloft were calculated using the Log Law derived from 

Equation 2.3 and suggested parameters based on local vegetation from Hansen (1993) 

using the Danish Wind Industry Surface Roughness scale (DWIA 2003).  For 

example, areas with marshland and small crop vegetation used overall roughness 

coefficients and zero plane displacement values of 0.4 meters and 5.3 m, while ocean 
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coastal sites had roughness lengths of 0.2 m and zero-plane displacements of 5.3 m, 

based upon coastal vegetation and conditions.  Similarly, the bay coastal sites had 

roughness lengths of 0.0002 m and the zero-plane displacement was 0.7 m.  To 

determine ocean coastal sites’ zero-plane displacements, wave height measurements at 

the NDBC Buoy closest to the ocean coastal sites for the 2015 year were averaged and 

used to calculate the zero-plane displacement value of the ocean coastal sites this was 

done referencing  relationships derived between land cover height and zero-plane 

displacement distances found in Rosenberg et al. (1983).  Based on these coefficients, 

observed winds were standardized to a common height of 114 meters and averaged to 

produce hourly averages.   

2.3 Statistical and Mapping Methods 

To explore the most useful way to communicate wind variability to the wind 

farm industry and to assist in identifying wind farm sites, several techniques to 

characterize wind variability were employed.  All of these techniques use hourly 

averaged data generated using the techniques described in the previous sections to 

determine annual average wind variability.  In addition, the results were then assessed 

seasonally.  The seasonal wind variability was calculated using a representative month 

per season, to avoid unwanted biases that may occur in transition months between 

seasonal peaks. 

The techniques used during this study to characterize wind variability are mean 

and median wind speeds, the difference between the mean and median wind speed 

(MMD), skewness, probability distribution analysis and comparison to Weibull and 

normal distributions, upper quartile (UQ) and lower wind speed quartiles (LQ), wind 

speed quartile deviation (QD), autocorrelation between wind speeds, wind speed 
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Pearson correlations and wind rose diagrams. Once the methods were applied, then 

maps of the wind variability using ESRI ArcMap were generated. 

2.3.1 Mean Wind Speeds 

Hourly mean wind speeds were used in this study to reduce the influence of 

sub-hourly wind variation, to put all the sampled datasets on a similar time step, and 

due to the frequent use of average wind speed measurements in current wind farm 

siting (Fields et al. 2016) as evidenced by Weekes and Tomlin (2014), Rogers et al. 

(2005) and Mirhosseini et al. (2011).  An average wind speed is a representation of the 

central tendency of the data (Hennessey 1977) at a given station.  Averages include all 

time steps available in a given hour.  These values were then averaged annually and 

for the season-representative months.  Annual and seasonal averages are calculated by 

summing all available hourly values together for the period of interest and dividing by 

the number of hours.  There is a significant difference between the data availability in 

Lewes and the rest of the stations (Table 2.5). 

2.3.2 Median 

Median wind speeds were employed in this study to be used in conjunction 

with mean wind speeds. The median will give the center point of the range of data 

(Wolf-Gerrit 2013) at a given station. Median wind speeds were calculated by placing 

wind speeds in order from least to greatest and selecting the center most measurement 

within the series. Differences in the mean and median wind speeds will be used to 

provide information about whether the distribution of wind speeds follows a normal 

distribution. 
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2.3.3 Mean-Median Difference (MMD) 

Mean and median are both quantities, along with mode, that are used to 

calculate the central tendency of a distribution (IESS 2008). The MMD value was 

derived from mean and median metrics under the assumption that in a Gaussian 

distribution, mean and median should be identical (Trauth 2015); separation between 

these two metrics then represents the degree of skewness present within a dataset.  

Therefore, since mean wind speeds are used by the wind energy industry (Fields et al. 

2016), MMD represents the amount of skew present within a dataset and consequently 

demonstrates how reliable the mean and the coincident assumption of a normal 

distribution is in representing a particular wind dataset. 

2.3.4 Probability Distributions 

The probability distribution of the hourly average wind speed values was 

compiled annually and seasonally for this study.  A probability distribution is a 

distribution in which a variable is measured and graphically represented such that an 

observer will be able to determine graphical representation of the likelihood that a 

particular observation will occur based on previous patterns of occurrence (Everitt and 

Skrondal 2010). In order to create a probability distribution, wind speeds were sorted 

into bins of 1.0 m/s and then normalized by the bin width.  Then the resulting 

distribution was compared to several known fits, similar to Bludszuweit et al. (2008) 

and Lange (2004).  

 Normal distributions theoretically are distributions of which given a dataset of 

infinite sample size, values will disperse around the mean of the distribution such that 

50% of values will fall to the left and to the right of the distribution (Trauth 2015).  

Thus, normal distribution is a distribution that has a symmetrical partitioning of data 
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on each side of the maximum frequency of occurrence (Jagdish et al. 1996).   

However, it can easily be seen that a normal distribution is not very representative of 

observed wind speeds (Figure 2.6).  It is for this reason that numerous other 

probability distributions have been explored in the field of wind resource assessment 

(as far back as the late 1970’s (Justus et al. 1977). 

Two probability distributions commonly used in describing and characterizing 

wind speed data are the Weibull and Rayleigh distributions (Jowder 2006). Weibull 

distributions are the preferred favorite probability distribution of the wind energy 

industry (Carta et al. 2008, Wolf-Gerrit 2013) because this distribution incorporates 

both shape and scale factors, whereas a Rayleigh distribution accounts for average 

wind speed alone as a single factor (Manwell et al. 2010). Rayleigh distributions treat 

the shape factor of the distribution as a constant of 2, where Weibull distributions 

calculate the shape factor with respect to the provided data. Thus, Weibull 

distributions are more reliable and accurate than Rayleigh distributions as shown in 

Jowder (2006). 

2.3.4.1 Skewness 

A probability distribution can be considered skewed if the distribution of data 

is asymmetrical around the peak such that one of its tails is longer than the other 

(Trauth 2015).  Wind speeds by their nature are non-negative and generally will 

exhibit positively skewed distributions because larger wind speeds are much less 

frequent than lower wind speeds. (Wolf-Gerrit 2013). This can be seen in Figure 2.6, 

which shows a probably distribution for winds at the coastal station DBNG in Bethany 

Beach. Despite being infrequent, the presence of occasional high wind speeds, caused 

by frontal activity and seasonal anomalies such as hurricanes and mesoscale 
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metrological cycling, in an observed wind dataset will serve to adjust the mean 

accordingly (Kahn 1979).  This high wind speed adjustment to the mean will influence 

the mean disproportionately in that an anomalous high wind speed will exert more 

influence on the mean than a standard low wind speed. The skewness, or asymmetrical 

deviation of a probability distribution away from a normal distribution, is one way of 

calculating the degree that a distribution has been shifted (Hodge et al. 2012).  It can 

be calculated and then compared to the MMD values. Skewness can be calculated as 

shown in Equation 2.5 where xi is the current measurement of the data set and  ̅x  is the 

mean of x (Trauth 2015).   

 

𝑠1 =
1

𝑛
∑ (𝑥𝑖−𝑥̅)

3𝑛

𝑖=1

(√
1

𝑛
∑ (𝑥𝑖−𝑥̅)

2𝑛

𝑖=1
)

3                   (2.5) 

 

Skewness is a third moment statistic and provides additional insights into wind 

speed variability beyond mean and standard deviation of wind speeds (Hodge et al. 

2012).  Kahn (1979), Hodge et al. (2012) and Tagle et al. (2017) as well as many 

others have investigated skewness as it relates to wind variability.  Findings by Hodge 

et al. (2012) shows that skew in wind speed distribution impacts measurements in all 

wind analyses across the globe. Additionally, mean wind speed does not appropriately 

account for skewness in its calculation. These finding provide further support for using 

Weibull distributions to represent the probability distribution of wind speeds, as they 

have been used to a satisfactory level to conceptualize skewness within a wind data 

set, although new methods are continuing to be pioneered (Hennessy 1977).  Most 

recently, Tagle et al. (2017) has attempted to conceptualize skewness in wind speeds 
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and reports that in doing so, accuracy in prediction of wind speeds is refined and 

improved.    

2.3.4.2 Weibull Distributions 

Weibull distributions are frequently used in calculations to determine the 

available wind resource in a given area (Mirhosseini et al. 2011, Carta et al. 2008 and 

Justus et al, 1977), and are designed to be used with non-negative positively skewed 

data.  A Normal distribution (Trauth 2015) can be written as 

 

𝑦 = 𝑓(𝑥|𝑢, 𝜎) =
1

𝜎√2𝜋
𝑒
−(𝑥−𝑢)2

2𝜎2                 (2.6) 

 

where µ is the mean of wind speeds x, and σ is the standard deviation of wind 

speeds.  The Weibull Distribution (Equation 2.7) can be written as 

 

𝑝(𝑈) = (
𝑘

𝑐
) (

𝑈

𝑐
)
𝑘−1

𝑒𝑥𝑝 [−(
𝑈

𝑐
)
𝑘

]             (2.7) 

 

where k and c are the shape factor and scale factor of the distribution, 

respectively,  and U represents the mean of the wind speeds being analyzed (Manwell 

et al. 2010). A comparison of the two distributions can be shown in Figure 2.6 

overlaid on a probability distribution of annual wind speeds for station DBNG.   The 

appropriateness of the Weibull Distribution to represent wind variability is explored in 

this work. 
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There are numerous wind resource studies that have compared the Weibull and 

Rayleigh distributions to observed wind data (Pishgar-Komleh et al. 2014, Safari and 

Gasore 2010, and Celik 2004).  All of these studies have demonstrated the Weibull 

distribution outperforming the Rayleigh distribution in all scenarios.  Celik (2004) 

found that the Weibull distribution does particularly well in fitting probability density 

distributions as well as better representing power performance of turbines based on 

wind speed distributions. Hennessey (1977) demonstrated preference of the Weibull 

distribution because of its limited yet satisfactory ability to estimate skewness within a 

wind speed distribution.  The outperformance of the Weibull distribution to the 

Rayleigh distribution is attributed to the Weibull distributions ability to capture both 

scale and shape factors of a wind data set (Safari and Gasore 2010), unlike the 

Rayleigh distribution which relies solely on a single mean wind speed parameter 

(Manwell 2010). The Weibull distribution will be explored in this study due to the 

wind industry’s broad use of this distribution (Carta et al. 2008).  Skewness was 

investigated in this study to provide a better conceptualization of winds in a given data 

set. 

2.3.4.3 Wind Roses  

Wind roses are another way of displaying the frequency distribution of winds 

using a combination of wind speeds and wind directions (Mirhosseini et al. 2011). 

Wind roses created using meteorological standards use the ordinal directions to 

indicate which direction winds were blowing from.  In this study, wind directions are 

binned by 10°; wind speeds are binned by 1 m/s and are displayed as colored areas in 

each directional bin.  Wind roses have been used in other studies to characterize 
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surface winds (Hughes and Veron 2015, Hasager et al. 2008) and can be particularly 

useful in understanding seasonal variations in the wind 

An example of a wind rose is shown in Figure 2.7, using data from station 

DBRG. Wind roses were used to identify the predominant wind directions within the 

observed data annually and by season, and thus provide context for observed patterns 

in the maps generated later in the study.  Seasonal and annual wind roses were created 

for all stations, and geographical areas (coastal, over water, inland) within the study.  

For example, in Figure 2.7 it can be seen that the winds blow most frequently from the 

south and northwest, however the highest wind speeds are related to winds coming 

from the northwest, similar to what was seen in Hughes and Veron (2015).  Seasonal 

and annual wind roses allow for more detailed study of the relationship between wind 

speed and direction throughout the year.  Wind roses were created for all stations, and 

geographical areas (coastal, over water, inland) within the study, annually and 

seasonally.   

2.3.5 Upper and Lower Quartiles 

An upper quartile (UQ) is defined as a limit above which 25% of a given 

dataset will have a greater value (Crum et al. 1993). Winds being non-uniformly 

distributed do not naturally lend themselves to arithmetic characterizations but more 

so to geometric characterizations, similar to the way Wolf-Gerrit (2013) used quartiles 

to assess wind speeds and Krumbein (1936) used quartiles to compare sediments. The 

UQ in this study identifies the upper 25% wind speeds for each station, thus indicating 

the largest possible power generation available; this analysis does not account for 

turbine cut out speeds as all data were used and no distinction was made to neglect 

wind speeds deemed too slow for power generation. One reason for ignoring the cut in 
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speed is that wind turbines are constantly improving and what may be considered too 

slow at present may be harvestable in the near future as evidenced by Gamesa’s 

(2015) product evolution guide .   Conversely, the lower quartile (LQ) is defined as a 

limit below which 25% of a given dataset will have lower values. The lower quartile 

indicates the minimum theoretical potential power generation available within a 

standard time-period.  

 Limited work has been done using upper and lower quartiles to represent wind 

speeds in a given area.  As stated previously, mean wind speeds and related metrics 

are the norm in the wind energy industry and developers seldom venture outside of 

these metrics.  Despite the lack of excessive use, when quartiles are used, they are 

effective in delivering accurate conceptualizations of wind speeds in otherwise highly 

skewed data (To and Lam 1995).  Experts use quartiles as a geometric representation 

of wind speeds because doing so removes large biases created by outliers when using 

arithmetic representations of wind speeds, such as mean wind speed.  Similar to how 

Wolf-Gerrit (2013) used quartiles to represent ranges of wind speeds in his study, 

quartiles will be used in a similar way in this study 

2.3.6 Quartile Deviation 

The Quartile Deviation (QD) is defined as the average distance between the 

mean and the upper and lower quartiles, and provides a representation of the 

dispersion, or spread, of the dataset and thus indicates the range in wind speeds at a 

given location (Holden 1993). Larger QD values indicate large wind speed ranges and 

may indicate that the winds in locations with high QD will be inherently less 

predictable (EWEA 2009).  This study will use QD to represent wind speed 
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distributions similar to how other studies have used QD in representing data, such as 

Buller and McManus (1973) and there use of QD in comparing glacial deposits. 

