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Protein-based therapies are a prominent class of drug products used in the 

treatment of a broad range of chronic illnesses such as cancers and immune-related 

disorders, and more recently infectious diseases such as SARS-CoV-2 and RSV. Many 

of the highest selling drugs globally are protein-based therapeutics, typically 

monoclonal antibodies (MAbs) or structurally derivative proteins such as Fc-fusion 

proteins and bispecific antibodies. The development process for therapeutic proteins is 

particularly uncertain, expensive, and resource-intensive compared to small molecule 

drugs, so there is sizable interest in the biopharmaceutical industry in methods that can 

improve predictions of how likely a protein drug candidate is to be successfully 

developed into a commercial product (also known as “developability”), and in 

methods that can streamline the development process.  

Many of the challenges that are faced during drug development of therapeutic 

proteins arise from protein-protein self-interactions, which are “weak” intermolecular 

forces (i.e., weak in comparison with “lock-and-key” specific binding events) between 

proteins of the same species in solution. The influence of self-interactions on solution 

nonidealities and problematic behaviors is increased at elevated protein 

concentrations, which is of particular relevance as the preferred liquid dosage form for 

many protein-based therapies is at relatively high protein concentration (on the order 

of 100 mg/mL). Static light scattering (SLS) and dynamic light scattering (DLS) are 

commonly used to measure net self-interactions in early-stage development to screen 

for attractive self-interactions that are fundamentally associated with a host of 
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challenging behaviors and properties such as reversible self-association, irreversible 

aggregation, elevated viscosity, liquid-liquid phase separation, opalescence, and low 

solubility. Irreversible aggregation is especially problematic because proteins have a 

common tendency to aggregate and methods to predict changes in aggregation rates or 

mechanisms between different proteins or as a function of solution conditions are not 

well-developed. The presence of aggregates can be a liability in a number of 

manufacturing processes, reduce the efficacy and shelf-life of the product, and elicit a 

dangerous immunogenic response when administered to a patient. This thesis is 

focused on the development and assessment of methods to characterize and predict 

self-interactions and aggregation rates for therapeutic proteins with emphasis on 

practical applications in streamlining industrial drug development. The experimental 

datasets are for solution conditions and proteins similar to those in commercial 

protein-based therapies, fairly diverse in the behaviors they represent, and large 

compared to many other publicly-available datasets. 

Coarse-grained (CG) molecular simulations are applied throughout this thesis 

to model self-interactions, predict net self-interactions at high-concentration 

conditions, and probe specific electrostatic interactions between charged residues that 

were involved in attractive self-interactions. A range of coarse-grained models for 

therapeutic proteins were evaluated based on the tradeoffs between computational 

efficiency and accuracy in calculating net self-interactions. A dataset of previously 

reported experimental values of the second osmotic virial coefficient (𝐵22) from SLS 

for five MAbs at multiple solution conditions (i.e., different pH and ionic strength 

conditions) were used as a test case. Lower resolution (e.g., domain-level) models 

allowed for higher throughput and more intensive simulation algorithms (e.g., 
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simulations with many protein molecules to simulate high concentrations) but were 

limited in their representation of interactions between specific sites in the protein, such 

as attractive electrostatic interactions between specific charged amino acids. Higher 

resolution models were able to capture specific electrostatic attractions, but at great 

cost to computational efficiency. A hybrid model that combines features from the 

domain-level and higher resolution models was introduced that can capture specific 

electrostatic attractions and was tractable for simulations at high-concentrations like 

those representative of commercial therapeutic protein products. 

Net self-interactions via SLS and DLS experiments were measured 

systematically for four MAbs, two Fc-fusion proteins and the associated fusion partner 

(FP) protein as a function of solution pH and ionic strength. The measurements for the 

Fc-fusion proteins and FP protein were confined to low-concentration (e.g., 𝐵22 

values), while for the four MAbs, the measurements scaled from low to high protein 

concentration. The solution conditions were chosen to represent fundamental features 

of commercial drug products within typical bounds of each feature (i.e., pH, ionic 

strength, and protein concentration). The proteins displayed a broad range of net self-

interactions from strong repulsions to strong attractions that were sensitive to the 

changes in solution conditions that were assessed.  

The two Fc-fusion proteins and FP protein displayed reversible self-association 

at some conditions, which is linked to many industrial development challenges and is 

also a possible precursor to irreversible aggregation. The reversible self-association 

appeared to be related to attractive electrostatic self-interactions, so a high-resolution 

CG model was used to investigate the origins of attractive electrostatic self-

interactions for the two Fc-fusion proteins. The results indicated that they were due to 



 xxxii 

cross-domain interactions between the FP and Fc domains, which suggests that 

reversible self-association was due to those interactions as well.  

A previously developed method to combine low-concentration experimental 

values of 𝐵22 with CG molecular simulations to make predictions of high-

concentration net self-interactions was improved by the integration of the hybrid CG 

model. The domain-level and hybrid CG models were directly compared based on 

how well they predicted high-concentration net self-interactions, using 𝐵22 values 

from SLS for six MAbs (two from prior work) to parameterize the CG models for a 

given MAb and pH. The predicted net self-interactions were compared against high-

concentration SLS measurements. The findings and guidance from the CG model 

comparison described above with respect to low-concentration net self-interactions 

were also generally applicable for high-concentration net self-interactions where 

domain-level CG models were only able to reliably capture net repulsions and weak 

non-electrostatic attractions, while the hybrid CG model could capture strong 

electrostatic attractions as well. Inaccurate predictions of high-concentration behavior 

with the hybrid CG model at certain conditions were improved by methods that 

represented charge equilibria more precisely. 

The four MAbs were also used for studies with the overall goal of 

understanding and predicting MAb aggregation rates between different MAbs and as a 

function of solution conditions. Conformational stability of the four MAbs at four 

different formulations was measured by differential scanning calorimetry, and 

aggregation rates were measured via isothermal stability studies at four formulations 

(varying both pH and ionic strength) as a function of protein concentration and 

incubation temperature. Prediction of aggregation rates for solutions at high protein 
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concentration stored at refrigerated conditions was of particular interest as it was 

intended to directly represent the protein concentration and storage condition of many 

commercial products. Studies at higher temperatures, where aggregation rates were 

generally faster, were judged by how they might relate to aggregation rates at 

refrigerated conditions and how similar the fundamental factors that mediated 

aggregation rates were. Overall, studies at elevated temperatures were poor predictors 

of aggregation rates at refrigerated storage conditions. Interpretable machine learning 

models were developed to rigorously deconvolute the impacts of fundamental 

phenomenon on aggregation rates, which included the net self-interactions and 

conformational stability measurements. At the highest temperatures, conformational 

stability was the most influential phenomenon, while at lower and refrigerated 

temperatures, net valence was the most influential, perhaps due to the influence of 

repulsive electrostatic self-interactions. The ML methods were also used to more 

thoroughly assess whether results from stability studies at higher incubation 

temperatures or lower protein concentrations could be useful for predicting 

aggregation rates. Another goal in developing the ML models was to provide a robust 

platform for predicting aggregation rates with the vast datasets that are not publicly 

available but presumably exist in the archives of many pharmaceutical companies. 

The studies in this thesis developed computational and statistical methods that 

were validated by or trained with fairly large, systematic datasets of experimental 

biophysical characterization, especially with respect to self-interactions. The results 

demonstrate how to 1) select a CG molecular model for a given application, 2) use CG 

molecular simulations in close connection with experimental measurements to extract 

additional knowledge about self-interactions and predict net self-interactions at other 
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conditions (e.g., higher protein concentrations), and 3) understand and predict MAb 

aggregation rates as a function of protein concentration, incubation temperature, and 

solution conditions. These findings can be applied to various phases of industrial drug 

development for MAbs, Fc-fusion proteins, or other therapeutic proteins to improve 

selection of protein candidates (i.e., candidate selection) and optimization of 

formulation conditions (i.e., formulation development).
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INTRODUCTION 

1.1 Motivation 

Modern healthcare relies in part on drug products that are developed and 

commercialized by pharmaceutical companies in a competitive marketplace. The drug 

development process is exceptionally expensive; per approved new compound, R&D 

costs are well over $1 billion when factoring in costs for unsuccessful drug 

candidates.1 Currently, most of the highest selling drugs globally are biologics, either 

for the treatment or prevention of SARS-CoV-2, or protein-based therapeutics for 

oncology and treatment of immune-related disorders.2 The highest selling protein-

based therapeutics are typically monoclonal antibodies (MAbs) or their related 

derivatives, e.g., Fc-fusion proteins, bispecific antibodies, and antibody-drug 

conjugates.2–5 As of 2023, there have been over 100 MAb products approved by the 

US Food and Drug Association (FDA).3,6–9  

Many different factors contribute significantly to development costs for 

therapeutic proteins, such as performing clinical trials, early stage drug discovery, 

product development, and commercialization.1,5,10,11 Not only must drug candidates 

under consideration be safe and efficacious, but a balance must be maintained between 

investing in screening a large number of candidates for how likely they are to be 

successful (i.e., risk assessment), and moving forward quickly with a relatively small 

number of candidates.12,13 Naturally, much emphasis has been placed on streamlining 

the development process for therapeutic proteins, and in recent years industrial 
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capabilities have improved significantly, allowing for a more broad range of disease 

targets such as infectious diseases.4,5,14 Therapeutic proteins to treat many novel 

disease targets such as HIV, Ebola, Hepatitis B, and Alzheimer’s are now in clinical 

development, with a few recently approved by the FDA.5,9,15 Still, numerous 

challenges persist that limit the developability of a protein candidate, or the baseline 

potential, based on its physiochemical properties, to be successfully developed into a 

safe, efficacious product that can be consistently manufactured and is stable at its 

intended storage conditions.11,16–18 Improving predictions of developability or 

expanding the space of developable proteins is of great industrial interest to reduce 

costs and shorten development timelines.17 

Protein therapies involving MAbs and similar proteins require dosages on the 

order of 10 or 100 mg for the desired therapeutic effect. The large majority of 

commercially-available therapeutic proteins are administered either via intravenous 

(IV) infusion or subcutaneous (SC) injection.3 Typical IV infusions are 100 mL or 250 

mL, while SC injection volumes are generally less than 2 mL.3,19 Administration via 

SC injection greatly reduces the burden on health care providers and patients, and is 

considered the preferred administration route, whenever possible.15,19,20 From a 

biophysical perspective, proteins are fairly dilute in IV infusion (on the order of 1 

mg/mL) and quite concentrated when used for SC injection (on the order of 100 

mg/mL).8,15,21 High-concentration protein solutions are particularly prone to a number 

of problematic solution behaviors such as reversible and irreversible aggregation, 

elevated viscosity, phase separation, low solubility, and opalescence.16,22–25 
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1.2 Protein-protein self-interactions 

Proteins in liquid solution participate in intermolecular interactions with the 

solvent, cosolutes, and crucially, other proteins. This thesis examines topics that are 

directly or fundamentally related to “weak” intermolecular interactions between 

proteins of the same species in solution, known as protein-protein self-interactions 

(referred to hereafter as “self-interactions”). In the context of this thesis, those 

interactions are distinct from stronger or “lock-and-key” specific binding events 

whose dissociation constants (KD values) are typically on the order of nanomolar to 

micromolar.26,27 Self-interactions are commonly referred to elsewhere as protein-

protein interactions or colloidal stability. Self-interactions include contributions from 

at least three fundamental interaction categories: steric repulsions, electrostatic 

interactions between charged residues, and short-ranged non-electrostatic attractions 

such as those due to hydrophobic, hydrogen bonding, and van der Waals forces.28 

Those fundamental forces are influenced by the protein (e.g., the amino acid sequence, 

and higher-order structure including whether the protein is in its native state), the 

solution conditions (i.e., protein concentration, pH, concentration of any cosolutes), 

and environmental conditions (e.g., temperature and pressure). Electrostatic 

interactions intrinsically act on a longer length scale compared to short-range non-

electrostatic attractions, evidenced by the difference in how analytical models for 

force scale with distance (𝑟): electrostatic interactions (i.e., Coulomb’s law) scale with 

1/𝑟2, while e.g., van der Waals forces scale with 1/𝑟6.29 However, the relative length 

scales of electrostatic interactions and short-ranged non-electrostatic attractions can 

shift as the range of electrostatic interactions can be reduced by electrostatic screening 

due to the concentration of ions in solution (which can include other proteins), 

commonly expressed via the Debye screening length ().29  
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Electrostatic repulsions are in some cases due to general “simple-colloidal” 

repulsions between proteins with high net charge. In the other extreme, electrostatic 

repulsions or attractions can be highly specific to a certain subset of amino acids and 

therefore can be specific to the anisotropy of charged sites on the protein surface.30 

The protein surface charge distribution is dependent on the amino acid sequence, the 

pH of the solution, interactions with cosolutes (especially ions), and the pKa of each 

ionizable (or titratable) residue. Nominal pKa values for each ionizable residue serve 

as a useful starting point and as a surrogate for the average pKa of a given residue type 

in a protein, but the pKa value of an ionizable residue is also influenced by its local 

environment (e.g., the influence of other proximal residues in the protein).31,32 Short-

ranged non-electrostatic attractions are also dependent on the distribution of surface-

exposed residues. One general approach to estimating the strength of those attractions 

is via relative hydrophobicity scales, although some interactions within this category 

are not so generalizable, such as hydrogen bonding or - interactions.33 Short-ranged 

non-electrostatic attractions can be of increased relevance to the overall self-

interactions in higher ionic strength conditions where the longer-ranged electrostatic 

interactions are screened, at high protein concentration where proteins are forced to be 

close to one another, or if specific interaction orientations are highly attractive. 

 Experimentally, self-interactions can be quantified in terms of the second 

osmotic virial coefficient (𝐵22) via techniques such as static light scattering (SLS), 

analytical ultracentrifugation (AUC), self-interaction chromatography, and small-

angle x-ray or neutron scattering.34–39 An analog to 𝐵22 is the interaction parameter 

from dynamic light scattering (DLS), 𝑘𝐷, which is well-known to be correlated with 

𝐵22 for therapeutic proteins, as shown in Figure 1.1 which is a collection of published 
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data for MAbs.40,41 These methods all quantify net self-interactions, the overall 

tendency of a protein to be attracted or repelled by another molecule of the same 

protein species in solution. 

 

Figure 1.1: Comparison of published 𝐵22 and 𝑘𝐷 values for MAbs, where 𝐵22 and 

𝑘𝐷 are normalized by 𝐵22,𝑆𝑇, the steric-only contribution to 𝐵22 (see 

section 2.2.1).42–48 

𝐵22 and 𝑘𝐷 are dilute solution quantities that are generally measured at protein 

concentrations up to ~10 mg/mL. In dilute conditions, intermolecular distances 

between proteins are relatively large compared to the range of their self-interactions, 

thus on average a given protein will only interact significantly with one other protein. 

That is, the experimental behavior captures two-body interactions with reasonable 

fidelity.49 However, at elevated protein concentrations, intermolecular distances 
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decrease and, on average, proteins experience significant interactions with multiple 

neighboring proteins.49 As such, although measurements at low protein concentration 

provide a fundamental quantity related to how proteins interact with one another, they 

are not necessarily generalizable predictors of high-concentration behavior.50,51 Net 

self-interactions from low- to high-concentration can be quantified more generally by 

the Kirkwood-Buff protein-protein integral, 𝐺22, which is related to 𝐵22 via 𝐵22 =

−
1

2
lim
𝑐2→0

𝐺22.35,52 Experimental methods used in this work to measure net self-

interactions are described in detail in the relevant Chapters. 

Measurements of net self-interaction parameters such as 𝐵22 and 𝑘𝐷 are 

commonplace in the development of therapeutic proteins to screen different drug 

candidates and formulation conditions for attractive self-interactions that might cause 

potential poor biophysical properties (discussed in more detail in section 1.5).53,54 In 

some cases (e.g., elevated viscosity or liquid-liquid phase separation), that strategy can 

be effective as low-concentration measurements of net self-interactions are correlated 

with those properties, even at significantly higher protein concentrations.54,55 

However, some phenomena such as reversible self-association and irreversible 

aggregation (discussed in more detail in section 1.3) have less clear relationships with 

measurements of net self-interactions despite a straightforward phenomenological 

link.53,56–61 

1.2.1 Coarse-grained molecular simulations 

Molecular simulations of proteins are rising in popularity as tools to replace or 

augment experiments to investigate, e.g., self-association, protein folding, phase 

separation, solution viscosity, and molecular packing.28,42,49,50,62–79 Continuing 

advancements in high-performance computing infrastructure have made these tools 
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more accessible and efficient, enabling integration into industrial therapeutic protein 

drug development. Of particular interest in this thesis are coarse-grained (CG) Monte 

Carlo (MC) molecular simulations that are applied to model and predict self-

interactions of therapeutic proteins in low- to high-concentration systems.  