2.3.7 Standard Deviation 

Another measure of the dispersion in a dataset is the standard deviation (Trauth 

2015).  The standard deviation is the square root of the variance and can be written as: 

 

𝑆 = √
1

𝑁−1
∑ |𝐴𝑖 − 𝑢|2𝑁
𝑖=1               (2.8)  

 

 where S is the standard deviation of A with u being the mean of A and N being 

the number of samples in the dataset (Trauth 2015).  

There are numerous studies that have explored standard deviation as a means 

for characterizing winds at specific sites such as, Fisher’s 1987 work where it was 

fond that standard deviation and assumptions made using it can often be misleading 

and inaccurate. The ability of the standard deviation to accurately represent wind 

variability in the Southern Delaware region is explored in this work. 

2.4 Interpolation 

This analysis of wind variability relies entirely on station data.  However, it is 

useful when trying to understand a wind resource, to look at the spatial variation in 

wind characteristics spatially using a map. Cartographic representations of mean, 

median, MMD, UQ, LQ, QD, and station-to-station correlations were generated.  The 

geographic maps created in this study to illustrate wind fields were mapped using 

ArcGIS employing geographical data such as state and county and census tract 
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boundaries from the online Geographic Information Systems (GIS) databases iMap for 

Maryland and the United States Census Bureau for Delaware.   

For all of the analyses described in section 2.3, annual and seasonal maps were 

developed to further investigate the spatial patterns in wind variability. 

Maps resulting from all of the statistical techniques described above (e.g. 

mean, median, MMD) were spatially interpolated using the Inverse Distance 

Weighting tool (IDW) available through ESRI ArcMap to smooth the data field.  

Ozelkan et al. (2016) has demonstrated the successful use of IDW application 

available through ArcGIS and its superiority to interpolating wind speeds over other 

methods; however, this is a recent finding and literature up until this point has 

generally been in poor favor of using IDW to interpolate wind speeds (Lou et al. 

2008). The IDW formula (Equation 2.9) used by the ArcGIS program is as follows: 

 

𝑍̂(𝑢0) =
∑ 𝑍(𝑢𝑖)𝑤𝑖̇

𝑁

𝑖=1

𝛴𝑖=1
𝑤 𝑤𝑖

                                                                    (2.9) 

 

where u0 represents an estimated point, ui represents known points, and wi is 

the weight of the current value at increment N (Ozelkan et al. 2016). The IDW tool is 

set up so that the influence of a given point is inversely proportional to its distance 

from a given location.  However, ArcMap also permits manipulation of key aspects of 

the IDW tool by allowing the power of the weighting function to be modified to better 

suit various problems.  ESRI notes that there is no objective weighting function power 

that can be applied generally.  Instead, the choice of the power of the weighting 

function is a subjective assessment that the user makes according to their specific data 

and application (ESRI 2016).   
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The weighting function power varies in a known way and so can be used to 

develop smoothed fields that are appropriate to an individual application.  Specifically, 

the higher the power, the more influence a single point has over longer distances, 

whereas the lower the power, the less influence a point will have far away from it.   In 

other studies, (e.g. Albani et al. 2011) the IDW has been applied to station data and 

has been found to effectively model wind speed over a given area. The weighted 

function power used in this study for all interpolations was 0.1. This low power value 

limits the influence of one meteorological station on areas surrounding it; 

interpolations are smooth and the wind speed transitions gradually among stations.  An 

interpolation with higher power values creates a clustering, or bull’s eye, effect of 

wind speeds surrounding stations. Figure 2.8 shows an example of the bull’s eye effect 

where a power of 2 was used to create the interpolation of average annual wind speeds 

at 114 meters. The 0.1 power value produces a smoother field overall in wind patterns 

across a large study area such as the state of Delaware.  

The weighted power of the interpolation used in this study for all interpolations 

was 0.1. This low power value limits the influence of one meteorological station on 

areas surrounding it; interpolations are smooth and the wind speed transitions among 

stations gradually.  Whereas an interpolation with higher power values creates a 

clustering, or bull’s eye, of wind speeds surrounding stations. Figure 2.9 shows an 

example of the bull’s eye effect where a power of 2 was used to create the 

interpolation of average annual wind speeds at 114 meters. The 0.1 power value 

produces a smoother field overall in wind patterns across a large study area such as the 

state of Delaware.  



 43 

IDW representations were chosen over Kriging or spline techniques. 

Historically IDW has not been the preferred method used for interpolating wind 

speeds at ground level.  However, Ozelkan et al. (2016) found that when winds are 

projected to a desired height, IDW becomes the most accurate interpolation method 

available because of the unique ability of the IDW projection method to account for 

surface roughness and local topography. The geographic coordinate system used was 

the GCS_WGS_1984, Datum D_WGS_1984 with a spatial resolution of 4.73 km per 

grid cell. Neighbor influence was set to 5 meaning that the 5 closest data points impact 

a single point of interpolation. 

While mapping mean, median, MMD, UQ, LQ and QD representations, all 

values were in the units of meters per second. Mean, median, UQ and LQ were 

graphically represented in 0.5 m/s  intervals while MMD and UQ were represented in 

0.1 m/s intervals.  All maps produced were standardized with the same key relative to 

the map type to aid in comparison of the metric across different time periods. Inverse 

distance weighting was performed on all fields listed above except for station-to-

station correlations of which were represented via the line tool in ArcMap. 

2.5 Correlations 

Correlation techniques can be used to identify how similar the wind speeds are 

between two or more stations (Apt 2007, Loui 2014 and Kahn 1979), and how similar 

a single station’s own measurements to itself over time (Brokish et al. 2009 and 

Brown et al. 1984).These two techniques, called the Pearson’s Correlation and 

autocorrelation, are of particular interest to this study because of what they can tell us 

about the spatial variability of the wind field.  Loui (2014) and Kahn (1979) both have 

researched the ability to correlate wind farms and turbines with each other so as to 
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develop a large grid of interconnected wind power generation robust enough and 

dispersed enough to provide consistent power generation through wind energy. Brown 

et al. (1984) identify the importance of accounting for temporal autocorrelation, yet as 

Brokish et al. (2009) demonstrate, attempts to do this do not produce significant 

results.  This is understandable when power swings of up to 70% can be generated in 

the wind resource within a single 12 hour period (Oswald et al. 2008).    

2.5.1 Pearson’s Correlation 

The Pearson’s correlation is a method which is used to determine the 

covariance between stations (Feijóoa et al. 2011). In the study of a wind resource, this 

gives an estimate of how similar the wind field is in time between two stations.  This 

information is particularly interesting to the wind power industry because spatially and 

temporally correlating stations may provide opportunities for developing wind farms 

such that grid power generation will not be subject to shortages, thus providing 

consistent power supply as proposed by Apt (2007).  

 Kempton et al. (2010) were able to identify correlations between stations 

decreases with distance between stations, particularly in this study of United States 

East Coast stations, correlations of 0.6 or higher were not attainable beyond station 

separation distances of 350 km. However, within 350 km range with attainable of 0.6 

correlations, wind farms via transmission sharing would be able to produce sustainable 

and consistent power generation. Pearson correlations were performed between all 

stations in all time periods (annually and seasonally). The correlation among stations 

is calculated using Equation 2.10 (Apt 2007): 
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)

𝑁

𝑖=1
                  (2.10) 

 

where uA and uB are the mean of A and B, OA and OB are the standard deviation 

of A and B. A and B represent two given independent stations. N is the number of 

samples in the dataset and must be identical between station pairs. Correlation of the 

wind speed was employed to calculate covariance between stations and was then used 

determine similar zones of influence caused by prevailing wind patterns.  The majority 

of spatially correlated wind studies focus on correlations between wind farms of 

distances between 350-3000 km (Loui 2014 and Kempton et al. 2010) 

2.5.2 Temporal Autocorrelations 

Temporal autocorrelations were computed for representative stations within 

each corridor.  A temporal correlation allows characterization of the persistence of the 

wind (Alexiadis et al. 1999). In other words, how representative is the current wind 

speed of what will come later on, and for how long?  The time series for each station 

was lagged hourly from 1 up to 64 hours to investigate both short-term and daily 

autocorrelation.  The autocorrelation function (Brokish and Kirtley 2009) is described 

in Equation 2.11. 

 

𝑟𝑘 =
𝐶𝑘

𝐶0
.           (2.11) 

 

The autocorrelation is based on the calculations of the covariance Ck over 

variance C0.  Covariance is a measure of the similarity between two time-series, and 
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variance is a measure of dispersion in the observed wind speed values relative to their 

mean. Covariance is defined in Equation 2.12), 

  

𝐶𝑘 =
1

𝑇−1
∑ (𝑦𝑡 − 𝑦̅)(𝑦𝑡+𝐾 − 𝑦̅)𝑇−𝐾
𝑡=1             (2.12) 

 

while variance is defined in Equation 2.13 (Trauth 2015), 

 

𝐶0 =
1

𝑇−1
∑ |𝑦𝑖 − 𝑦̅|2

𝑇

𝑖=1
.           (2.13) 

 

In these two equations, T is the length of a given time series, t is the index 

within T, k is the lag number being used and y is the given value at index t. 

Autocorrelations with a time lag were used to provide a measure of wind speed 

persistence.  Previous studies have shown that it is typical for autocorrelations of wind 

speeds to underperform in comparison to other persistence measures such as artificial 

neural networks (Alexiadis et al. 1999).  Damousis et al. (2004) further demonstrates 

the superiority of model forecasting over persistence measures to represent wind 

speeds even at short time scales of 20 minutes or less. 
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Station Latitude Longitude Sampling 

Frequency 

(min) 

Sensor 

Height (m) 

DBLK 39°14'30" -75°44'27" 5 3 

DGES 38°38'10" -75°27'18" 5 3 

DWDS 39°3'38" -75°38'23" 5 3 

DADV 38°49'53" -75°40'33" 5 3 

DBBB 38°32'20" -75°03'15" 5 3 

DDFS 39°10'10" -75°35'34" 5 3 

DGUM 38°27'54" -75°27'02" 5 3 

DHAR 38°54'40" -75°34'36" 5 3 

DIRL 38°37'59" -75°03'59" 5 4.6 

DLAU 38°32'29" -75°35'33" 5 3 

DRHB 38°43'15" -75°04'36" 5 3 

DSEA 38°39'09" -75°42'13" 5 3 

DSMY 39°16'38" -75°34'50" 5 3 

DSTK 38°37'46" -75°19'19" 5 3 

DWAR 38°40'43" -75°14'47" 5 3 

DBNG 38°32'47" -75°03'45" 5 3 

DBRG 38°43'14" -75°35'19" 5 3 

DELN 38°48'30" -75°25'38" 5 3 

DJCR 38°35'41" -75°26'12" 5 3 

DSBY 38°28'17" -75°12'52" 5 3 

BUOY_BRND1 38°59'13" -75°06'46" 6 21.1 

BUOY_LWSD1 38°46'58" -75°07'8.4" 6 9.5 

BUOY_CHCM2 39°31'37" --75°48'36" 6 6.8 

BUOY_OCIM2 38°19'40" -75°05'27" 6 8.5 

BUOY_CMAN4 38°58'04" -74°57'36" 6 9.7 

BUOY_CAMM2 38°34'26.4" -76°4'8.4" 6 6.4 

BUOY_BISM2 38°13'12" -76°2'20.4" 6 7.1 

BUOY_SCLD1 39°5'20.1" -75°26'12.8" 15 4.5 

LEWE_MOB 38°47'3" -75°9'25.9" 5 16.15 

Table 2.1 Station Locations, sampling frequencies and sensor height. 
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DEOS 

Station 
Coefficient (m) Surrounding Area Surrounding Terrain 

DBLK 0.1 Farm Land Farm fields 

DGES 0.1 
Farm Land Adjacent to 

Highway 
Grassy 

DWDS 0.1 Farm land Farm Fields 

DADV 0.2 
Farm Land with 

Neighboring Hedgerows 

Fields with 

surrounding trees 

DBBB 0.2 
Boardwalk with Large 

Structure to East 
Beach and buildings 

DDFS 0.1 
Delaware State Fire 

School 
Grassy 

DGUM 0.2 Gordo Farms Farm fields 

DHAR 0.2 
Adjacent to Raceway 

Casino 
Grassy 

DIRL 0.2 Beach Front Beach 

DLAU 0.2 Laurel Airport Grassy 

DRHB 0.2 
Boardwalk with 

Hedgerow to East 
Beach and buildings 

DSEA 0.2 Willin Farms Main Road Grassy with buildings 

DSMY 0.2 
Swamp Adjacent to 

Mount Joy Observatory 

Grassy w/tall pond 

plants 

DSTK 0.2 Residential Yard Grassy 

DWAR 0.2 Farm Land (High Crops) 
Planted/harvested 

fields 

DBNG 0.4 
Delaware National Guard 

Academy Grounds 

Field surrounded by 

trees and buildings 

DBRG 0.4 
Delaware State Police 

Lawn 

Buildings surrounding  

field 

DELN 0.4 Residential Lawn 
Grassy surrounded by 

trees and buildings 

DJCR 0.4 Landfill Trees around field 

DSBY 0.4 
Selbyville Waste Water 

Plant 
Trees around field 

Table 2.2 Meteorological station description for the 20 DEOS stations including, 

surface roughness coefficient, location and a description of the 

surroundings. 
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NDBC Station 
Coefficient 

(m) 
Surrounding Area Surrounding Terrain 

BUOY_BRND1 0.0002 
New Jersey Bay 

(NJ) 
Open water 

BUOY_LWSD1 0.0024 
Cape Henlopen 

Ferry (DE) 