CG models are created by “lumping” multiple atoms or amino acids into a 

single “bead”, which reduces the number of interaction sites in the model compared to 

an atomistic model and thus also reduces the computational burden. CG models for 

proteins can vary from a single sphere to models where each amino acid has one or 

multiple explicit beads.28 While atomistic models are the most accurate way to model 

a protein’s molecular structure, large proteins such as MAbs require a sizable amount 

of computing power to simulate at that resolution, especially when considering 

quantities that require many configurations to converge, or intermolecular phenomena 

that require multiple proteins in the simulation.21 Explicit representation of solvent 

molecules also greatly increases the computational burden.80–82 The use of atomistic 

molecular models with an explicit solvent is therefore generally impractical for 

industrial applications, where efficient, high-throughput analysis is paramount. Similar 

reasoning can be applied to the choice of an MC algorithm over a molecular dynamics 

(MD) algorithm for certain applications: MD simulations are more computationally 

burdensome in that they probe shorter time scales than what can be sampled with MC 

simulations and sometimes require an explicit solvent.28 

CG MC molecular simulations are needed for simulations pertaining to self-

interactions because by definition self-interactions are between multiple proteins and 

the configurations needed to properly calculate 𝐵22 or 𝐺22 can be quite rare in some 

cases, so many configurations must be generated. In some cases, the interactions 
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between proteins are complex or specific to particular amino acids or atoms, so the 

necessary level of structural can shift depending on the system in question. CG 

simulations in this thesis are in part a continuation of previous work that has 

developed several CG models and the underlying algorithms and interactions 

potentials that are used for simulations of 𝐵22 and 𝐺22.28,70,71,83 Those interaction 

potentials divide the fundamental interactions of self-interactions in the same manner 

as was described in the previous section (section 1.2): steric repulsions, short-ranged 

non-electrostatic attractions, and electrostatic attractions and repulsions. Chapter 2 

goes into more extensive detail on the different levels of coarse-graining within 

molecular simulations of proteins and the justifications for the specific CG models 

used throughout this thesis. Prior work also developed methods to use experimental 

measurements of 𝐵22 to parameterize CG simulations that predicted 𝐺22 at high-

concentration, with data for two MAbs and one globular protein as test sets.49,50,84 The 

CG models used were low resolution, domain-level models with at most 12 beads per 

protein. The predictions of 𝐺22 were poor for strongly attractive conditions, which are 

typically caused by interactions between specific subsets of amino acids, which in 

those CG models had been lumped into beads with many other amino acids. Methods 

to deconvolute the specific, pairwise interactions between sites (e.g., amino acids) in 

high resolution CG models were also developed in prior work, where analysis of 

interactions at amino acid resolution provided insight into the specific pairwise 

interactions that were most responsible for the net self-interactions, particularly those 

that were electrostatic in nature.44,48,69 
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1.3 Physical instability 

Physical instability is used herein to denote structural changes in either the 

native, folded state of the protein, or the monomeric state of the protein (e.g., whether 

the protein is a constituent of an oligomer).25 The thermodynamic stability of the 

folded state is also known as conformational stability and is principally an 

intramolecular phenomenon that is not necessarily related to self-interactions.56,85 The 

formation of higher order structures (e.g., oligomers) by bonding or strong association 

with one or more other proteins is intrinsically related to self-interactions, although 

often those associations occur between partially or fully unfolded proteins.25,85–87 

Other forms of physical instability include adsorption to bulk interfaces, and 

fragmentation (i.e., peptide bond cleavage that separates a proteins into smaller parts, 

particularly relevant for multidomain proteins like MAbs).88,89 The following 

subsections highlight a few key interrelated biophysical behaviors that are relevant to 

physical instability. Figure 1.2 shows an illustrative diagram of the aspects of physical 

instability discussed in this section, with MAbs as an example case. The exact 

mechanism that is shown is one of a large number of possible pathways, as discussed 

below. 
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Figure 1.2: Generalized aggregation diagram with MAbs used as an example. Gray 

ovals represent natively folded domains, blue ovals represent unfolded or 

misfolded domains, and domains in gold are linked to form an 

irreversible aggregate. Reversible steps are represented by ⇌ symbols 

and irreversible steps are represented by → symbols. The mechanism 

shown here is an illustrative example. 

1.3.1 Conformational stability 

The native folded state of a protein is stabilized by interactions between buried 

hydrophobic residues (and the resulting structural motifs like -sheets), disulfide 

bonds, glycans (where applicable), among many other thermodynamic contributions.90 

Partial or full unfolding can occur in thermodynamic equilibrium with the folded state 

(as a function of temperature, pressure, solution conditions, etc.), or due to external 

factors such as interfacial or mechanical stress.91–93 Unfolded or misfolded proteins 

may already have lost their desired activity, and regions prone to reversible self-

association and/or irreversible aggregation (discussed in more detail in the following 

subsections) could be exposed.92,94 Conformational stability is commonly 

approximated with differential scanning calorimetry (DSC; see Chapter 5) or 

isothermal chemical denaturation, where the fundamental quantity that is analyzed is 
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the Gibbs free energy of unfolding, 𝐺𝑢𝑛. The underlying forces are thus both 

enthalpic and entropic in nature, and can depend on pH, ionic strength, and 

interactions with any solvent or cosolute molecules. That perhaps includes self-

interactions particularly when the protein concentration is not dilute, but the 

dependence of conformational stability on protein concentration is challenging to 

probe experimentally. Protein concentration has been theorized to have an impact on 

𝐺𝑢𝑛 and has been shown experimentally to impact the structure or stability of the 

folded state.43,95–98 Some computational methods have been developed to predict 𝐺𝑢𝑛 

for proteins but were beyond the scope of this thesis.59,99,100 

1.3.2 Reversible self-association 

In the context of this thesis, reversible self-association refers to self-

interactions between two or more proteins of the same species in solution that result in 

the formation of transient, reversible oligomers.24,101–105 Reversible self-association 

has been linked to elevated viscosity34,106–108, larger scale self-association phenomena 

such as liquid-liquid phase separation109, and in some cases, changes in in vivo 

pharmacokinetic properties.110–113 Reversible oligomers are distinct from, but potential 

precursors of, net irreversible, non-native protein aggregates, as shown in Figure 1.2 

and discussed in more detail in the following subsection.24,114–116 Partial or full 

unfolding of at least one of the proteins is usually necessary to expose aggregation 

prone regions (APRs) that make the protein “reactive” in the context of reversible self-

association or irreversible aggregation.100,117 In comparison to the illustrative example 

shown in Figure 1.2, reversible oligomerization could plausibly occur via reversible 

self-association involving any number of native or (partially) unfolded monomers and 
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there could be multiple reversible steps to form larger reversible oligomers before an 

irreversible aggregate species is formed. 

The experimental techniques mentioned in section 1.2 with respect to self-

interactions can also be used for characterizing reversible oligomers, such as SLS, 

DLS, and AUC.13,101,118–121 In comparison to irreversible aggregates, reversible 

oligomers can be more challenging to characterize due to their transient, reversible 

nature as techniques that are commonly used to characterize irreversible aggregates 

such as SEC-MALS and capillary electrophoresis are limited by filtration through a 

chromatographic column, large extents of dilution, or other changes of solution 

conditions.13,107,122–124 

1.3.3 Irreversible aggregation 

One of the most problematic and ubiquitous challenges in drug development of 

therapeutic proteins is irreversible protein aggregation (hereafter referred to as 

aggregation), which can create challenges in many processes within development and 

manufacturing, limit product shelf-life, and trigger harmful immunogenicity if 

aggregates are introduced to a patient.114,125–128 Regulatory agencies like the FDA 

strictly monitor the presence of physical impurities like aggregates not only when the 

product is first produced, but throughout its shelf-life.33,90 The mechanisms of protein 

aggregation are diverse and methods to predict the aggregation rates of different 

therapeutic proteins in different formulations (e.g., protein concentration, pH, identity 

and concentration of excipients) are not well-established.85,129  

The smallest or initial irreversible aggregates (also known as “nuclei”) are 

formed by relatively strong and stable non-covalent interactions between APRs that 

might occur after preliminary (partial) unfolding or reversible oligomerization 
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step(s).94,100 Those irreversible nuclei can form larger aggregates by the incorporation 

of monomeric proteins and/or other aggregates through many different mechanisms 

such as monomer addition, chain-polymerization, aggregate-aggregate coalescence or 

condensation.117,125,130 Generally speaking, multiple different mechanisms are likely 

occurring simultaneously with relative rates that are dependent on solution and 

environmental conditions as well as the overall extent of aggregation or 

oligomerization in solution.86 In comparison with thermodynamically-driven 

reversible self-association, aggregation is a kinetic process, so the rate of aggregation 

is mediated by the rate limiting step of the mechanism, which can be reversible or 

irreversible, and can (and often does) change in different conditions. The aggregation 

mechanism also determines the resultant aggregate size distribution, which can be an 

important factor in potential immunogenicity.116,126,127,131–133 In some cases aggregates 

can grow into subvisible (or larger) particles which are under specific scrutiny by 

regulatory agencies (see USP <787> and <788>).134–136 

Irreversible aggregation is directly linked to self-interactions in the sense that 

two or more proteins must interact with each other (i.e., by definition it is a kind of 

self-interaction) and also indirectly in that self-interactions impact contact 

probabilities between proteins and influence the relative orientations of proteins when 

they come into close proximity with one another. For instance, long-ranged 

electrostatic repulsions reduce the probability that two proteins will approach each 

other close enough to potentially form an aggregate or reversible oligomer. Prior 

studies have shown that net repulsive electrostatic self-interactions can sometimes 

reduce aggregation rates.43,85,137–140 Chapter 5 was particularly motivated by prior 

work that identified an example of this subcase for a MAb that related measured 𝐺22 
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values to aggregation rates at elevated temperature conditions, reproduced in Figure 

1.3.43 In that work, the relationship was specific to the difference in the aggregation 

rate (quantified by the observed rate coefficient, 𝑘𝑜𝑏𝑠; see also Chapter 5) between 

buffer-only solutions (denoted with the superscript “ref”) and solutions with 100 mM 

added NaCl. The increased ionic strength in the solutions with NaCl reduced the net 

strength of electrostatic repulsions via Debye screening, which was semi-

quantitatively related to the relative increase in the aggregation rate. 

 

Figure 1.3: Semi-quantitative relationship between the change in net self-interactions 

(𝐺22) and aggregation rate (𝑘𝑜𝑏𝑠) when comparing buffer-only solutions 

(denoted with the superscript “ref”) and solutions with buffer and 100 

mM NaCl. Results at pH 5 and pH 6.5 conditions are shown as filled and 

open blue squares, respectively. This figure is reproduced from Ghosh et 

al.43 
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Solution conditions have an indirect influence on aggregation rates by 

mediating changes in more fundamental phenomena that can be specific to the protein 

in question. For example, pH is not expected to be directly relevant to aggregation in a 

quantitative sense, but rather how the pH impacts the spatial distribution of charged 

residues and the resultant intermolecular and intramolecular electrostatic interactions. 

Protein aggregation can be triggered by many other environmental factors as well, 

including elevated temperatures, interfacial stress (e.g., due to agitation and freeze-

thawing), mechanical stress, chemical instability (e.g., oxidation and deamidation), 

light exposure, and metal contamination.25,141–143 Many of these potential issues can be 

reasonably screened with computational methods or with “accelerated” or “forced 

degradation” stability studies: studies at elevated temperatures, repeated freeze-thaw 

cycles, shaking, isothermal chemical denaturation (ICD), light exposure, and 

computational algorithms that predict residues that may be prone to various chemical 

instabilities.25,144 With the exception of elevated temperature, these stress conditions 

were not considered in this thesis, except that they were controlled for when 

applicable (e.g., stability studies were performed in quiescent conditions without light 

exposure). 

Although many of the important factors that drive protein aggregation have 

been identified (e.g., self-interactions, conformational stability, and APRs), and there 

are some reports that can quantitatively or semi-quantitatively connect one or more of 

those features to measured aggregation rates, a “unified theory” of protein aggregation 

has not been developed and is perhaps not feasible due to the vast number of possible 

pathways.43,86,145 Some phenomenological models have been developed, however they 

lack generality and are difficult to validate with existing experimental 
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capabilities.117,130,145,146 This is particularly problematic for industrial drug 

development, where aggregation can occur in many different stages (e.g., expression, 

manufacturing, or long-term storage), and stable conditions need to be determined 

quickly (see also section 1.5). Aggregation has also been shown to impact viscosity, 

which is another critical parameter in a protein drug product.147 Chapter 5 of this thesis 

is focused on long-term aggregation rates relevant to the shelf-life of therapeutic 

protein drugs, particularly for high-concentration liquid solutions such as those 

intended for subcutaneous administration that are typically stored at refrigerated 

conditions. 

1.4 Objectives 

This thesis is focused on experimental and computational biophysical 

characterization of therapeutic proteins as a function of pH, ionic strength, and protein 

concentration, and on the development of tools and methods to understand and make 

useful predictions of the underlying phenomena. Evaluating and predicting net self-

interactions and assessing their relationship with reversible self-association and 

irreversible aggregation is of particular interest. The objectives of this thesis are as 

follows: 

1. Define a suite of CG models for therapeutic proteins and guide model 

selection based on the balance between accuracy of simulated self-

interactions and relative computational burdens. 

2. Characterize self-interactions and reversible self-association of two Fc-

fusion proteins and the corresponding fusion partner protein and apply 

CG molecular simulations to investigate the relevant electrostatic 

interactions. 

3. Develop a comprehensive framework to model and make predictions of 

net self-interactions from low- to high-concentration via CG molecular 

simulations and low-concentration SLS experiments. 
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4. Assess the influence of self-interactions and conformational stability on 

aggregation rates for MAbs as a function of pH, ionic strength, MAb 

concentration, and incubation temperature. 

5. Develop interpretable machine learning methods to predict long-term 

aggregation rates for high-concentration MAb formulations, and 

deconvolute and quantify the influential biophysical phenomena. 

This thesis aims to address challenges in and inform rational design of 

experimental and computational analyses in industrial drug development of 

therapeutic proteins. Large, systematic experimental datasets were used to illustrate a 

broad range of possible behaviors, robustly validate the methods, and corroborate the 

overall findings. The relevant drug development phases and the therapeutic proteins 

that were used in this thesis are described in the subsequent sections. 

1.5 Applications in industrial drug development 

Biophysical behaviors such as reversible self-association and aggregation can 

cause difficulties throughout the industrial drug development process. Two specific 

drug development phases that are of particular relevance to this thesis are discussed 

below in the context of self-interactions, reversible self-association, and irreversible 

aggregation. 

1.5.1 Candidate selection 

During candidate selection (also known as lead identification), a relatively 

large number of proteins that have been identified as having potential to be developed 

into successful drug products are screened and ranked based on a host of properties via 

computational and experimental methods. Some of the most important of those 

properties are related to how well the drug will perform after administration, e.g., 

pharmacokinetics, toxicology, and the ability to bind to the desired epitope with high 
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affinity, potency, and specificity.129,148 There are many other biophysical properties 

that often receive less attention or are difficult to predict when physical protein 

material is limited, even though suboptimal properties may jeopardize future 

development phases.  

Reversible self-association and aggregation occur due to interactions between a 

relatively small number of residues (i.e., APRs). Thus, identification and mitigation of 

those problematic interactions during candidate selection can mitigate significant risks 

in later stages of development, where poor biophysical behaviors can lead to increased 

costs and higher attrition rates.11,100,149 Current computational methods to predict 

APRs are limited in applicability as they are not typically trained against physical 

stability data at intended storage conditions and representative formulations.100,150 

Many of these models rely on data from proteins that are quite distinct from leading 

therapeutic proteins, like much smaller peptides or amyloid proteins, and it is not clear 

how translatable those models are to MAbs and other related therapeutic 

proteins.100,151 Another aspect of this challenge is understanding how APRs might be 

more or less active as a function of solution conditions (see also the subsequent 

subsection about formulation development). 

Besides being phenomenologically linked to reversible self-association and 

irreversible aggregation, attractive self-interactions are associated with a number of 

other problematic behaviors, such as elevated viscosity, low solubility, phase 

separation, and opalescence.22,33,55,125,143,152–154 Many of those behaviors can be 

predicted with reasonable accuracy by experimental measurements of net self-

interactions53–55,155, which could be streamlined via methods that can predict net self-

interactions with fewer or no experiments (see Chapter 4). Methods that reduce or 
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eliminate the need for experimental data are of particular utility in earlier stages of 

development like candidate selection where protein material and time can be scarce 

quantities. Sequence optimization is often an important part of candidate selection, 

where mutations in the amino acid sequence are made to improve the properties of the 

protein. Rational design of point mutations of charged residues was of particular 

interest in this thesis, with the goal of attenuating potentially problematic attractive 

electrostatic self-interactions (see Chapters 3 and 4). 

1.5.2 Formulation development 

Formulation development is the process in which the final configuration of a 

drug product is determined, including the dosage form. This thesis focuses on liquid 

solutions, whose composition (i.e., protein concentration, pH, and concentration of 

excipients) is optimized during formulation development.91 Other dosage forms such 

as lyophilized powders for reconstitution are also an option, although high-

concentration liquid dosage forms are generally preferred for protein-based therapies 

(see Chapter 1.1).15,19,20 Solution conditions are determined such that the drug product 

is stable throughout long-term storage to ensure safety and efficacy when administered 

to a patient. The final product configuration and its physiochemical properties are 

under strict scrutiny by regulatory agencies like the FDA.90 

Formulations that are prone to physical or chemical instability, or that have 

poor biophysical properties (e.g., elevated viscosity) introduce a host of challenges 

during development.25 The manufacturing process is harder to optimize if e.g., non-

platform processes are needed.11 High-concentration formulations cannot be 

administered via SC injection if the solution viscosity is too high, solubility is low, or 

if the solution is prone to aggregation or phase separation.47,55,90 Aggregation is of 
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particular concern because it is one of the most common degradation pathways for 

proteins and the potential mechanisms of aggregation are diverse and difficult to 

predict (see also section 1.3.3). 