Water and developed 

shore 

BUOY_OCIM2 0.1 
Ocean City Inlet 

(MD) 

Water and developed 

shore 

BUOY_CMAN4 0.055 
Cape May Canal 

(NJ) 

Water with adjacent 

Shoreline 

BUOY_CAMM2 0.0002 
Cambridge Creek 

Inlet (MD) 
Open water 

BUOY_BISM2 0.0002 
Hooper Strait 

Sanctuary (MD) 
Open water 

BUOY_CHCM2 0.03 Back Creek (MD) 
Water with adjacent 

Shoreline 

Table 2.3 NDBC stations employed in this study, with ID, roughness coefficient, 

location, and a description of the surroundings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 50 

NERRS and 

WB Stations 

Coefficient 

(m) 
Surrounding Area 

Surrounding 

Terrain 

BUOY_SCLD1 0.1 Swamp Land (DE) Swamp land 

LEWE_MOB 0.2 Residential  (DE) 

Grass with 

surrounding 

trees 

Table 2.4 NERRS and WB station identification, along with roughness coefficient, 

location, and a description of the surroundings. 
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Call Sign 

Missing 

Hourly 

Values 

Percent Hourly 

Representation 

DBLK 0 100% 

DGES 0 100% 

DWDS 4 100% 

DADV 0 100% 

DBBB 12 100% 

DDFS 3 100% 

DGUM 124 99% 

DHAR 4 100% 

DIRL 1 100% 

DLAU 0 100% 

DRHB 1 100% 

DSEA 0 100% 

DSMY 0 100% 

DSTK 7 100% 

DWAR 178 98% 

DBNG 0 100% 

DBRG 0 100% 

DELN 0 100% 

DJCR 390 96% 

DSBY 0 100% 

BUOY_BRND1 659 92% 

BUOY_LWSD1 21 100% 

BUOY_SCLD1 72 99% 

BUOY_OCIM2 76 99% 

BUOY_CMAN4 21 100% 

BUOY_CAMM2 88 99% 

BUOY_BISM2 96 99% 

BUOY_CHCM2 41 100% 

LEWE_MOB 3810 57% 

Table 2.5 Number of missing hourly averages and percentage representation per 

station. 
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Roughness 

Class 

Roughness 

Coefficient (m) 

 

Landscape 

0 0.0002 Water surface 

0.5 0.0024 

Completely open terrain with a smooth 

surface, e.g. concrete runways in airports, 

mowed grass, etc. 

1 0.03 

Open agricultural area without fences and 

hedgerows and very scattered buildings. Only 

softly rounded hills 

1.5 0.055 

Agricultural land with some houses and 8 

meter tall sheltering hedgerows with a 

distance of approx. 1250 meters 

2 0.1 

Agricultural land with some houses and 8 

meter tall sheltering hedgerows with a 

distance of approx. 500 meters 

2.5 0.2 

Agricultural land with many houses, shrubs 

and plants, or 8 meter tall sheltering 

hedgerows with a distance of approx. 250 

meters 

3 0.4 

Villages, small towns, agricultural land with 

many or tall sheltering hedgerows, forests and 

very rough and uneven terrain 

3.5 0.8 Larger cities with tall buildings 

4 1.6 

Very large cities with tall buildings and 

skyscrapers 

Table 2.6 Surface roughness criteria as described by the Danish Wind Industry 

Association (DWIA 2003). 
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2.1 Map of the DelMarVa peninsula highlighting the Location and station ID for all 

stations used in this study generated using ESRI ArcMap and GIS 

databases from iMap and United States Census Bureau (2010). 

 



 54 

 

2.2 DEOS Sensor located at Delaware State Police Troop 2, photo provided by DEOS 

Network 
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2.3 Ocean Buoy Sensor Buoy 44009 located at (38°27'40" N 74°42'9" W).  (Photo 

credit: NDBC) 
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2.4  Hourly average wind speed from Bethany Beach station DBNG for September-

November 2015.  The presence of Hurricane Joaquin is clearly seen 

between September 27th and October 7th.  The red line indicates the 

October monthly average wind speed with the hurricane removed.  
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2.5 Idealized wind profiles created using the Log Law (Equation 2.4) and observed 

characteristics for surface roughness and zero plane displacement for 

three generalized areas in this study: inland, over the bay and along the 

coast. 
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2.6 Probability distribution of the hourly average wind speed from DBNG with a 

Normal distribution and Weibull distribution superposed over the data. 
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2.7 Wind rose for hourly averaged winds as observed at station DBRG in 2015. 
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2.8 Annual mean wind speed at 114 meters shown with an inverse weighting function 

power of 2.  Note how there are hot spots, or bull’s eyes, around many of 

the stations. 
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Chapter 3 

RESULTS 

3.1 Results Review 

In this section, results of all metrics and analysis performed will be described.  

Maps generated through ArcMap will be shown for numerous metrics such as mean, 

median and MMD as will skewness statistics, wind roses, and correlation metrics.  

Several key aspects of this study are noteworthy and will be further discussed.  This 

discussion will include the utility of the Weibull distribution in representing wind data, 

the MMD metric’s ability to gauge the effectiveness of the mean wind speed metric as 

a representation of a wind data set, the QD metric’s ability to best represent wind data 

in variable data sets, and the emergence of the southwest corner of the state of 

Delaware as a viable location for wind farm development in the state of Delaware. 

All results were calculated and interpreted using hourly-average, near-surface 

wind speeds interpolated to those aloft at 114 meters as described above. This is the 

case for all wind speeds discussed throughout this chapter. Annual and seasonal maps 

were generated for most analyses and will be used to describe the spatial variation in 

the derived quantity. 

3.1.1 Mean Wind Speed 

Annual and seasonal mean wind speeds, which are defined by a single month, 

were calculated for all the data from the 29 stations in this study and are shown in 

Figure 3.1 and in Table 3.1.  

Annual 

The annual average (2015) wind speed aloft for the entire study area is 5.0 m/s, 

as calculated by averaging the station data. As seen in Figure 3.1, the wind speeds 
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along the Bay are higher than anywhere else in the region.  Wind speeds decrease 

inland the further away the station is from the coast. This corresponds well with what 

prior studies have shown (Rosenberg et al. 1983, Hughes and Veron 2015).  Annual 

wind speeds are highest out over open water  (6.1 m/s) and are relatively consistent.  

Near the coastline, the wind speeds decrease to 5.4 m/s, in comparison to the winds 

over the Bay.  The projected lowest average annual mean wind speed is 4.1 m/s, in an 

inland area that runs roughly north-south through the middle of Kent and Sussex 

Counties. This area expands to encompasses the entire northern part of the State. In 

looking at Figure 3.1, it is clear that there is an increase in annual mean wind speed in 

the southwest portion of the state, with this area having a mean annual wind speed of 

5.2 m/s.    

Indeed, in looking at the map of the annual mean wind speeds, several 

interesting geographic features are observed.  Four regions or “corridors” appear that 

have distinct characteristics.  As these geographical features are present in most of the 

maps generated from the data analysis, these corridors were defined and named in 

Figure 3.2, as the Coastal, Inland, Southwest and Bay corridors.  The Inland area is 

further divided into North and South regions to help in description of certain seasonal 

features.  

The Bay corridor (rose color in Fig. 3.2) includes stations BUOY_BRND1 and 

BUOY_CMAN4.  The Bay corridor represents the study area between the coast of 

Delaware and the NDBC buoy BUOY_CMAN4 and is supposed to represent stations 

that experience limited coastal influence on the winds aloft.  Note that this corridor 

includes both Delaware Bay and Atlantic Ocean waters.  
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The Coastal corridor (green area in Fig. 3.2) includes stations BUOY_SCLD1, 

LEWE_MOB, BUOY_LWSD1, DRHB, DIRL, DBBB and DBNG; this corridor 

covers the area between the Bay and Inland corridors and is exclusively located on the 

Delaware coast including both Delaware Bay Coast and Atlantic Ocean Coast.  

Previous studies have shown that the winds on these two coasts have distinct 

differences in both average wind speeds and dominant wind directions (Hughes and 

Veron, 2015).  However, for the purposes of this study, the characteristics of the wind 

along Bay and Ocean Coasts are more similar to each other than to the other corridors 

defined and so the Bay corridor will not be subdivided. 

The Inland corridor (blue colors in Figure 3.2) exhibits uniformly low wind 

speeds. However, in certain seasons, there is a notable north-south variation that 

appears.  For this reason, the Inland corridor is subdivided into two adjacent areas, the 

Inland-North and Inland-South corridors.  When there is a significant difference 

within the Inland corridor, the North and South designations will be used, although 

generally this corridor will be referred to just as the Inland corridor.  The Inland-North 

corridor contains stations DBLK, DSMY, DDFS, DWDS, DHAR and DADV and 

geographically represents Kent County Delaware.  The Inland-South corridor contains 

stations DELN, DGES, DJCR, DSTK, DWAR, DGUM and DSBY and covers the 

inland extent of Sussex County Delaware, with the exception of the Southwest 

corridor, described below.  

The Southwest corridor contains stations DBRG, DSEA and DLAU and 

geographically is located in the Southwest corner of the state of Delaware with its 

boundaries being the Delaware-Maryland state boundary to the south and west. The 

northern boundary of the Southwest corridor extends from a perpendicular line 
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between the Delaware-Maryland state boundary to the west of Station DBRG. The 

eastern boundary of the Southwest corridor is a diagonal line between station DBRG 

and the southern Delaware-Maryland state boundary line anchored midway between 

Stations DLAU and DGUM horizontally.  The four stations used to bound this 

corridor are BUOY_CHCM2, BUOY_CAMM2, BUOY_BISM2 and BUOY_OCIM2.  

These additional stations allow for smoother mapping of the wind field, and avoids 

spurious features in the map that appear by having station data at the boundary of the 

study area. The Southwest corridor is delineated separately from the Coastal and 

Inland corridors because it consistently has higher wind speeds than the Inland 

corridor, suggesting a need for additional analysis of this area. 

 

Seasonal 

 

Seasonal average wind speeds are represented by a monthly mean in the 

middle of each season, as described in Chapter 2. Winter (January) mean wind speeds 

(Figure 3.3a) are the highest in the Bay corridor with a seasonal average of 6.6 m/s. 

The difference between Bay and Southwest corridor wind speeds is only 0.2 m/s with 

Southwest wind speeds averaging 6.4 m/s. Inland-North and Inland South wind speeds 

are 4.6 m/s and 5.1 m/s respectively, significantly lower than in the corridors 

proximate to or over the water. 

Overall, spring wind speeds were 6.0 m/s and are the highest wind speeds 

throughout year (Figure 3.3b). The highest spring (April) average wind speeds (Figure 

3.3b) are located in the Southwest corridor. The Coastal corridor spring mean wind 

speed is similar to the mean winter wind speed, with average Bay wind speeds of 6.8 
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m/s and Coastal wind speeds of 6.1 m/s. Inland-North mean wind speeds are 5.2 m/s 

and Inland-South wind speeds are 5.5 m/s. The Southwest corner has the second 

highest wind speeds observed in the region for the spring at 6.7 m/s.  Moderately high 

wind speeds between 5.5-6.5m/s are found along the Maryland-Delaware border 

within the central portion of the study area.    

In the spring, the wind patterns show highest wind speeds localized in the 

central Bay corridor and wind speeds drop along the coast.  Wind speeds are even 

lower in the inland corridor which has a distinguishable north and south divide; 

Inland-North wind speeds are lower than Inland-South wind speeds. 

The summer (July, Figure 3.3c) has the lowest observed mean wind speeds for 

the year for all corridors as well as the lowest overall wind speed for the entire study 

area with a value of 3.5 m/s.  The highest wind speeds in this season are 4.0 m/s, 

present in the Bay corridor with Southwest corridor wind speeds only 0.1 m/s slower. 

Coastal corridor wind speeds were lower than Southwest corridor wind speeds at 3.7 

m/s.  Inland wind speeds were the lowest recorded wind speeds for the duration of the 

study at 2.9 m/s and 3.0 m/s for Inland-North and Inland-South sections respectively.  

The low wind speed area present in all time periods in the Inland corridor has 

grown in the size in the summer season compared to spring projections and now 

covers the northern portion of the Delaware Bay.  

Fall (October; October 6 to November 5) mean wind speeds (Figure 3.3d) are 

shown to be a transition between the summer and winter.  Bay and Coastal corridor 

mean wind speeds are 5.5 m/s and 4.9 m/s, respectively.  Inland-North and Inland-

South Wind speeds are 2.9 m/s and 3.4 m/s, respectively.  Southwest corridor wind 
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speeds are higher than surrounding areas at 3.9 m/s although they are a full meter per 

second slower than Coastal corridor mean wind speeds within this season.  

The area of low wind speeds is present throughout the Inland corridor during the fall 

and mimics patterns observed in the summer, although overall wind speeds are at a 

higher magnitude, especially in the Bay corridor.   

Overall, mean summer (August) wind speeds (Figure 3.3c) are the lowest wind 

speeds found throughout the entire year at 3.5 m/s, and spring (April) wind speeds 

(Figure 3.3b, 6.0 m/s) and not winter wind speeds (5.6 m/s) are the highest observed 

throughout the study.  In comparison to the longer time-series analyzed by Hughes and 

Veron (2015), this seasonal variability is typical of what is found in the region. In 

looking at Figure 3.3a-d, the spatial variation in seasonal wind speed is similar to 

those seen in annual wind patterns (Figure 3.2) with high wind speeds offshore, 

slightly lower winds speeds at the coast followed by a channel of low wind speeds 

inland and a moderate increase in wind speeds in the Southwest corner of Delaware. 

The northeastern portion of the study area exhibits the lowest wind speeds during the 

winter season. 