Self-interactions, reversible self-association, and aggregation are all dependent 

on solution conditions. pH and ionic strength impact charge states of ionizable 

residues and Debye screening, respectively, which both mediate electrostatic self-

interactions. Many excipients are screened to mitigate specific degradation routes or 

physiochemical properties e.g., to stabilize against oxidation or reduce viscosity. 

Protein concentration is another important factor that can exacerbate many instabilities 

and poor biophysical properties, often in a manner not easily extrapolatable from low-

concentration studies.21,40,45,53,156 The impact of solution conditions can be different 

between proteins, so a rational screening process with relevant characterization 

experiments and representative forced degradation studies are needed to determine 

suitable conditions.91,144 The effects of specific formulation components are often in 

conflict with each other, e.g., the ideal pH is often different for minimizing different 

degradation pathways like aggregation, fragmentation, and oxidation.25,89 

Ultimately, efficient determination of suitable solution conditions is vital for 

successful drug development. Designing studies to identify a stable formulation with 

the fewest number of experiments and/or in the shortest amount of time is of great 

interest to pharmaceutical companies. 

1.6 Therapeutic proteins of interest 

This thesis uses computational and experimental methods to study two classes 

of therapeutic proteins: monoclonal antibodies and Fc-fusion proteins. They are two of 

the most common kinds of proteins used in protein-based therapeutics, as mentioned 
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in section 1.1. The following subsections provide general background information on 

the two protein classes, and more specific information is described as needed in the 

pertinent chapters. 

1.6.1 Monoclonal antibodies 

MAbs are naturally-occurring Y-shaped immunoglobulin G (IgG) 

glycoproteins (~150 kDa) that bind to a specific antigen. In the last several decades, 

they have become the leading class of therapeutic proteins.14,115 MAbs are applied in 

the treatment of immune-mediated disorders, many different forms of cancer, and 

more recently infectious diseases.6–8 Methods to develop and manufacture MAb drug 

products are fairly well-established, although there are some differences between 

pharmaceutical companies and sometimes specific to a particular MAb or dosage 

form.3,14,157  

MAbs are comprised of three fragments composed of four domains each: one 

fragment crystallizable (Fc) fragment connected to two antigen-binding (Fab) 

fragments via a “hinge” region. Standard notation for each domain is used throughout 

this thesis: the Fc fragment contains two CH3 and two CH2 domains, while each Fab 

fragment contains one CH1, one CL, one VH, and one VL domain (see also Figure 1.4 

below).158 The Fc domain is stabilized by glycans attached to the CH2 domains.159 

Both Fab fragments contain complementary defining regions (CDRs) within the two 

variable domains (VL and VH) that vary between different MAbs and bind to a specific 

epitope.158 The large majority of the amino acid sequence besides these CDR regions 

is conserved within a given MAb subclass.158 MAbs of the IgG1 and IgG4 subclass are 

used in this work, which differ in their biophysical properties in large part due to 
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differences in their hinge regions.160 The IgG1 subclass is the most common in 

commercial drug products, but IgG4 and IgG2 MAbs are also in use.115 

In Chapter 2, previously published data for 5 MAbs are used as test cases and 

are referred to with the same nomenclature as in prior work: MAb 143,49,50, MAb 249, 

MAb A42,69, MAb B42,69 and MAb C42,69. Data for MAb 1 is also referenced in Chapter 

4 and Chapter 5, and data for MAb 2 is also referenced in Chapter 4. In Chapter 4 and 

Chapter 5, four MAbs that have not been reported on previously are introduced, 

referred to as MAb 3, MAb 4, MAb 5, and MAb 6. Those four MAbs were provided 

by Bristol Myers-Squibb (New Brunswick, NJ). MAb A, MAb C, MAb 1, MAb 3, 

MAb 5, and MAb 6 are of the IgG1 subclass, while MAb B, MAb 2, and MAb 4 are 

of the IgG4 subclass. MAb 1 is also the protein from prior work shown in Figure 1.3. 

1.6.2 Fc-fusion proteins 

Fusion proteins are a growing class of biopharmaceuticals where the sequences 

of two or more proteins or peptides are genetically combined and expressed 

recombinantly to yield a single multi-domain protein molecule with fusion partners 

(FPs) covalently bonded by a peptide linker. Often, one domain of the fusion protein 

performs a desired biological function, while the other improves other 

pharmacological properties such as physical stability, half-life, or solubility.161 Fc-

fusion proteins, where the Fc domain of a MAb is attached to a protein or peptide via a 

peptide linker, are of particular interest due to their favorable pharmacokinetic 

properties, ability to solubilize hydrophobic proteins, and adaptability for use with 

established processing methods for MAbs.161–164 Since the first approval of etanercept 

by the US Food and Drug Administration (FDA) in 1998, several Fc-fusion proteins 

have been developed and approved by the FDA for use in treating cancer, autoimmune 
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disorders, and a variety of other disease targets.162,165 As of November 2023, there are 

approximately 44 ongoing clinical trials with Fc-fusion proteins, according to 

clinicaltrials.gov. Several different classes of FPs have been used in Fc-fusion proteins 

such as extracellular domains166, ligands161, peptides167, cytokine traps, and 

enzymes.168  

Two Fc-fusion proteins (monovalent and bivalent) and their corresponding FP 

protein are studied in Chapter 3 and were provided by Merck & Co., Inc. (Rahway, 

NJ). Schematic diagrams of the two Fc-fusion proteins, the FP, and a representative 

MAb are shown in Figure 1.4. Linkers that connect the Fc to the FP in the Fc-fusion 

proteins in this work were flexible and are represented with curved lines, while MAb 

hinge regions are generally more rigid (although still somewhat flexible) and are 

represented with straight lines. MAb hinge regions are also linked by disulfide bonds 

that vary by subclass, which are shown as dashed lines. 
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Figure 1.4: Schematic diagrams of the proteins of interest in this thesis, roughly to 

scale. The hinge region of the MAb and the linkers for the Fc-fusion 

proteins are shown for illustrative purposes. 

1.7 Dissertation outline 

Chapter 1 has provided motivation and background in terms of the relevant 

biophysical phenomena and resulting challenges in industrial drug development of 

therapeutic proteins. The objectives of this thesis are described in section 1.4. The 

remainder of the thesis is organized as follows. 

Chapter 2 considers a suite of CG models for therapeutic proteins with 

emphasis on the prediction of net self-interactions for MAbs, with a test dataset of 

previously published values of the second osmotic virial coefficient (𝐵22) as a function 

of pH and ionic strength for five MAbs. The net self-interactions range from strong 
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attractions to strong repulsions. The CG models are compared based on the tradeoff 

between accuracy in their representation of self-interactions and their relative 

computational burdens, including when scaled to higher concentrations. Guidance is 

provided to inform CG model selection for molecular simulations of therapeutic 

proteins based on the resolution needed to capture the underlying interactions that 

make up self-interactions, from “simple-colloidal” electrostatic repulsions to specific 

attractive interactions between key amino acids. 

Chapter 3 systematically characterizes net self-interactions and reversible 

oligomerization for a bivalent Fc-fusion, monovalent Fc-fusion, and the corresponding 

FP protein as a function of pH (5 and 6.5) and ionic strength (10 mM to at least 300 

mM) experimentally via static and dynamic light scattering. The experimental results 

suggest that electrostatically mediated net attractive self-interactions are related to the 

formation of reversible oligomers at pH 6.5 conditions. CG molecular simulations are 

applied to model the self-interactions and investigate specific interactions between 

pairs of charged residues involved in attractive electrostatic self-interactions. Analysis 

of the strength of the specific electrostatic interactions suggests that cross-domain 

interactions between the FP and Fc domains are the source of the attractive 

electrostatic self-interactions and reversible self-association at pH 6.5 conditions. 

Chapter 4 improves upon previously developed methodologies to combine 

low-concentration experimental measurements of net self-interactions (i.e., values of 

𝐵22 or 𝐺22) with CG molecular simulations to predict high-concentration net self-

interactions. The predictions are improved by the application of a higher resolution 

CG model, 1-bead-per-charge-and-domain (1bC/D), which explicitly represents each 

charged site at increased resolution compared to the prior work. Low- to high-
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concentration SLS data for six MAbs that represent a broad range of self-interactions 

are used as test cases and high-concentration predictions are compared between the 

1bC/D model and a domain-level model. Challenges that stem from the representation 

of charge equilibria of ionizable residues are addressed by considering different 

approaches to determine the valence of ionizable residues and by explicit modeling of 

charge equilibria. 