3.1.2 Median Wind Speed 

The median wind speed is the wind speed at the midpoint between the lowest 

and highest wind speed observed.  Median wind speeds were analyzed in this study to 

avoid the biases associated with mean wind speeds (Hennessey 1977). Median wind 

speeds are helpful in analyzing wind data because they are not subject to outlier 

influences the same way as mean wind speeds (Wolf-Gerrit 2013). 

 

Annual 
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Similar to the annual mean wind speeds, annual median wind speeds are 

highest in the Bay corridor, however the median wind speed in general is lower than 

the mean wind speeds with an overall annual median wind speed of 5.4 m/s; annual 

average median wind speeds were produced by taking the median of each station and 

then averaging this value per corridor (Table 3.2 and Figure 3.4).  Coastal and 

Southwest corridors have identical median wind speeds of 4.5 m/s (Table 3.2) and 

Inland-North and Inland-South have similar median wind speeds of 3.4 and 3.6 m/s.  

Median wind speed patterns mimic the geographical distribution of mean wind speeds 

with few exceptions. The general trend of annual median wind speeds across the study 

area (Figure 3.4) is for winds to be highest in the Bay corridor with lower median 

wind speeds in the Coastal corridor.  Inland annual median wind speeds are roughly 

1.0 m/s lower than annual Coastal corridor median wind speeds.  Median wind speeds 

are higher in the Southwest corridor than Inland corridor median wind speeds, and 

most importantly, mimic intensity levels previously reached at the coast.  The entire 

Inland corridor demonstrates a very low annual median wind speed. 

 

Seasonal 

 

Overall, winter (January) median wind speeds (Figure 3.5a) are higher than 

annual median wind speeds by 0.7 m/s with a value of 5.0 m/s.  Bay corridor median 

winter wind speeds are the highest median of all the corridors and have an average 

median wind speed of 6.0 m/s.  Southwest corridor median wind speeds are the second 

highest median wind speeds in winter with a median wind speed of 5.6 m/s. Coastal 

winter median wind speeds are 0.7 m/s less than Southwest corridor median wind 
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speeds.  Inland corridor winter median wind speeds are 4.1 m/s and 4.4 m/s for the 

Norther and Southern sections, respectively.   

The Inland region of low wind speed discussed in the annual and seasonal 

mean wind speed maps (Figures 3.2, 3.3) is similar in geographical extent to the 

region of low median wind speeds present within the winter season.  However, this 

feature is not as pronounced in winter as it is present annually. It should be noted that 

the Coastal corridor has median wind speeds significantly lower than the median wind 

speeds in the Southwest corridor for the winter season. 

Spring (April) median wind speeds (Figure 3.5b) are the highest seasonal 

median wind speeds for the entire study with an average value of 5.5 m/s.  Bay 

corridor and Southwest corridor median wind speeds are nearly identical at 6.3 m/s 

and 6.2 m/s, respectively.  Coastal corridor spring median wind speeds of 5.4m/s are 

significantly lower in magnitude than either Bay or Southwest corridor median wind.  

Inland corridor North and South median wind speeds are 4.8 m/s and 5.0 m/s, 

respectively. 

The same spatial patterns observed in the maps of the annual and winter 

median wind speeds are present throughout the spring season (Figure 3.5b). However, 

the Inland area of low median wind speeds is smallest in extent during this season.  A 

notable exception present in the spring median values when compared to winter and 

annual median wind speeds is that the lowest median wind speeds are concentrated in 

the central portion of the northern most boundaries of the study area.  

Summer (August) median wind speeds (Figure 3.5c) are the lowest median 

wind speeds observed throughout the entire study period with a value of 3.2 m/s.  Bay 

and Southwest corridor summer median wind speeds are nearly identical at 3.7 m/s 
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and 3.6 m/s.  Coastal summer median wind speeds are 3.3 m/s and Inland-North and 

Inland-South summer median wind speeds are 2.7 m/s and 2.6 m/s respectively. The 

Inland region of low median wind speeds is present throughout the entire Inland 

corridor and borders the Southwest and Bay corridors in the summer, extending also 

into the Northern section of the Coastal corridor.  Inland-South summer median wind 

speeds are the lowest in the study area. 

 Fall (October) median wind speeds (Figure 3.5d) are slightly larger in 

magnitude than summer median wind speeds by 0.2 m/s at a value of 3.4 m/s. Bay 

corridor fall median wind speeds are the highest out of all the spatial corridors for the 

fall at 5.0 m/s, followed by Coastal corridor fall median wind speeds with a value of 

3.9 m/s.  Southwest corridor fall median wind speeds are 3.1 m/s and Inland corridor 

fall median wind speeds are 2.4 m/s in both Northern and Southern sections.  It is 

important to note that the relationship between the Southwest corridor and Coastal 

corridor median wind speeds has inverted such that in the fall season the median wind 

speeds are greater within the Coastal corridor than in the Southwest corridor, while the 

opposite is true for all other seasons. 

The Inland region of low median wind speeds is largest in area during the fall 

season and extends into the Inland corridor and into the Southwest corridor.  Relative 

to the summer, this area of low median wind speeds has receded from northern 

portions of the Coastal corridor.  This region of low median wind speeds covers most 

of the northern portion of the study area, although is mostly not present in the Bay 

corridor.   
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3.1.3 Mean-Median Difference 

The mean median difference (MMD) maps graphically display the degree of 

difference between mean and median wind speeds and represents the divergence 

between the midpoint of the data range and the average (Rosa et al. 1993). This metric 

allows for comparison with mean wind speeds to determine how the dispersion and 

skewness of a distribution causes the mean and median wind speeds to diverge.  The 

larger the MMD value, the greater the likelihood that the increased presence of very 

high winds speeds, even if still a small portion of the dataset, has shifted the mean 

away from the midpoint of the data.  Thus, areas of high MMD values may indicate 

areas that experience a larger variation in wind speeds, or a higher occurrence of high 

winds speeds, and may be less optimal for wind farm development.  It is possible that 

the winds at these sites will require more study than those with small MMD because of 

the larger dispersion in the data. 

 

Annual 

 

Annually, the MMD (Table 3.3, Figure 3.6) varies between 0.4 m/s at its 

lowest in the Inland-North corridor and 0.9 m/s at its highest in the Coastal corridor.  

Inland-South, Bay and Southwest corridors all have MMDs of 0.7 m/s. Within the 

annual MMD map, areas of low MMD are restricted to the Northern portion of the 

study area.  Higher MMDs are present along the Coastal corridor.  The northern 

portion of the Bay corridor shares the lowest MMD with the Inland-North corridor, yet 

the southern half of the Bay corridor has some of the highest MMD present annually.  

High MMDs present within the Coastal corridor indicate that the mean is farther away 

from the midpoint of the data range. The Northern portion of the study area have the 
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smallest data dispersion, however this is also an area of relatively low mean wind 

speeds overall. 

  There is low winter (January) MMD (Figure 3.7a) in the Northern half of the 

study area with the lowest values of 0.4 m/s along the west central portion of 

Delaware and adjacent areas of Maryland. There is a gradual increase in winter MMD 

within the Inland corridor transitioning from north to south where MMD reaches 0.6 

m/s.  Winter MMD is highest in the Southwest corridor with values of 0.8 m/s 

followed, and slightly lower in the Coastal (0.7 m/s) and Bay corridors (0.6 m/s).  

There is a large area of low MMD in the northern portion of the study area, present 

from North-Central Maryland through the Inland-North corridor continuing to the 

Coastal corridor.  At the Coastal corridor, the winter MMD increases to 0.4 m/s. 

Inland-South corridor low MMDs are bordered to the east and west by higher MMD in 

the Coastal and Southwest corridors. 

Spring has the second lowest MMD (Figure 3.7b) among the four seasons 

analyzed with an overall value of 0.5 m/s.  The spring MMD over the entire Inland 

corridor is 0.3 m/s in the North and 0.4 m/s in the South. The highest spring MMD lies 

in the Coastal corridor (0.7 m/s), and a moderate spring MMD of 0.5 m/s is found in 

both the Bay and Southwest corridors.  

Summer (August) MMDs (Figure 3.7c) for the entire study area are the lowest 

of all seasonal MMDs throughout the entire study at 0.3 m/s.  This is true in all 

corridors. The lowest summer MMD are present in the Northern portion of the Inland 

corridor at 0.2 m/s.  Summer MMD increases slightly to 0.3 m/s in the Southwest and 

Bay corridors, and is largest in the Inland South (0.4 m/s) and Coastal corridors (0.5 

m/s). 
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Low values in summer for MMD indicate that mean wind speed is very close 

to the center of the data range, and so the data distribution is not very skewed with few 

outliers, similar to a normal distribution. Therefore, the mean wind speed is a very 

good representation of the general characteristics of the wind and can be used 

effectively when siting and planning a wind farm.   

 By contrast with summer, fall (October) MMD is the largest seasonal MMD 

for the entire study with a mean value of 0.8 m/s over the entire area (Figure 3.7d).  

The lowest fall MMD is found in the Bay and Inland-North corridors at 0.5 m/s. The 

Coastal corridor has the highest fall MMD of 1.0 m/s followed by the Inland-South 

and Southwest corridors with MMD of 0.9 m/s and 0.8 m/s.  

 Fall MMD in the Inland-South and southern portions of the Inland-North 

corridor is higher than the Fall MMD in the Southwest corridor, which is opposite to 

the other seasons when MMD is higher in the Southwest corridor than the Inland 

corridor, possibly due to influences along the coast where MMD values are the largest 

in the fall season.  The fall presents itself as the most difficult season to characterize 

wind speeds using only the mean wind speed metric as evidenced by the high seasonal 

MMD, indicating that the data is likely skewed by the presence of higher wind speeds.  

This means that wind farm planners will need more detailed studies in siting potential 

wind farm locations in the area. 

3.1.4 Probability Distribution 
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3.1.4.1 Skewness 

Distributions of wind speeds often demonstrate positive skewness because 

there is an uneven distribution of wind speeds, with an abundance of very low wind 

speeds, and a significant tail of high wind speeds (Brown et al. 1984, see Figure 2.6).  

Assessing the degree of skewness provides a measure of dispersion, which is a 

measure of the spread in the data. Skewness was calculated annually and for each 

individual season as described in section 2.3.4.1 and these values were compared to 

MMD (Table 3.4).  Skewness is a measure of symmetry of the probability distribution 

and illustrates how much the dataset diverges from a normal distribution (Trauth 

2015).  Large skewness indicates a longer tail in the distribution on one side of the 

distribution versus the other and thus a more dispersed data set.  Thus, skewness may 

help explain the distance between mean wind speeds and the median wind speeds, and 

therefore can be used to gauge the representativeness of MMD in characterizing the 

variability in the wind speeds for an area. 

The annual skewness is 0.7.  Skewness for the winter (0.7), spring (0.6), 

summer (0.7) and fall (0.9) are shown in Table 3.4., along with corresponding MMD 

values.  The variation in the MMD seasonal values, followed a similar trend to the 

skewness values, except for in the summer.  Summer skewness deviates from this 

pattern when compared to the MMD for the other seasons, as the summer skewness is 

comparable to winter skewness instead of continuing to decrease like the MMD.  One 

possible reason for this difference between MMD and skewness in the summer season 

is the very low wind speeds present within the summer months.   

 



 74 

3.1.4.2 Weibull Distribution 

Normal distributions assume equal dispersion around the mean of a given 

dataset with 50% of samples falling on either side of the curve (Trauth 2015).  

However, numerous studies (e.g. Bludszuweit 2008, Safari and Gasore 2010) have 

demonstrated that the normal distribution is not as applicable to wind observations as 

the Weibull distribution. The Normal distribution assumes that the mean, median and 

mode will all be the same; as the MMD metric developed above has demonstrated, this 

assumption is frequently inappropriate for wind data and means that the normal 

distribution will be a limited method for accurately representing wind observations 

(IESS 2008).  The benefits of the Weibull distribution to represent wind data relative 

to the Rayleigh distribution can be found in section 2.3.4. 

Weibull distributions (Figures 3.8, 3.9) were calculated as a fit to the wind 

speed data in each of the corridors and overlaid on top of the probability distributions 

of the annual and seasonal wind speeds.  It should be noted that in the annual dataset, 

and in the summer and fall seasons, Inland wind speeds 1.0 m/s bins extend beyond 

the vertical access shown; these bins make up 21%, 24% and 34% of wind speeds 

respectively even though this is not accurately represented within the figures provided. 

The probability distributions show that Bay corridor had the largest range of wind 

speeds followed by Southwest, Coastal, and Inland corridors.  

  

Annual 

 

Annual wind speed distributions show that the Coastal corridor has the largest 

dispersion of wind speeds followed closely by Southwest corridor while the Bay 

corridor has the smallest dispersion of wind speeds annually.   The difference between 
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the normal distribution and the Weibull distribution in the annual data is largest within 

the Coastal and Southwest corridors; this is most likely due to the lack of asymmetry 

in these distributions and the long tails of both datasets. The Weibull and normal 

distributions are in closest agreement in the Bay corridor where the tail of the 

distribution is the smallest observed.  

 

Seasonal 

 

The winter season has the most widely dispersed wind speed data within the 

study.  The probability distributions show the largest tails in the distributions (Figure 

3.9a). This feature is most notable in the Southwest corridor, followed by Coastal, Bay 

and Inland corridors respectively. The Weibull distribution peak accurately portrays 

the distribution peak while the normal distribution peak consistently appears 

significantly to the right of the probability distribution of the observed data. 

The spring probability distribution shows less widely disperse data with a 

notable decrease in the frequency of high wind speeds (Figure 3.9b). Spring 

probability distribution tail lengths are largest in the Southwest corridor. The normal 

distribution peak again is located to the right (at a higher wind speed) of the peak of 

the probability distribution. 

 In the summer, the Weibull distribution is very similar to the normal 

distribution, and both do a reasonable job in representing the probability distribution 

of the observed wind data. Summer probability distributions show the least distributed 

winds in the study with the smallest dispersion in the hourly wind data (Figure 3.9c).  