Chapter 5 expands the dataset of low- to high-concentration measurements of 

net self-interactions of four of the MAbs in Chapter 4 to also include conformational 

stability via DSC and aggregation rates via a broad range of stability studies. Stability 

studies were performed at two pH values (5 and 6.5), two ionic strengths (~10 and 

~110 mM), three MAb concentrations (10, 35, and 130 mg/mL), and three incubation 

temperatures (4 C, 30 C, and 45-50 C), representative of commercial MAb products 

and industrial studies during the candidate selection and formulation development 

phases. The studies were designed to systematically evaluate the impact of 

fundamental formulation features at multiple incubation temperatures on aggregation 

rates, with emphasis on how the rates were related to self-interactions and 

conformational stability. Accelerated studies (i.e., those at higher incubation 

temperatures) are shown to be poor indicators of quantitative or even qualitative 

aggregation rates at refrigerated (4 C) conditions. Interpretable ML methods are 

developed that parse and quantify the phenomena relevant to high-concentration 

aggregation rates. The ML methods also provide a robust platform for predicting long-

term aggregation rates for MAbs stored at typical refrigerated conditions. 
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Chapter 6 provides a summary of the individual conclusions from each chapter 

and how they are related to the broader goals of the thesis. Suggestions for future work 

are also provided based on the results and/or gaps in the thesis. 
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COARSE-GRAINED MODELS FOR MOLECULAR SIMULATIONS OF 

MONOCLONAL ANTIBODIES AND THERAPEUTIC PROTEINS 

2.1 Introduction 

As discussed in Chapter 1, self-interactions are connected to many biophysical 

challenges in the development of therapeutic proteins, such as poor solubility, high 

viscosity, reversible self-association, and irreversible aggregation, which can 

negatively impact the developability of a therapeutic protein candidate during the drug 

discovery, purification and formulation stages.16,23,54,90,94,169,170 Experimental screening 

of self-interactions is often time-consuming and can require prohibitive amounts of 

protein material, which has prompted the development of computational tools such as 

CG molecular simulations to predict these phenomena, as discussed in section 1.2.1.  

Net self-interactions are used as a relevant test case in this chapter, as they are 

readily measured experimentally41,121,171–174 and can be quantified through molecular 

simulation.28,63,70,71 Self-interactions are quantified in this chapter via osmotic virial 

coefficients.42,49,50 A given CG model should capture factors that are relevant to the 

net self-interactions, such as the solution pH (charge state of ionizable residues), ionic 

strength (Debye length for screened electrostatic interactions), co-solute 

concentrations (e.g., as it relates to preferential interactions), hydrophobicity, amino 

acid sequence and/or folded structure (location and identity of amino acids).28,70,140,175 

The second osmotic virial coefficient, 𝐵22, can be used to quantify net self-

interactions at low protein concentrations and is defined formally as  

Chapter 2 
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 𝐵22 = −
1

2
∫ ∫ ∫ [𝑒−[𝑊22

∞(𝒓,𝜴𝟏,𝜴𝟐) 𝑘𝐵𝑇⁄ ] − 1]𝑑𝒓𝑑𝜴𝟏𝑑𝜴𝟐𝜴𝟐𝜴𝟏𝒓
 2.1 

where 𝑊22
∞(𝒓,𝜴𝟏, 𝜴𝟐) is the potential of mean force (i.e., including solvent-averaged 

interactions) between two proteins as a function of the center-to-center distance vector 

(𝒓) and relative orientation vectors (𝜴𝟏, 𝜴𝟐), in the limit of protein concentration (𝑐2) 

approaching zero.176 𝑘𝐵 is Boltzmann’s constant, and 𝑇 is absolute temperature. A 

value of 𝐵22 above (below) zero denotes net repulsions (attractions). The 

concentration-dependent analog of 𝐵22 is the Kirkwood-Buff protein-protein integral, 

𝐺22, which can also be used at higher concentrations (i.e., for multi-body self-

interactions) and is related to 𝐵22 at low concentrations via 𝐵22 = −
1

2
lim
𝑐2→0

𝐺22.176 

When protein concentration is increased, as is the case for MAb formulations 

for subcutaneous injection, proteins become more crowded and multibody interactions 

can influence self-interactions. In this case, self-interactions can be quantified by using 

higher-order terms in the virial expansion, shown in Equation 2.2. In Equation 2.2, Π2 

is the solution osmotic pressure, 𝑀𝑊 is protein molecular weight, 𝑅 is the gas constant 

and 𝑇 is absolute temperature. 𝐴𝑖 denotes the 𝑖th virial coefficient, and represents the 

net self-interactions between 𝑖 protein molecules in solution (𝐴2 = 𝐵22).49,177,178 

 
Π2𝑀𝑊

𝑅𝑇
= 𝑐2 + 𝐵22𝑐2

2 + 𝐴3𝑐2
3 + 𝐴4𝑐2

4 + 𝐴5𝑐2
5 +⋯ 2.2 

MAbs are used as a test case in this chapter, which are discussed in more detail 

in section 1.6.1. Figure 2.1 schematically illustrates a series of representative coarse-

grained models for MAbs, with different levels of coarse graining, and compared 

(roughly to scale) to an all-atom representation. Each of the CG models in Figure 2.1 

was used in this chapter to predict a range of low-concentration net self-interactions 

compared to published experimental measurements (e.g., 𝐵22 values) as a function of 

pH and total ionic strength (TIS) for range of MAbs. The full sets of experimental data 
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are shown in Figure A.1 (Appendix A), with illustrative examples included below. The 

HEXA (6 beads) and DODECA (12 beads) models are from prior work28,50 and aim to 

approximate MAb excluded volume and broad charge anisotropy while maintaining 

computational efficiency. The one-bead-per-amino-acid (1bAA) model (~1300 beads 

for a typical MAb) was also developed in prior work70,71, and provides better 

resolution of where each amino acid lies in the overall structure of the protein. 

However, simulating concentrated systems (e.g., ~102–103 proteins in the same 

simulation) is computationally impractical using the 1bAA model.49,50 An intermediate 

model is also considered here, termed one-bead-per-charged-site-and-per-domain 

(1bC/D). It uses domain level resolution for steric repulsions and short-ranged non-

electrostatic attractions, and close to atomic-level detail for electrostatic interactions. 

The 1bC/D model contains much fewer CG sites relative to higher resolution models 

such as 1bAA, with typically ~ 5-10 fold reduction depending on the number of 

charged sites in the MAb sequence. This allows for more efficient simulations and 

access to high-concentration conditions for protein systems that are strongly 

influenced by electrostatic interactions. While these models were applied to MAbs in 

this chapter, they or their analogues can be easily adapted for use with other proteins. 
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Figure 2.1: Schematic structures of CG models for monoclonal antibodies shown 

roughly to scale. Domain beads for 1bC/D are deliberately shown as 

slightly smaller to show the location of explicit charged sites for positive 

(red) and negative (blue) charges. Linkers shown between the Fc and Fab 

for HEXA, DODECA, and 1bC/D are putative and not represented with 

explicit beads in those models. Portions of this figure are reproduced 

from Calero-Rubio et al.28 

This chapter assesses a series of related CG models at different levels of coarse 

graining for molecular simulation of MAbs using low-concentration self-interactions 

as the main test cases. The models were characterized based on their quantitative 

accuracy, relative speed on the same processor, and scalability for use in multibody 

simulations for higher protein concentrations (see also Chapter 4). Prior work has 

compared some of these models to experimental self-interaction parameters 

(specifically 𝐵22) based on SLS over a range of pH values and TIS values, for MAbs 

referred to here with the same nomenclature as in prior work: MAb 149,50, MAb 249, 

MAb A42,69, MAb B42,69 and MAb C42,69. The experimental net self-interactions varied 

from strongly repulsive to strongly attractive over the solution conditions and MAb 
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identities. The model comparisons provide data to inform a general approach to 

representing the fundamental interactions needed for CG models of therapeutic 

proteins (i.e., steric, electrostatic and short-ranged non-electrostatic interactions) based 

on available computational resources and the simulated quantity of interest. 

Additionally, the intermediate model 1bC/D is an appealing option for systems that 

require site-level resolution for electrostatics but suffer from high computational 

burden especially at higher concentrations. Overall, this chapter provides systematic 

model comparisons that can be used to guide the selection or development of an 

appropriate CG model for molecular simulation of proteins and inform on general 

questions of what level of CG modeling is needed to capture the key attributes of self-

interactions that span from colloid-like behavior to highly specific interactions 

between key residues. 

The content in this chapter was published in a peer-reviewed journal and is 

reproduced here with permission (see Appendix E).179 Hassan Shahfar was a co-first 

author in that article; he was responsible for the original design of the 1bC/D model as 

described in this chapter and performed a portion of the simulations presented in this 

chapter, which are included here for completeness. 

2.2 Methods 

2.2.1 Monte Carlo simulations 

The Mayer sampling method with the overlap sampling algorithm (MSOS) 

was used to calculate 𝐵22 or higher order virial coefficients (i.e., 𝐴𝑖=3,4,5) for a given 

set of experimental conditions (MAb identity, pH value and TIS value). MSOS is an 

umbrella sampling method that biases the MC simulation towards configurations that 
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have a greater influence on the final value of a given virial coefficient. Virial 

coefficients are integrals where the integrands consist of one or more Mayer functions 

between protein molecules 𝑎 and 𝑏, defined by 𝑓𝑎𝑏 = (𝑒−𝑊𝑎𝑏(𝑟,Ω)/𝑘𝐵𝑇 − 1). MSOS is 

a free-energy perturbation method that calculates integrals such as Equation 2.1 with 

respect to a reference state. In the present case, the reference state was the contribution 

to the 𝑖th virial coefficient from steric-only behavior of the given CG model, termed 

𝐵22,𝑆𝑇 or 𝐴𝑖,𝑆𝑇 (for 𝑖 > 2) for higher order virial coefficients.50,177,178,180,181 Therefore, 

𝐵22 𝐵22,𝑆𝑇⁄  or 𝐴𝑖 𝐴𝑖,𝑆𝑇⁄  values above (below) 1 indicate net repulsive (attractive) self-

interactions with respect to steric-only behavior.  

To compare experimental and simulated 𝐵22 values across different models, 

experimental data were normalized by 𝐵22,𝑆𝑇 as calculated for each MAb in prior 

work.42,49,50 MSOS simulations were performed in an infinite volume at 25 °C with the 

number of CG MAb molecules that corresponds to a given virial coefficient (e.g., two 

molecules for 𝐵22, three molecules for 𝐴3, etc.). One MAb molecule is stationary at 

the origin while each new configuration is created by moving a different MAb 

molecule(s) relative to that origin. Each molecule is treated as a rigid body. Flexibility, 

particularly in the hinge region of MAbs, has been shown to play an important role for 

simulations with increased protein concentration, but is the subject of future work due 

to increased computational burden for high resolution models such as 1bC/D and 

1bAA.28,76 New configurations were generated via translations and rotations for a 

given molecule based on its geometric center. An equilibration period was included 

that used 1% of the total configurations in the simulation to refine the maximum 

translational displacement and rotation angle so that the acceptance ratio was roughly 

50% for the remainder of the simulation.28,71 For the HEXA and DODECA models, 



 34 

~107 MC configurations were generated for 𝐵22 simulations. For higher resolution 

models, the number of MC configurations for 𝐵22 simulations ranged from ~106 for 

net-repulsive systems to upwards of ~107
 for some net attractive conditions, as more 

configurations were needed to converge 𝐵22 in conditions that yielded more strongly 

net protein-protein attractions.42 For higher-order virial coefficients, ~107-108 

configurations were needed for convergence.  

𝐵22 𝐵22,𝑆𝑇⁄  was calculated with each model for all experimental conditions 

tested in this work. Higher order (third, fourth and fifth) virial coefficients were 

calculated for MAb B at pH 5 for a range of ionic strengths as a test case for the 

applicability of the 1bC/D model for high concentration conditions to compare with 

recent results.49 Additionally, second and higher order steric virial coefficients (e.g., 

𝐵22,𝑆𝑇 and 𝐴𝑖,𝑆𝑇) were calculated for each model, including all-atom, to provide 

reference states and consider differences in packing in future work that will compare 

against high-concentration experimental results. For calculating the steric-only virial 

coefficients with the different levels of structural resolution, the reference state in 

MSOS was chosen to be a single hard sphere with a diameter of 6 nm, thus each 

simulation returns 𝐴𝑖,𝑆𝑇 𝐴𝑖,𝐻𝑆⁄ . 𝐴𝑖,𝐻𝑆 is the virial coefficient for a system of 𝑖 hard 

spheres which has been solved analytically.182 All-atom simulations were performed 

with the Cornell et al. model with implicit solvent and 107 configurations were 

generated.183 Approximately 50 percent of the atoms in a MAb have no solvent 

accessible surface area (SASA) and were excluded from the all-atom simulations as 

they do not contribute to excluded volume effects between MAbs. For the fourth and 

fifth virial coefficients calculated for the all-atom model, atoms with SASA values 

below 5 Å2 were removed, reducing the total number of atoms from ~5000 to ~3000. 
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Based on results for 𝐵22,𝑆𝑇 shown in Figure A.2 (Appendix A), this produced an 

estimated error of 4 percent. Additionally, the relative speed of each CG model was 

compared using the MSOS algorithm to calculate each virial coefficient up to the fifth 

coefficient. For benchmarking CPU times, simulations were run on a single thread 

using an Intel Xeon E5-2680 v3 processor.  

2.2.2 CG models and interaction potentials 

Interaction potentials for the four models (HEXA, DODECA, 1bC/D and 

1bAA) treat the solvent implicitly and consider only the sum of pairwise inter-protein 

interactions between beads. The potentials were parameterized by experimental data as 

described below. All four models use a similar mathematical form for the steric and 

electrostatic interaction potentials, but with different parameter values for the latter. 

Steric interactions were modeled by a hard sphere potential for all beads, shown in 

Equation 2.3, where 𝑢𝑆𝑇(𝑟𝑖𝑗) is the steric potential between beads 𝑖 and 𝑗, 𝑟𝑖𝑗 is the 

center-to-center distance between them, and 𝜎𝑖𝑗 is the average diameter of the pair of 

beads, i.e., 𝜎𝑖𝑗 = (𝜎𝑖 + 𝜎𝑗)/2 where 𝜎𝑖 and 𝜎𝑗  are the diameters of beads 𝑖 and 𝑗, 

respectively.28,71 

 𝑢𝑆𝑇(𝑟𝑖𝑗) = {
∞, 𝑟𝑖𝑗 ≤ 𝜎𝑖𝑗
0, 𝑟𝑖𝑗 > 𝜎𝑖𝑗

 2.3 

Electrostatic interactions were modeled with a modified screened-Coulomb potential 

via 

 
𝑢𝐸𝐿(𝑟𝑖𝑗)

𝑘𝐵𝑇
=  ⋅ (𝜓𝑖𝑞𝑖) ⋅ (𝜓𝑗𝑞𝑗) 

𝑒
−𝜅(𝑟𝑖𝑗−𝜎𝑖𝑗)

𝑟𝑖𝑗[1+
1

2
(𝜅𝜎𝑖𝑗)]

2 2.4 

where 𝑢𝐸𝐿(𝑟𝑖𝑗) is the effective electrostatic potential between beads 𝑖 and 𝑗, 𝑞𝑖 is the 

valence assigned to bead 𝑖, and 𝜅−1 is the Debye screening length based on the TIS of 
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the solution.  is the Bjerrum length, (4𝜋𝜖𝜖𝑜𝑘𝐵𝑇)
−1, where 𝜖 is relative permittivity, 

𝜖𝑜 is vacuum permittivity, 𝑇 is absolute temperature, and 𝑘𝐵 is Boltzmann’s constant. 

The underlying mean-field theory for this potential is most appropriate above very low 

ionic strength.184,185 In this chapter, it was restricted to TIS above 10 mM, and 

comparison to experimental data was focused on those conditions for a given pH and 

MAb. The net charge or valence assigned to bead 𝑖 (denoted 𝑞𝑖) is scaled by an 

adjustable parameter 𝜓𝑖 to better match its effective charge in solution, which can 

deviate from the theoretical value due to territorial ion binding or by the 

approximations noted in the Introduction regarding choice of charge location for CG 

models. That is, 𝜓𝑖𝑞𝑖 is the effective charge in solution and 𝜓𝑖  =  
𝑞𝑖,𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

𝑞𝑖 
.42 For 

simplicity, the value of 𝜓𝑖 was assumed to be independent of the bead location or 

chemical identity for all beads in a given CG model and therefore a single 𝜓 parameter 

was used in each model, although the numerical values of 𝜓 were different for a given 

model.50,68 The terms valence and charge are used interchangeably in the remainder of 

this chapter. 