As in the spring, the Weibull and the normal distribution exhibit similar patterns to 
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each other although the Weibull distribution clearly providing a better fit to the hourly 

data.   

Fall Season probability distributions are the second most dispersed after the 

winter showing the greatest range in wind speeds (Figure 3.9d).  The Coastal corridor 

probability distribution has the longest tail followed by Southwest, Inland and Bay 

corridors probability distributions respectively. Like in all previous seasons, Normal 

distributions placed the peak at higher winds speeds than the peak of the probability 

distribution of the observed wind speeds, while the Weibull distribution more 

accurately represents the data. It should be noted that in the Bay corridor, normal and 

Weibull distributions are the most similar in all seasons.    

This characterization of the probability distributions matches well with 

comparisons to other studies in that almost uniformly the Weibull distribution is the 

preferred favorite probability density function to use in representing wind speeds 

(Früh 2013 and Carta et al. 2008). Safari & Gasore (2010) recognize that the normal 

distribution may be useful for representing wind data sets when the shape factor of the 

probability density function, often referred to as k, has a value of greater than 2.   

Weibull distributions calculate k with respect to the given data where higher k values 

represent steeper and more normally distributed data (Manwell 2010). Thus, in 

comparison to this study, Weibull distributions remain the gold standard in wind speed 

distribution representation, although the Normal distribution may be somewhat useful 

in certain locations and time periods, such as the Bay corridor and summer season, 

with small variation and high k values. 
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3.1.4.3 Wind Roses 

Wind Roses are probability distributions that show the probability distribution 

of wind speeds as a function of direction (Mirhosseini et al. 2011). For this study, 

wind roses were produced for each corridor on an annual and seasonal basis (Figures 

3.10-3.11).  Bay corridor wind roses indicate that annually (Figure 3.10) wind speeds 

are highest coming from the Northwest but are most abundant coming from the 

Southwest.  Seasonally, Bay corridor winds almost exclusively blow from the 

Northwest in the winter and spring, and switch to blowing from the Southwest during 

the summer and fall with a significant contribution of winds from the Northwest in the 

fall (Figure 3.11).  Coastal corridor winds annually blow predominantly from the 

West.  While most Coastal winds seasonally blow from the West, spring and summer 

winds blow from the South and Southwest. For small portions of the fall season winds 

blow from the East (Figure 3.11d).  

Annually, Inland corridor winds blow from the Southwest (Figure 3.10). 

Winter Inland winds blow from the Northwest while spring, summer and fall winds 

blow form the Southwest (3.11). Annually Southwest corridor winds blow form the 

Southwest .  Winds primarily blow form the Northwest during the winter Season while 

spring, summer and fall winds predominantly blow from the Southwest. 

When comparing the wind roses to mean and median wind speeds, some 

interesting observations can be made.  Winds generally blow from the West and 

Southwest.  Because winds from these directions travel across the Chesapeake Bay, an 

area of lowered surface roughness; this may explain in part why mean wind speeds in 

the Southwest corridor are unexpectedly high.  This pattern is seasonally observable 

and overlaps with median wind speeds as well in that higher median wind speeds are 

experienced in the Southwest corridor than was expected.  These westerly and 
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southwesterly winds clearly influence the intensity of winds in the study area, 

predominantly in the Southwest corridor, although not as significantly in the Northern 

portion of the Inland corridor as winds must travel significant distances over land 

before reaching this region.  The reason for this is that winds adjacent to the 

Southwest corridor are much less impeded by surface roughness as they travel across 

the larger part of the Chesapeake Bay, unlike the northern portion of the Inland 

corridor. 

3.1.4.4 Standard Deviation 

The standard deviation of wind speeds was calculated for all corridors annually 

and seasonally as shown in Table 3.4. Annually, standard deviation is largest in the 

Southwest corridor at a value of 4.0 m/s followed closely by the Coastal corridor at 3.8 

m/s.  The Bay corridor has a 3.4 m/s standard deviation while the Inland North and 

South corridors have 2.9 m/s and 3.1 m/s standard deviations respectively.  Annually, 

standard deviation is largest in both corridors that are directly exposed to land and sea 

breezes; the standard deviations of the Bay, Inland-North and Inland-South corridors 

are notably less.  This is understood as Bay corridor wind speeds although, annually 

higher than all other wind speeds, are the most consistent winds in the study area thus 

having lower standard division, and Inland-North and Inland-South both exhibit low 

wind speeds, thus influencing these corridors to have lower standard deviations. 

Seasonally, the average winter standard deviations are the largest with an 

average of 3.8 m/s which is similar to the spring average standard deviation of 3.6 m/s.  

Fall average standard deviation is 3.0 m/s while summer average standard deviation is 

2.3 m/s. The Southwest corridor has the highest standard deviations annually and in all 
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seasons with the exception of the fall season where Coastal corridor standard deviation 

is 0.1 m/s higher than Southwest corridor standard deviations.  

Standard deviations relative to mean wind speeds are very high, for example 

the Southwest corridor has a standard deviation of 4.0 m/s and a mean wind speed of 

only 5.2 m/s. These findings relate to how Chang and Bai (2001) display the 

inadequacy of using standard deviation for characterizing wind data due to its 

positively skewed nature. The results of the standard deviation analysis confirm the 

assertions made by Leys et al. (2012) in that when analyzing data prone to high 

outliers, standard deviation is a poor choice of technique used to quantify the 

distribution of a given dataset.   

3.1.5 Upper and Lower Quartiles 

Upper and lower quartiles demonstrate the limit at which 25% of wind speeds 

will be greater or less than respectively (To and Lam 1995).  These value limits are 

used to represent relative ideal and sub-par wind patterns.    

3.1.5.1 Upper Quartile Winds 

 

Annual 

 

When mapped, the Upper Quartile of the annual wind speeds (Figure 3.12) 

present spatial patterns similar to those of the annual mean wind speeds (Figure 3.1).  

Overall, annual UQ wind speeds for the study area are 6.9 m/s meaning that 75% of 

wind speeds will be below this value.  Bay corridor UQ wind speeds annually are the 

highest in the study area at 8.0 m/s.  Southwest corridor and Coastal UQ wind speeds 
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are the next highest UQ wind speeds at 7.4 m/s and 7.3 m/s respectively. Inland-North 

and Inland-South wind speeds have UQ wind speeds of 5.6 m/s and 6.2 m/s.  

The general trend in UQ wind speeds is for UQ values to be highest in the 

central portion of the Bay corridor, then to subside within the Inland corridor.  The UQ 

wind speeds are higher in the Southwest corridor than in the Inland corridor. Inland-

North UQ wind speeds extend from northeastern Maryland and northern Delaware 

with lowest UQ wind speeds present in Northern Delaware.  

 

Seasonal 

 

The threshold for winter (January) Upper Quartile wind speeds (Figure 3.13a) 

for the entire study area is 8.1 m/s, which is above the annual average UQ threshold, 

indicating the enhanced wind speeds in this season.  Southwest corridor UQ wind 

speeds are the highest of all the corridors during the winter with a threshold at 9.3 m/s; 

the Bay corridor UQ is similar at 9.0 m/s.  Coastal and Inland-South corridor UQ wind 

speeds are the next highest with the UQ wind speed thresholds at 7.8 m/s and 7.4m/s 

respectively. Inland-North UQ wind speeds have values above 6.8 m/s during the 

winter season.  

Spring (April) UQ wind speeds (Figure 3.13b) are the highest UQ values 

present throughout the entire study with an average total area UQ threshold value of 

8.4 m/s.  This is similar to the median wind speeds which showed a maximum in the 

spring.  The Southwest corridor has substantially higher spring UQ threshold than any 

other corridor with a value of 9.6 m/s; this corresponds with wind rose representations 

in that southwesterly winds predominated this time period within this corridor.  The 
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next highest UQ threshold present through the spring is in the Bay corridor followed 

by the Coastal corridor with UQ wind speed thresholds of 8.8 m/s and 8.3 m/s.   

In looking at the map of the Spring UQ wind speeds, there is a clear distinction 

between the Inland-South corridor UQ and Inland-North corridor UQ which appears to 

be caused by the southwesterly winds influencing the Southwest corridor as 

demonstrated Inland Spring wind rose.  Bay corridor UQ is similar to the UQ values in 

the southern portion of the study area while, as expected, the Coastal corridor UQ is 

similar to the UQ of the Inland-South corridor.   

Summer (July) UQ wind thresholds are overall the lowest for all seasons at 4.9 

m/s (Figure 3.13c).  Similar UQ threshold patterns exhibited in previous seasons are 

present throughout the summer, but to a lesser degree. For example, Southwest 

corridor UQ threshold is the highest of all of the corridors at 5.8 m/s. The Coastal and 

Bay corridors UQ threshold values are lower than in the Bay corridor at 5.2 m/s and 

5.1 m/s, respectively. Inland-North and Inland-South UQ thresholds are 4.2 m/s and 

4.5 m/s, lower than in any array that is influenced by coastal winds such as sea 

breezes.  

Summer UQ threshold patterns exhibit the lowest UQ threshold present in the 

northern portion of the study area.  This area of low UQ values is present throughout 

the Inland corridor  These low wind speed thresholds are concomitant with the higher 

UQ values in the Southwest corridor and in southern portions of the Coastal corridor.   

Fall (October) UQ wind speeds for the various corridors do not follow a 

similar pattern to the other seasons (Figure 3.13d).  However, the Bay corridor, instead 

of the Coastal corridor, has the highest UQ threshold during the fall at 7.4 m/s.  The 

next highest UQ wind speeds are found in the Coastal corridor at 6.6 m/s, and then the 
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Southwest corridor at 6.0 m/s.  Inland-North and Inland-South UQ limits are 4.5 m/s 

and 5.1 m/s.  

Fall UQ patterns also exhibit the lowest UQ wind speeds in the northern half of 

the study area.  Similar to the summer, these lower UQ values extended into the Inland 

corridor. Southwest UQ wind speeds covers an area to the southwest that extends 

beyond Delaware just to the edge of the study area.  Similarly, the area of relatively 

high Coastal corridor UQ values spreads across the southern portion of the Bay 

corridor continuing to the edge of the study area  

3.1.5.2 Lower Quartile Winds 

Annual 

Overall Annual LQ wind speeds (Figure 3.14) for the study area are 2.2 m/s, 

meaning that 75% of wind speeds will be greater than this value.  Annually, Bay 

corridor LQ wind speeds, similar to UQ wind speeds, are the highest in the study area 

with a threshold at 3.5 m/s. Coastal and Southwest corridor LQ wind speeds are the 

next highest LQ wind speeds at a limit of 2.5 m/s and 2.1 m/s respectively. Inland 

corridor LQ wind speeds are 1.6 m/s for both northern and southern regions. 

Lower Quartile Annual wind speeds present annual patterns similar to Upper 

Quartile and annual mean wind speeds as shown in Figures 3.1 and 3.12. The general 

trend in LQ wind speeds is for LQ values to be highest in the Bay corridor, then to 

subside within the Inland corridor. The Southwest corridor LQ values are higher than 

those found in the Inland corridor.  Annual UQ and LQ patterns mimic each other 

except for Lowest UQ values dominating in northern Delaware and then extending 

into the Inland corridor, whereas the lowest annual LQ values occur in northeastern 

Maryland, outside the study area. 
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Seasonal 

 

Winter (January) LQ (Figure 3.15a) is higher than the average LQ value by 0.4 

m/s with a threshold of 2.6 m/s, again indicating the presence of higher wind speeds 

overall in the winter.  The highest winter LQ wind speeds were present in the Bay 

corridor at 3.7 m/s. The next highest LQ threshold is in the Coastal corridor with a LQ 

limit of 2.7 m/s.  Southwest corridor LQ is similar to Coastal values at a threshold of 

2.6 m/s; Inland-North and Inland-South are 1.9 m/s and 2.0 m/s respectively.  Low 

Winter LQ values are present in the northern half of the study area and persist 

throughout the Inland corridor.  Winter LQ are highest within the central portion of the 

Bay corridor, while the rest of the winter Bay corridor LQ are similar to Coastal LQ. 

Spring (April) LQ wind speeds (Figure 3.15b) are the highest seasonal LQ 

values recorded throughout the study which is similar to the pattern observed in the 

median wind speeds at a threshold of 3.0 m/s. Spring LQ are the highest in the Bay 

corridor at 4.4 m/s.  These elevated LQ values extend into the Northeast portion of the 

study area. Coastal and Southwest corridor spring LQ limits are 3.2 m/s and 2.9 m/s 

respectively. Inland corridor LQ wind speeds are the lowest at 2.4 m/s for both north 

and south portions.       

Summer (July) LQ wind speeds (Figure 3.15c) are the second lowest seasonal 

threshold observed at 1.8 m/s.  Summer Bay corridor LQ has a threshold of 2.5 m/s 

which is the highest of all the corridors.  The next highest LQ thresholds were found in 

the Coastal and Southwest corridors with values of 1.9 m/s and 1.8 m/s, respectively. 

Summer Inland-North and Inland-South LQ limits were 1.4 m/s and 1.2 m/s.  Patterns 
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of Summer LQ wind speeds in the summer are similar to Summer UQ patterns in that 

the area of lowest threshold spreads from the northern portion of the study area to the 

Inland corridor and transitions across the Coastal corridor to border the Bay corridor.   

Fall (October) LQ values were the lowest of the seasonal LQ limits observed 

throughout the study at 1.7 m/s (Figure 3.15d). The highest LQ threshold still occurs 

in the Bay corridor at 3.1 m/s followed by a Coastal corridor LQ of 2.3 m/s.  The 

Southwest corridor LQ wind speed was 1.2 m/s and Inland-North and Inland-South 

LQ thresholds were 0.8 m/s and 0.9 m/s respectively. The distribution of LQ spatially 

exhibited the same patterns as the distribution of UQ values during the fall season for 

the study area. 

3.1.6 Quartile Deviation 

Quartile Deviation (QD) is a measure of dispersion Krumbein (1936). 

Generally, standard deviation is the preferred metric for dispersion within a dataset. 

However, standard deviation metrics assume that the data in question is normally 

distributed in a Gaussian fashion without outliers (Leys et al. 2012). Wind speeds, by 

their nature, are unevenly distributed around the peak in the distribution and therefore 

standard deviation may not be the best representation for quantifying dispersion within 

a wind speed dataset.  QD, therefore, was explored as a method to quantify wind speed 

dispersion within annual and seasonal datasets. 

 

Annual 

 

Annual QD within the study area range between 2.0 m/s to 2.6 m/s with an 

overall average of 2.3 m/s (Figure 3.16).  The highest quartile deviation lies in the 
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Southwest corridor with a value of 2.6 m/s. The Coastal corridor Annual QD is 2.4 

m/s, with both Bay and Inland-North corridors QDs at a slightly lower value of 2.3 

m/s.  The Northern portion of the Inland corridor has a QD of 2.0 m/s.   

The quartile deviations indicate that annually the wind speeds will be most 

dispersed in the Southwest corridor and least dispersed in the Inland-North corridor. 

Mid-range levels of dispersion will be present annually within all other corridors.  In 

general, the northern portion of the study area exhibits lower dispersion than the 

southern portion.   

 

Seasonal 

 

Winter (January) QD over the entire study area have an average value of 2.8 

m/s between all corridors (Figure 3.17a).  The highest quartile deviation is present in 

the Southwest corridor at a value of 3.4 m/s.  The Southwest corridor is surrounded by 

regions of lower QD, such as a in the Inland-North and Inland-South corridors, with 

values of QD of 2.5 m/s and 2.7 m/s, respectively.  The Coastal corridor QD is 2.5 m/s 

and the Bay corridor QD is 2.7 m/s. 

Quartile deviations throughout the study area are largest in the Southwest 

corridor, and decrease in regions away from the Southwest corridor, especially in the 

Inland-South corridor.  The QD is higher in the southern portion of the Coastal 

corridor. 

Spring (April) QD patterns are similar to winter QD patterns, although as a 

whole, spring QD is 0.1 m/s less than winter values at 2.7 m/s (Figure 3.17b).  The 

Spring QD is the highest in the Southwest corridor at 3.3 m/s.  The Inland-North and 
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Inland-South QDs are 2.5 m/s and 2.7 m/s, respectively. The Coastal corridor QD is 

2.6 m/s, and in the Bay corridor the QD is 2.2 m/s.  To a lesser extent, the patterns 

exhibited in the winter persist through to the spring season. 

Summer (July) QDs are the lowest of all the seasons with a QD of 1.6 m/s 

(Figure 3.17c).  The highest summer QD of 2.0 m/s is present in the Southwest 

corridor.  Lower QDs of 1.4 m/s and 1.7 m/s are present in the Inland-North and 

Inland-South corridor.  The Coastal and Bay corridor QDs are 1.6 m/s and 1.3 m/s, 

respectfully. The summer QD values are homogenous throughout the entire northern 

portion of the study area as well as a significant portion of the southern half of the 

study area.  QD values are higher only in the Southwest and the southern most parts of 

the Coastal corridor.  Summer thus presents itself as the most uniformly distributed 

season with respect to wind speed.  

Fall (October) QD is the second lowest observed within the study area with a 

value of 2.1 m/s (Figure 3.17d). The Southwest corridor possesses the highest fall QD 

of any corridor with a value of 2.4 m/s.  Coastal corridor QD is 2.2 m/s while Bay and 

Inland-South QD are 2.1 m/s.  Inland-North QD is 1.8 m/s. Fall QD patterns exhibit 

the lowest QD in the northern half of the study area except for the Bay corridor.  

These low QDs occur in the northwestern portions of Maryland and condition down 

through the Inland corridor to the bottom of the study area.  Southwest corridor QD is 

similar to the southeastern portion of Maryland.  
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3.1.7 Correlation of Winds  

3.1.7.1 Autocorrelation  

Autocorrelations (AC) were performed seasonally for each corridor by 

correlating a station’s hourly wind speeds with itself to determine the length of signal 

persistence within the winds of a particular corridor (Table 3.9).  Each corridor’s 

autocorrelation was performed on a single representative station; these stations were 

stations BUOY_CMAN4, DBNG, DELN, and DSEA for the Bay, Coastal, Inland and 

Southwest corridors respectively.  Autocorrelation can be interpreted by the level of 

statistical significance or by the acceptable amount of correlation depending on the 

application (Trauth 2015, Alexiadis 1999).  Alexiadis (1999) used 2 hour time lengths 

to compare persistence based forecasting models to Neural Network forecasting 

models and experienced correlation values as low as 70%.  This is in contrast to 

(Brokish and Kirtley (2009) who used 12 hour lags often exhibiting autocorrelation 

values around 20%, as reference points to use in their analysis of Markov Chain utility 

in wind power estimation. Especially in forecasting, there is a limit below which the 

autocorrelation no longer makes sense even if the autocorrelation is statistically 

significant (Brokish and Kirtley 2009); the level chosen for this study was 50%, thus 

exhibiting an R2 value and representation level of 25%.  

Winter AC were the highest seasonal values recorded throughout the entire 

study with values of 6.75 hours.  Within the fall season, persistence was highest in the 

Coastal and Southwest corridors at 6 hours, followed by Bay and Inland corridors with 

ACs of 5 hours.  Fall had the second highest seasonal AC value of 5.5 hours.  Within 

the fall season, Coastal and Southwest corridors had identical persistence levels with 

ACs of 6 hours.  Bay and Inland corridors had the lowest AC in the fall at ACs of 5 
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hours. Spring had the second lowest AC values at 5 hours.  The spring Bay corridor 

AC was the lowest corridor AC value of 4 hours followed by the Coastal and Inland 

corridors with 5 hours AC values. Southwest corridor spring AC was 6 hours. Summer 

AC values were the lowest throughout the entire study with an overall AC between 

corridors of 4.5 hours. Within the summer, AC for the Bay and Southwest corridors 

was 5 hours while Coastal and Inland corridors had ACs of 4 hours. 

3.1.7.2 Pearson Correlation 

Correlations (Figures 3.24-3.28) were performed between all stations annually 

and seasonally using the Pearson Correlation method outlined in (Equation 2.9).  

Correlation maps of 70%, 80% and 90% (R) were created for all time steps annually 

and seasonally.  These maps illustrate the correlation between station measurements, 

or how temporally and spatially similar stations measurements are to one another in  

terms of wind speed. Thus, variance explained (R2) for each map respectively was 

49%, 64% and 81%. The 80% and 90% maps proved useful in analysis although 70% 

maps were too densely correlated to be of any use in discerning correlations between 

stations within the study area and have not been included in this work.  Pearson 

Correlations (PC) were used to discern zones of similarity within the study area in 

which wind speeds would uniformly fluctuate.   

Annual 

Annual patterns were present through all seasons and varied in concert with 

wind speed intensity.  Higher wind speeds generated more correlations between 

stations within the study area while lower wind speeds generated fewer correlations 

between stations. In both 90% and 80% annual correlation maps clearly defined zones 

were discernable.  These zones were also present in seasonal analysis, and will be 
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discussed further below. One key point of interest in the annual correlation 

representations was that within the 80% correlation map, 2 zones were readily 

apparent and distinguishable from one another.  

 

Seasonal 

 

Two predominant zones emerged within the annual PC analysis that were 

refined through seasonal PC analysis. Zone A, the most prevalent zone in the study is 

a polygon between stations DBLK, DDFS, DGES, DGUM, DLAU, and DSEA.  This 

zone appeared in all 90% maps.  Although Zone A was present in all seasons, it was 

much smaller during the summer season due to low wind speeds.  These low wind 

speeds produced fewer 90% correlations because they did not have the strength to 

influence station wind speeds over large distances.  Zone A is also present in all 80% 

maps and expands to include all Inland stations within this correlation class level.  

Zone B is the second correlation zone that is consistently present in the PC analysis. 

Zone B exists exclusively within Coastal corridor Stations.  Correlations among these 

stations are weaker than Zone A correlations and appear in only 80% maps. Zone B 

consists of stations BUOY_LWSD1, LEWE_MOB DRHB, DIRL, DBNG, and 

DBBB. Zone A and Zone B are graphically represented in Figure 3.23. 

In both 90% and 80% maps, there are significant seasonal differences in 

correlation intensities. Mean wind speeds in the summer, as indicated in section 3.1.1, 

were slower than any other seasons.  This directly corresponds with correlation results 

in that during the summer, correlation densities are the lowest observed throughout the 

entire study.  Conversely, correlations are most extensive throughout the study area in 
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the fall.  This corresponds with wind rose analysis in that during this season, winds are 

most consistently blowing in the same direction, thus allowing for stronger 

correlations present in this time period.  Winter and spring correlation patterns exhibit 

similar patterns of correlation, although to lesser extents than the fall    

Within the 70% maps, Correlations between stations are so prevalent that there 

is no discernable pattern within this correlation class.  Despite not exhibiting 

discernable patterns within the correlations, the overwhelming number of correlations 

in the 70% class show that winds in Delaware have a general pattern within the entire 

study area, possibly due to the small size of the state.  Thus, 70% correlations show 

the presence of mesoscale features within the winds in Delaware.   
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Mean Offshore Coastal 
Inland 

North 

Inland 

South 

South 

West 
AVG 

Annual 6.1 5.4 3.9 4.3 5.2 5.0 

Winter 6.6 5.6 4.6 5.1 6.4 5.6 

Spring 6.8 6.1 5.2 5.5 6.7 6.0 

Summer 4.0 3.7 2.9 3.0 3.9 3.5 

Fall 5.5 4.9 2.9 3.3 3.9 4.1 

 

Table 3.1 Annual and seasonal mean wind speeds in m/s as calculated in each of the 

geographic corridors defined in Figure 3.2. 
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Median Offshore Coastal 
Inland 

North 

Inland 

South 

South 

West 
AVG 

Annual 5.4 4.5 3.4 3.6 4.5 4.3 

Winter 6.0 4.9 4.1 4.4 5.6 5.0 

Spring 6.3 5.4 4.8 5.0 6.2 5.5 

Summer 3.7 3.3 2.7 2.6 3.6 3.2 

Fall 5.0 3.9 2.4 2.4 3.1 3.4 

 

 

Table 3.2 Annual and seasonal median wind speed in m/s calculated by averaging 

median wind speeds per corridor (per station interpolation) for the 

corridors shown in Figure 3.2 
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MMD Offshore Coastal 
Inland 

North 

Inland 

South 

South 

West 
AVG 

Annual 0.7 0.9 0.4 0.7 0.7 0.7 

Winter 0.6 0.7 0.4 0.6 0.8 0.6 

Spring 0.5 0.7 0.3 0.4 0.5 0.5 

Summer 0.3 0.5 0.2 0.4 0.3 0.3 

Fall 0.5 1.0 0.5 0.9 0.8 0.8 

 

 

Table 3.3 Annual and seasonal mean-median difference in wind speed in m/s 
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Time Period MMD (m/s) Skewness 

Winter 0.6 0.7 

Spring 0.5 0.6 

Summer 0.3 0.7 

Fall 0.8 0.9 

 

Table 3.4 Comparison between seasonal mean-median difference in m/s and skewness 

(unitless) as calculated from equation 2.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 95 

Standard 

Deviation (m/s) 
Annual Winter Spring Summer Fall 

corridor 

Seasonal 

Average 

Offshore 3.4 3.8 3.1 2.6 3.0 3.1 

Coastal 3.8 3.6 3.4 2.6 3.3 3.2 

Inland North 2.9 3.1 3.4 1.9 2.5 2.7 

Inland South 3.1 3.5 3.6 2.0 2.8 3.0 

South West 4.0 4.8 4.7 2.6 3.2 3.8 

 

Table 3.5 Standard deviation of annual and seasonal mean wind speed in m/s 

calculated from hourly data. 
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UQ Offshore Coastal 
Inland 

North 

Inland 

South 

South 

West 
AVG 

Annual 8.0 7.3 5.6 6.2 7.4 6.9 

Winter 9.0 7.8 6.8 7.4 9.3 8.1 

Spring 8.8 8.3 7.4 7.8 9.6 8.4 

Summer 5.1 5.2 4.2 4.5 5.8 4.9 

Fall 7.4 6.6 4.5 5.1 6.0 5.9 

Table 3.6  Upper Quartile wind speed threshold for annual and seasonal data sets in 

m/s. 
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LQ Offshore Coastal 
Inland 

North 

Inland 

South 

South 

West 
AVG 

Annual 3.5 2.5 1.6 1.6 2.1 2.2 

Winter 3.7 2.7 1.9 2.0 2.6 2.6 

Spring 4.4 3.2 2.4 2.4 2.9 3.0 

Summer 2.5 1.9 1.4 1.2 1.8 1.8 

Fall 3.1 2.3 0.8 0.9 1.2 1.7 

 

Table 3.7 Annual and seasonal thresholds for the lower quartile of wind speeds (m/s). 
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QD Offshore Coastal 
Inland 

North 

Inland 

South 

South 

West 
AVG 

Annual 2.3 2.4 2.0 2.3 2.6 2.3 

Winter 2.7 2.5 2.5 2.7 3.4 2.8 

Spring 2.2 2.6 2.5 2.7 3.3 2.7 

Summer 1.3 1.6 1.4 1.7 2.0 1.6 

Fall 2.1 2.2 1.8 2.1 2.4 2.1 

Table 3.8 Annual and seasonal wind speed quartile deviation (difference in upper and 

lower quartile thresholds) in m/s. 
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Autocorrelation (hrs.) Bay Coastal Inland Southwest Period Avg. 

Annual 6 7 7 7 6.75 

Winter 9 6 9 5 7.25 

Spring 4 5 5 6 5 

Summer 5 4 4 5 4.5 

Fall 5 6 5 6 5.5 

Table 3.9 Autocorrelations of all four corridors in all time steps with 25% persistence. 
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3.1 Annual mean wind speed map in m/s developed from station data of observed 

annual mean wind speeds for 2015. 
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3.2  Geographical areas defined for this study based on analysis of interpolated wind 

data.  Note that the Inland area in blue has been divided into North and 

South areas. 
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3.3a  Winter (January) mean wind speed in m/s. 
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3.3b  Spring (April) mean wind speed in m/s. 
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3.3c  Summer (July) mean wind speed in m/s. 
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3.3d  Autumn (October) mean wind speed in m/s. October defined as October 7-

November. 
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3.4 Annual median wind map developed from station data of observed wind speeds 

for 2015. 
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3.5a Winter (January) median wind speed in m/s. 
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3.5b Spring (April) median wind speed in m/s. 
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3.5c Summer (July) median wind speed in m/s. 
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3.5d Fall (October) median wind speed in m/s. 
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3.6 Annual Mean-Median Difference (MMD) map created from hourly mean 

observed wind speeds from 2015. 
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3.7a Winter (January) Mean-Median Difference (MMD) in m/s. 
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3.7b Spring (April) Mean-Median Difference (MMD) in m/s. 
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3.7c Summer (July) Mean-Median Difference (MMD) in m/s. 
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3.7d Fall (October) Mean-Median Difference (MMD) in m/s. 
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3.8 Probability distribution of hourly mean wind speeds (blue bars) for all of 2015 

for the 4 main geographic corridors, overlaid with normal (red) and 

Weibull (yellow) probability distribution functions. Annual Inland 1.0 

m/s bin size is 21%. 
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3.9a  Probability distribution of hourly mean wind speeds (blue bars) for Winter 

(January) 2015 for the 4 geographic corridors, overlaid with normal 

(red) and Weibull (yellow) probability distribution functions. 
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3.9b  Probability distribution of hourly mean wind speeds (blue bars) for Spring 

(April) 2015 for the 4 geographic corridors, overlaid with normal (red) 

and Weibull (yellow) probability distribution functions. 
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3.9c Probability distribution of hourly mean wind speeds (blue bars) for Summer 

(July) 2015 for the 4 geographic corridors, overlaid with normal (red) 

and Weibull (yellow) probability distribution functions. Summer 

Inland 1.0 m/s bin size is 24%. 
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3.9d Probability distribution of hourly mean wind speeds (blue bars) for Fall 

(October) 2015 for the 4 geographic corridors, overlaid with normal 

(red) and Weibull (yellow) probability distribution functions. Fall 

Inland 1.0 m/s bin is 34%. 
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3.10 Annual wind roses composed of hourly mean wind speeds calculated for all 

corridors for all of 2015. 
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3.11a Winter (January) wind rose hourly mean wind speeds calculated for all 

corridors. 
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3.11b Spring (April) wind rose hourly mean wind speeds calculated for all 

corridors. 
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3.11c  Summer (July) wind rose hourly mean wind speeds calculated for all 

corridors. 
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3.11d Fall (October) wind rose hourly mean wind speeds calculated for all 

corridors. 
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3.12 Upper quartile wind speed limit in m/s for the year 2015. 
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3.13a Upper quartile wind speed limit in m/s for the winter (January). 
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3.13b Upper quartile wind speed limit in m/s for the spring (April). 
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3.13c Upper quartile wind speed limit in m/s for the summer (July). 
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3.13d Upper quartile wind speed limit in m/s for the fall (October). 
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3.14 Lower quartile wind speed limit in m/s for the year 2015. 
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3.15a Lower quartile wind speed limit in m/s for the winter (January). 



 133 

 

3.15b Lower quartile wind speed limit in m/s for the spring (April). 
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3.15c Lower quartile wind speed limit in m/s for the summer (July). 
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3.15d Lower quartile wind speed limit in m/s for the fall (October). 



 136 

 

3.16 Wind speed quartile deviation in m/s for the year 2015. 
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3.17a Wind speed quartile deviation in m/s for the winter (January). 
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3.17b Wind speed quartile deviation in m/s for the spring (April). 
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3.17c Wind speed quartile deviation in m/s for the summer (July). 
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3.17d Wind speed quartile deviation in m/s for the fall (October). 
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3.18a Pearson’s autocorrelation shown for all stations with an R >90 %. 
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3. 18b Pearson’s autocorrelation shown for all stations with an R > 80%. 
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3. 18c Pearson’s autocorrelation shown for all stations with an R > 70%. 
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3.19a Pearson’s autocorrelation shown for all stations with an R > 90% for the winter. 
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3.19b Pearson’s autocorrelation shown for all stations with an R > 80% for the winter. 
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3.19c Pearson’s autocorrelation shown for all stations with an R > 70% for the winter. 



 147 

 

3. 20a Pearson’s autocorrelation shown for all stations with an R > 90% for the spring. 
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3. 20b Pearson’s autocorrelation shown for all stations with an R > 80% for the 

spring. 
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3.20c Pearson’s autocorrelation shown for all stations with an R > 70% for the spring. 
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3.21a Pearson’s autocorrelation shown for all stations with an R > 90% for the 

summer. 
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3. 21b Pearson’s autocorrelation shown for all stations with an R > 80% for the 

summer. 
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3. 21c Pearson’s autocorrelation shown for all stations with an R > 70% for the 

summer. 
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3.22a Pearson’s autocorrelation shown for all stations with an R > 90% for the fall. 
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3.22b Pearson’s autocorrelation shown for all stations with an R > 80% for the fall. 
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3.22c Pearson’s autocorrelation shown for all stations with an R > 70% for the fall. 
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3.23  Pearson’s autocorrelation areas. 
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Chapter 4 

DISCUSSION 

In this study winds across the lower two counties of Delaware were analyzed 

using various techniques and metrics such as: mean wind speed, median wind speed, 

wind roses, upper quartile (UQ), lower quartile (LQ), standard deviation, quartile 

deviation (QD), mean-median wind speed difference (MMD), skewness, Weibull and 

normal distributions, Pearson correlations and persistence autocorrelations. This study 

was done to better conceptualize wind variability in Delaware so as to assist wind 

farm planners in their initial site assessments of potential wind farms. 

 

4.1 Discussion 

Mean wind speeds were used as an initial indicator of winds in this study in the 

standard fashion (Rogers et al. 2005, Mirhosseini et al. 2011). Mean wind speeds are 

highest within the Bay corridor as was expected when inferring spatial variation from 

the determinations of Devorak et al. (2013) that few states possess the land based wind 

resources to meet 20% of their electrical needs.  Coastal and Southwest corridor wind 

speeds alternate in intensity between seasons where Coastal corridor wind speeds are 

higher in fall and overall annually. However, Southwest corridor mean wind speeds 

exceed Coastal wind speeds in the winter, spring and summer. There is an area of low 

mean wind speed that overlaps the Inland corridor and extends into the Northern 

portion of Delaware and Southeastern part of Maryland  This area of low mean wind 

speed varies in extent and intensity seasonally with the lowest mean wind speeds and 

largest extent present in the summer and the converse present in the spring. These 

patterns in intensity confirm the variability in wind speeds across the state of Delaware 
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first noticed by Garvine and Kempton (2008) in there study assessing the winds over 

East Coast Continental Shelf. One seasonal anomaly did occur in this study from prior 

assessments of the Delmarva Peninsula in that winter wind speeds were second 

highest to spring wind speeds, this is generally uncommon for wind patterns with few 

exceptions and should be further investigated (Archer and Jacobson 2013, Hughes and 

Veron 2015). 

Wind rose analysis reveals wind frequently comes from the Southwest 

direction. This is in line with Maurmeyer’s characterization of winds at the 

Wilmington airport (1978) which was later confirmed by Moffatt and Nichol (2007) 

who analyzed wind directions and intensities from airport weather observation stations 

located in the Indian River, Dover, and Sussex airports.  Hughes and Veron (2015) 

cited both of these works and expanded these findings to include the Delaware Bay 

and the entire state of Delaware furthering acceptance of southwesterly winds 

dominating the region. Results from Hughes and Veron (2015) over the state of 

Delaware are validated in this study and further authenticated in that this study found 

the same results as Hughes and Veron (2015) and improved on these by using a denser 

network of weather observation stations. Winds coming from the southwest direction 

significantly affect portions of the study area that have open water to the southwest of 

them. This may result in providing the Southwest corridor with disproportionally high 

wind speeds relative to other coastal and inland regions.  In addition, winds traveling 

from West to East across the state of Maryland will cross the Chesapeake Bay and 

accelerate due to the lower surface friction, while approaching the Eastern coastline of 

the Chesapeake Bay.  Therefore, the Southwest corridor can attribute much of its high 
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mean wind speeds to large areas of limited surface roughness adjacent to its location 

in Maryland and surrounding water bodies. 

Median wind speeds followed similar spatial patterns to mean wind speeds 

throughout the four seasons as well as annual.  Median wind speeds were highest in 

the Bay corridor and second highest in the Southwest corridor except for the fall 

season where Coastal median wind speeds were the second highest median wind 

speeds observed. Inland median wind speeds were always the lowest wind speeds 

recorded and produced a region of low median wind speeds that range from the 

Northern section of the Inland corridor and proceeded through to the Southern portion 

of the Inland corridor. This Inland area of low wind speeds grew and diminished in 

size seasonally with larger extents in the summer and fall and smaller extents in the 

winter and spring. The area of this region was smaller than that observed in the mean 

wind speed fields.  Median wind speeds were better able to represent the central point 

of all datasets over the mean as proposed by Wolf-Gerrit (2013) and his study 

accounting for wind uncertainty estimation in Scotland.  Additionally, median wind 

speeds proved to be less susceptible to outlier influences than mean wind speeds (Leys 

et al. 2013); thus the utility of median wind speeds should be considered in 

representing wind data which can vary greatly between seasons (Archer and Jacobson 

2013). 

Mean-median difference (MMD) is a way of determining if the distribution of 

wind speeds is asymmetrical compared to a normal distribution (Brown et al. 1984). 

MMD, regardless of season, were always highest in the Coastal corridor.  Overall 

MMD exhibited a few notable patterns that may be beneficial to the wind industry.  

MMDs, regardless of season, were always highest in the Coastal corridor indicating 
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that the wind speed probability distribution was not evenly distributed about the mean.  

MMDs varied seasonally and were strongest during the fall and weakest in the 

summer with moderate values in the winter and spring.  MMD generally was 

proportionally higher during the winter and spring within the Bay and Southwest 

corridors. However, in the fall and summer, the MMDs were more intense in the 

Inland corridor. Therefore, Coastal corridor wind speeds are the least well represented 

by mean wind speed, while mean wind speeds represent the other 3 corridors variably 

well depending on the season of interest. These results are in agreement with 

Bludszuweit et al. (2008) in their analysis of the normal distribution, which assumes 

Gaussian characteristics about the mean; the normal distribution failed to accurately 

depict wind speed distributions.  Thus, as Wolf-Gerrit (2013) proposed using the 

median to better represents wind speed distributions than the mean, the MMD emerges 

as a useful tool to assess the degree of inadequacy the mean wind speed metric 

assumes when representing a given dataset. Therefore, the MMD serves as a metric of 

symmetry of a given dataset.  

Seasonal skewness, with the exception of the summer season, followed the 

same seasonal pattern as that observed in the MMD values (Table 3.4). Therefore, the 

skewness present in the dataset indicates lack in symmetry about the mean wind speed 

value (Harmel et al. 2002).  Further, the data exhibit positive skewness, thus these 

distributions have large tails to the right of the distribution (Trauth 2015) because of 

disproportionate outlier occurrences inherent within the data set (Haan 1977).  These 

results are in full agreement with the modern understanding of wind speed 

distributions in that winds are subject to high positive outliers (Fields et al. 2016). 
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Probability density functions of the observed wind speeds were calculated 

annually and for each season, for each corridor.  Then, Weibull and Normal 

distributions were overlaid on the observed pdf’s.  It is clear that the Weibull 

distribution is a far more accurate representation of the data than the Normal 

distribution; this is in agreement with numerous studies including Jowder (2006), 

Justus et al. (1977), Celik (2004) and Pishgar-Komleh (2014).  Weibull distributions 

provide good fits to most of the annual and seasonal wind data and support other 

findings throughout the study in that wind speeds had larger ranges during the winter 

and spring, and narrower ranges during the summer and fall seasons. Peak wind 

speeds are higher in the winter and spring and lower in the summer and fall, thus 

illustrating the trend that seasonally, wind speed and dispersion are related (Archer et 

al. 2016). The Normal distributions come closest to accurately representing the 

probability distribution of the data within the Bay corridor, although Weibull 

distributions are still slightly more effective representations. Seasonally, Normal 

distributions are most effective at representing the summer season, although again, fall 

short of the performance of the Weibull distributions.  The normal distribution 

performs its relative best in the Bay corridor and during the summer season because 

this corridor and time period have the most consistent winds due to minimal surface 

roughness in the Bay corridor and due to overall low wind speeds in the summer 

season; this resulting in a more Gaussian distribution.  Thus, the Normal distribution, 

which assumes Gaussian characteristics, performs best in the summer season and Bay 

corridor. Safari and Gaser (2010) explored the use of the Square Root Normal 

Distribution in an attempt to improve the use of the Normal distribution. Despite 

significantly improving on the applicability of the Normal distribution, similar to 
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findings of using the Standard Normal distribution in this study, the Weibull 

distribution still outperformed this version of the Normal distribution. Analyzing these 

results posits the conclusion that areas exposed to land and sea breeze effects will 

exhibit the most widely dispersed wind speeds compared to areas exposed to only one 

form of surface cover.  This result is in accord with Hughes and Veron (2015). 

The analysis of standard deviations described in Chapter 3 shows that the 

standard deviation for the wind data used in this study are extremely large, and 

although able to provide very broad generalizations, this metric is not adequate to 

address the variability within wind measurements as most wind speed distributions are 

not well represented by Normal distributions (Bludszuweit et al. 2008).  This is in 

accord with Leys et al. (2012) where they found that standard deviation is a poor 

metric to use for datasets involving large outliers, such as those present in wind data. 

Chang and Bai (2001) also found standard deviation to be a poor metric of variability 

for positively skewed datasets, as did Harmel et al. (2002) in their research on 

simulating temperature with Normal distributions. For these reasons, alternative 

metrics were developed to cope with the unique variability present within wind 

observations, these metrics are upper quartile, lower quartile and quartile deviation 

metrics discussed below.  

Upper and Lower Quartile analysis shows that the Southwest corridor is more 

likely to have a higher UQ threshold than the other corridors analyzed, however it has 

moderate LQ thresholds.  The Bay corridor has a substantially higher LQ threshold 

than any other corridor for all seasons and has a high UQ limit as well. Additionally, 

the Bay corridor’s UQ threshold is higher than the Southwest corridor’s UQ threshold, 

although more than half the amount of difference between the Bay and Southwest 
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corridor’s LQ values. This means that winds in the Southwest corridor are 

significantly more dispersed than winds in the Bay corridor because of the larger the 

distance between the upper and lower quartiles, the larger the dispersion of wind speed 

observations (Trauth 2015). Conversely, the high LQ threshold in the Bay corridor 

suggest higher-level wind speeds are present in this corridor more regularly than any 

other corridor; this assertion is supported by the high UQ limit found in the Bay 

corridor throughout all seasons. Quartiles, being a specific type of quantile (Trauth 

2015), provide wind developers with better assessments of wind speeds in an area that 

are more applicable to the wind energy industry (Bremnes 2004). Bremnes (2006) 

further affirms the use of quantile metrics in wind energy forecasting in 2006. The 

applicability of quantiles is confirmed in this study in which it was found that UQ and 

LQ metrics provide additional information about the wind speed variability beyond the 

MMD. 

 

Quartile Deviation (QD) throughout this study indicate levels of dispersion in 

the hourly average wind speed data similar to how Buller and McManus (1973) used 

QD to represent dispersion of glacial tills. Krumbein (1936) additionally used QD 

metrics to represent data due to its ability to geometrically represent data over other 

methods, such as mean or standard deviation, which rely on arithmetic principals to 

project representation.  Due to the QD metrics geometric properties, it accounts for but 

is not overly influenced by outliers and thus provides useful and unique applications in 

wind energy planning. QD in the Southwest Corner is the highest of any corridor for 

all time periods analyzed. The second highest QD was present in the Coastal corridor 

and the lowest QD was present in the Bay corridor.  QD analysis demonstrates that the 
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dispersion of winds will be greatest in areas that experience Land and Sea Breeze 

events and have at least 2 large terrain transitions (bay water and inland terrain), such 

as the Southwest and Coastal areas.  Winds will be least dispersed in areas far 

removed from Land and Sea Breeze effects such as the Inland and Bay corridors.  

Winds will also be less dispersed in areas with minimal surface roughness; this 

explains the substantially lower QD consistently found in the Bay corridor which has 

minimal surface roughness. QD has not been extensively used in wind farm planning 

although it presents ample utility in its applications and should be considered in future 

wind resource assessments (Bremnes 2006). 

Comparing mean wind speeds with QD, three potential wind farm locations 

were identified within the study area because of their high average wind speed and 

low wind variability. These viable locations are present within every season and are as 

follows, the Bay corridor, Southwest corridor and Coastal corridor.  All three of these 

locations have average wind speeds of 5.2 m/s or greater and are therefore viable 

options for wind farm development (Gamesa 2015).  Bay locations consistently 

presented the best option for wind farm development due to high wind speeds and 

wind speed consistency; however, the Southwest corridor provides similar 

opportunities to Bay locations as an alternative potential wind farm site. Southwest 

corridor mean wind speeds often overlapped and at times exceeded Bay wind speeds 

within this study. The main discrepancy between Bay and Southwest corridor 

locations was the difference in QD, which were 0.3 m/s annually and 0.7 m/s 

seasonally, respectivly.  Therefore, Southwest corridor locations present a viable yet 

less attractive alternative to Bay corridor wind farm locations. This area was also 

identified by Burt and Firestone (2016) to be a potential site for wind farm 
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development based on site geology, economic feasibility and potential resource 

availability. Using both mean wind speed and QD provides developers with the ability 

to assess the potential resource of an area, while also discerning the variability within 

the area (Fields et al. 2016 and Fisher 1987). 

Autocorrelation trends indicate that the Bay corridor area has the least 

persistent signal in winds, although this persistence at 6 hours is only 1 hour less than 

the remaining three corridors. The findings of this study in relation to persistence 

measured through autocorrelation techniques produced disappointing results in that 

persistence, here measured as explaining 25% of the variance or more, exhibited only 

a 6.75 hour signal. These findings, although disappointing are within expected results 

of other wind autocorrelations. Abdel-Aal et al. (2009) points out that current 

autocorrelation techniques, similar to the ones use in this study are in need of 

improvement and often poorly represent wind speed persistence. The poor 

performance of autocorrelation techniques is in part due to the ambiguity surrounding 

data interval size (Brokish and Kirtley 2009). This study is no exception to the 

disappointing results produced via persistence analysis, and thus it is recommended to 

use autoregressive Torres et al. (2005) or Neural Network (Alexiadis et al. 1999) 

models in the future as an alternative to persistence methods of predicting wind 

speeds.  Kavasseri and Seetharaman (2009) further expanded the use of autoregressive 

modeling of persistence using f-ARIMA models. Autocorrelation methods used in 

assessing persistence within a wind signal have been proven obsolete; efforts now 

should be focused on determining the proper use and implementation of autoregressive 

modeling in wind persistence analysis.  



 166 

The Pearson Correlation analysis revealed two predominant zones present 

throughout the study area that have coherence among stations. The two zones, Zone A 

and Zone B represented two notably different sections of the study area in which wind 

patterns differed significantly. Zone A appeared in all 90% correlations maps and was 

restrained to the western side of Delaware within the study area, and was the strongest 

showing zone. Zone B appeared only in 80% maps and occupied the coastal section of 

Sussex County, DE. The differences between these two zones may provide an 

opportunity similar to the one outlined in Katzenstein and Apt (2012) in which 

multiple sites may be suitable for wind farm development and would be able to 

provide interconnected benefits to aid in offsetting losses due to wind uncertainty 

resulting from variability. However, covariance tests between Zones A and B should 

be performed to confirm fluctuations in wind speeds are independent of one another.  

Potential wind farms in Delaware will be highly susceptible to pattern overlap due to 

the flat terrain and relatively small expanse of the state (Damousis et al. 2004).  Apt 

(2007) found that even at a distance of 400 km which is a notably greater distance than 

present within the study area, wind farm’s production may overlap significantly, 

although this trait diminishes significantly at the synoptic scale (Kempton et al. 2010). 

Based on the results of this study, two metrics emerge that pose useful and 

reliable applications for categorizing variability within the wind. They may be useful 

for indicating the impact of wind variability on the wind resource to wind farm 

developers. These metrics are the mean-median difference (MMD) and the Quartile 

Deviation (QD). MMD provides a representation of how different a distribution of 

wind speeds is relative to a Normal distribution. Given that mean wind speed is the 

current gold standard in wind representation within an area, MMD adds additional 
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information about the distribution of the wind speeds around the peak in the 

distribution.  Additionally, changes in MMD were shown to follow a seasonal pattern 

that was similar to that of skewness, thus lending weight to the validity of this simple 

metric as a way to indicate when the distribution is highly asymmetric with a large, 

positive tail. Therefore, in using the MMD, wind developers will have a way of 

discerning if wind variability needs to be characterized early on in their site studies.   

QD is the second metric suggested as a way to simply characterize the 

variability in the wind resource.  QD provides a measure of dispersion and 

characterizes the range between the highest and lowest 25% of wind speeds within a 

dataset. This may be more useful information than that provided by standard 

deviation. QD is a geometrically derived dispersion representation statistic and is 

therefore not vulnerable to outliers in the same way as standard deviation (Trauth 

2015).  Given that wind speed datasets tend to contain large outliers due to storminess, 

QD is selected as the preferred dispersion statistic.  The use of the QD was illustrated 

in that it found Southwest and Coastal corridors to be the most dispersed, as did 

standard deviation (Figures 3.5 and 3.8).     

 

4.2 Mean Wind Speed and Quartile Deviation Evaluation 

Combining QD and mean wind speed metrics provides an effective assessment 

of an area’s wind power potential and subsequent suitability for wind farm 

development.  In assessing the mean wind speeds, MMD was used to gauge the 

applicability of the mean wind speeds to the datasets analyzed.  The combination of 

mean wind speed and QD provides wind developers with the ability to assess total 
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potential power output of an area and represent some features of the wind variability, 

notably the data range. 

Mean wind speed assessment shows that potential wind farm sites may exist 

within the Bay, Southwest and Coastal corridors with each corridor having annual 

mean wind speeds of 6.1 m/s, 5.2m/s, and 5.4 m/s.  Wind farm development currently 

is not feasible within the Inland corridor due to its low wind speeds. Annual mean 

wind speeds indicate Bay wind resources present the most promising location to install 

a wind farm. The second most promising area is located within the Coastal corridor, 

after this corridor; the Southwest corridor presents the least desirable yet feasible 

potential wind farm site. MMD analysis of these three locations reveals that the mean 

is most accurate in representing wind speeds in the Bay and Southwest corridors, 

while slightly less reliable in the Coastal corridor. Annual QD assessments of the three 

potential wind farm sites reveal that Bay winds are the least variable and most 

concentrated winds within the entire study area with QD as low as 1.3 m/s in the 

spring and 2.3 m/s annually. The Coastal corridor has the second lowest variability of 

all potential wind farm sites with values ranging between 1.6 m/s and 2.6 m/s with an 

annual QD of 2.4 m/s. Thus, the Coastal corridor wind resource will have more 

variability and dispersion than Bay corridor winds. The area with the most variable 

and dispersed winds that provides a viable location for wind farm siting is found in the 

Southwest corridor. The Southwest corridor has QD ranging between 2.0 m/s and 3.3 

m/s seasonally with an annual QD of 2.6 m/s.  Based on the available wind resource 

and its reliability, the Bay corridor area is the most promising potential site for future 

wind farm development.  Coastal and Southwest corridor areas also provide 



 169 

opportunities for wind farm development, although the wind resources at these 

locations will be less intense and more variable. 

Seasonal analysis of mean wind speeds revealed the same three potential 

locations suitable for wind farm siting as annual assessments.  These areas are the Bay 

corridor, the Southwest corridor and the Coastal corridor.  These potential locations 

were also assessed using the QD metric and it was found that seasonal patterns 

mimicked annual patterns, although in varied intensities with respect to wind speed.  
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Chapter 5 

CONCLUSIONS 

5.1 Conclusions 

This study aimed to characterize the variability of winds within Delaware by 

analyzing hourly winds within the 2015 calendar year using 29 weather observation 

stations pulled from four weather-monitoring networks; these networks are the 

Delaware Environmental Observing System, the National Data Buoy Center, the 

National Estuary Research Reserve System and the WeatherBug Monitoring System.  

The methods reviewed and pioneered within this study were done in such a way as to 

explore methods of wind resource characterization. Current preliminary wind energy 

assessment is done using highly detailed annual mean wind maps.  This study suggests 

that additional maps of QD and MMD may be very helpful in this preliminary stage. 

The data provided were quality controlled for consistency and standardized to 

hourly average observations.  Additionally, station location roughness was assessed 

using the Danish Wind Industry land roughness criteria and wind speeds were 

projected to a height of 114 meters using the Log Law.  These projected station wind 

speed values were then interpolated onto the study area using the Inverse Distance 

Weighting technique through ESRI ArcMap.  Wind speed interpolations were made 

for the following metrics; mean, median, mean-median difference (MMD), Upper 

Quartile, Lower Quartile and Quartile Deviation (QD).  Normal and Weibull 

distributions, skew and standard deviation calculations and wind roses were also 

produced using the mean wind speed metric.  Finally, autocorrelations and Pearson 

correlations were conducted to determine station self-similarity and station-to-station 

similarity.  
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Findings of this study show that the MMD metric is a useful tool in assessing 

the applicability of mean wind speed’s accuracy at representing a given area’s winds.  

Weibull distributions are much better representations of the wind speed probability 

distributions in most seasons and corridors, due to their ability to model non-negative 

positively skewed data.  QD is a simple, reliable method for representing the range of 

wind speeds.  Geographically, the Bay corridor presents the highest and most 

consistent winds within the study area and is meteorologically best suited for wind 

farm installation.  Coastal and Southwest corridors also present suitable 

meteorological conditions for wind farm development, although the Inland corridor 

presents a poor choice for wind farm development.  Pearson Correlation results further 

proved that multiple wind farm installation within the state is possible, and might be 

able to counterbalance times of high and low energy production between sites.     

The Southwest corridor emerged as an unexpected finding within this study in 

that it boasted higher wind speeds much like the Coastal corridor, and at times 

outperformed Coastal corridor wind speeds. The Southwest corridor simultaneously 

possessed some of the highest variability within the study area.  

Further study should be conducted to assess the cost benefit ratio of all three 

proposed wind farm locations, Bay, Coastal and Southwest corridors, to determine the 

best location to install Delaware’s first commercial wind farm.  This future study 

should account for installation and maintenance costs, energy transmission costs, land 

value and acquisition costs, public opinion and opposition costs, and environmental 

costs. 
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