For the HEXA and DODECA models, domain charges (𝑞𝑖) are shown in 

Appendix A (see Table A.1 and Table A.2), and were calculated by applying the 

Henderson-Hasselbalch equation with nominal pKa values to the amino acids 

combined or “lumped” into a given bead (domain).28 The use of nominal pKa values 

can impact the 𝜓 parameter as pKa values of residues are known to be influenced by 

interactions with other residues in the protein, therefore valences assigned to residues 

may be only approximate, leading to deviations from the effective charge in solution if 

the local chemical environment leads to shifted pKa values (see also Chapter 4).175,186 

For pH values in this chapter (5, 6.5 and 8), all 1bC/D or 1bAA beads representing 
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aspartic and glutamic acid residues were treated as having -1 valence, those for lysine 

and arginine have +1 valence, and histidine have +1 valence at pH 5 or no net charge 

at pH 6.5 and 8.71 

The interaction potential for short-ranged non-electrostatic attractions such as 

those due to a combination of van der Waals and hydrophobic interactions is different 

for the domain-level models (HEXA, DODECA and 1bC/D) and the 1bAA model. For 

the domain-level models, the interaction potential, 𝑢𝑆𝑅(𝑟𝑖𝑗) between bead 𝑖 on a given 

protein and bead 𝑗 on its neighboring protein, is shown in Equation 2.5, where 𝑛 is 10 

for HEXA and 𝑛 is 6 for DODECA and 1bC/D, chosen so that the effective range of 

decay of attractive interactions is approximately 1 nm.50 𝜀𝑆𝑅 is an adjustable parameter 

that represents the maximum strength (well depth) of short-ranged non-electrostatic 

attractions and 𝑐 normalizes the potential such that the minimum energy is −𝜀𝑆𝑅 in 

units of 𝑘𝐵𝑇.28,49,50 

 
𝑢𝑆𝑅(𝑟𝑖𝑗)

𝑘𝐵𝑇
=

𝜀𝑆𝑅

𝑘𝐵𝑇
𝑐 [(

𝜎𝑖𝑗

𝑟𝑖𝑗
)
128

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)
𝑛

] 2.5 

Short-ranged non-electrostatic attractions for 1bAA are modeled as a continuous 

piecewise function71,72 

 𝑢𝑆𝑅(𝑟𝑖𝑗) =  

{
 
 

 
 
        ∞                                                                          𝑟𝑖𝑗 < 𝜎𝑖𝑗

4𝜀𝑆𝑅 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)
12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)
6

] + (𝜀𝑆𝑅 − 𝜀𝑖𝑗𝜀𝑆𝑅)        𝜎𝑖𝑗 ≤ 𝑟𝑖𝑗 ≤ 𝑟𝑐

4𝜀𝑆𝑅𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)
12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)
6

]                                     𝑟𝑖𝑗 > 𝑟𝑐

 2.6 

where 𝑟𝑐 = 21/6𝜎𝑖𝑗 and 𝜀𝑖𝑗 is the geometric mean of the relative hydrophobic values of 

the two interacting amino acids, √𝜀𝑖𝜀𝑗.
42,71,72 At 𝜎𝑖𝑗 > 𝑟𝑐, short-ranged non-

electrostatic interactions transition from being purely repulsive to attractive. Repulsive 

interactions are not specific to the interacting amino acids while attractive interactions 
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depend on √𝜀𝑖𝜀𝑗. Relative hydrophobicity values (𝜀𝑖) are normalized such that the 

scale is from 0 to 1, where the most hydrophobic residue (leucine) has 𝜀𝑙𝑒𝑢𝑐𝑖𝑛𝑒 = 1. 

The scale was derived by Bereau and Deserno based on analysis of crystallized protein 

residue-residue contacts based on the work of Miyazawa and Jernigan.72,187 

The 1bAA model places a bead at the geometric center of each amino acid, 

where each amino acid has its own diameter (𝜎𝑖), relative hydrophobicity (𝜀𝑖), and 

charge (𝑞𝑖).
42,71,72 Amino acid locations were determined from homology models or 

other sources of PDB files for each MAb. Bead diameters (𝜎𝑖) for the 𝑖th residue are 

based on the amino acid chemical identity, were determined previously, and are listed 

in Table A.3 (Appendix A).71,188 Each of the beads in the DODECA model 

corresponds to one MAb domain, where one bead comprises approximately 100 amino 

acids. The heavy and light chains are split into four and two approximately equal 

length segments, respectively, such that each bead is comprised of a similar number of 

amino acids. The HEXA model combines pairs of DODECA beads so that each of the 

six beads represents approximately 200 amino acids. HEXA beads include one bead 

for each of the Fv domains (each VL + VH), and one for each C1 domain (each CL + 

CH1), along with one bead for the C2 domain (combined CH2 from each heavy chain) 

and one for C3 (combined CH3 from each heavy chain). The default set of residue 

indices for DODECA domains are shown in Table A.4 (Appendix A), although they 

could be adjusted based on user preference and/or algorithm for delineating the 

domains. The models are geometrically constrained by distances between centers of 

the domains or regions (e.g., Fc and Fab) as shown in Figure A.3 (Appendix A). These 

distances were chosen to resemble existing crystal structures (IGGY, 1IGT, and from 

Padlan et al.) and are treated as constant regardless of MAb identity.28,50,189,190 Bead 
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diameters (𝜎𝑖) are 3.5 nm for each DODECA domain and 4.4 nm for each HEXA 

domain, and were chosen to match 𝐵22,𝑆𝑇 of a model MAb as calculated by all-atom 

MSOS simulations.28,189  

Much like the DODECA model, the 1bC/D model introduced in the article this 

chapter is based on179 uses one bead per domain with each bead having the same size. 

However, the domain beads are placed at the geometric center of each domain based 

on a given rigid protein 3-dimensional structure for that particular protein (e.g., 

homology model or x-ray structure) rather than using a single set of locations across 

all candidate MAbs that was the default for the HEXA and DODECA models. Domain 

bead locations for the 1bC/D model are specific to the given MAb homology model 

and the domain beads do not contribute to electrostatic interactions. The geometric 

center of a domain was calculated as the average of the coordinates from a given 

homology model of all non-hydrogen atoms in a domain, where domains consist of the 

same amino acid sequences as in the DODECA model (see Table A.4 in Appendix A). 

The domain-level beads in the 1bC/D model account for steric and short-ranged non-

electrostatic interactions and use the same potential functions as DODECA, Equation 

2.3 and Equation 2.5, with different parameter values.  

The domain bead diameter for the 1bC/D model (same diameter for all 

domains) is MAb-specific and was chosen to match 𝐵22,𝑆𝑇 of an all-atom model of the 

given MAb, as described in Figure A.5 (Appendix A). For the 1bC/D model, 

electrostatic interactions were modeled such that charged beads were placed at the 

location of each charged (united) atom. Bead diameters for charged sites were the sum 

of those from the Cornell et al. all-atom model (𝜎𝑐,𝑖) with an added width of a putative 

hydration layer (𝛥𝐻).
183 The value of 𝛥𝐻 is the same for all charged sites in a given 
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simulation. The net diameter of a given charged bead was 𝜎𝑐,𝑖 + 𝛥𝐻. In the present 

work, the range of 𝛥𝐻 was 0 to 3 Å, where 3 Å was used for the results shown in the 

main text below. This was chosen to capture a putative hydration layer of one water 

molecule, thus excluding very strongly interacting configurations that can occur when 

charged beads are unrealistically close and dehydrated, as the current model uses an 

implicit-solvent approximation. Results in this chapter are shown for 𝛥𝐻 of 3 Å, 

although the qualitative and semi-quantitative conclusions hold for other values of 𝛥𝐻. 

Bead diameters (𝜎𝑐,𝑖) for each charged site are shown in Table A.5 (Appendix A). 

2.2.3 Average relative deviation error calculations 

Model predictions of 𝐵22 𝐵22,𝑆𝑇⁄  are compared to experimental values using 

average relative deviation (ARD) values defined as follows, 

 𝐴𝑅𝐷 (%) =  
100

𝜂
 ∑ |

𝑥𝑖
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

−𝑥𝑖
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

𝑥
𝑖
𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 |

𝜂
𝑖=1  2.7 

where η is the number of data points and 𝑥𝑖 is the 𝑖th experimental or predicted value 

from a given data set.50,68 The experimental data can be found in Figure A.1 

(Appendix A). For the purposes of this chapter, any differences between calculated 

(predicted) 𝐵22 values and the corresponding Kirkwood-Buff integral (𝐺22) values 

were neglected. That is only expected to be quantitatively significant for the 

experimental values for 𝐵22 for MAb C, and does not affect the conclusions below.191 

ARD provides a quantitative measure of average error that is used to compare the 

prediction from each model for a given data set. ARD values when compared between 

data sets are not necessarily directly comparable as experimental values that are large 

in magnitude or close to zero will bias the resulting ARD values. For example, for 

MAb 2 at pH 5 and 107 mM TIS, 𝐵22 𝐵22,𝑆𝑇⁄  was measured to be -0.06 +/- 0.05. A 
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quantitatively accurate predicted 𝐵22 𝐵22,𝑆𝑇⁄  on the order of -0.1 (within experimental 

error) yields a relative deviation of 100% because the denominator is so close to zero, 

and that disproportionately biases the final ARD value. Note that this error definition 

is different than that for Chapters 3 and 4. 

2.2.4 Adjustable model parameters 

The short-ranged non-electrostatic and electrostatic interaction potentials each 

have an adjustable parameter that must be specified: 𝜀𝑆𝑅, the maximum strength (or 

well depth) of short-ranged non-electrostatic interactions for a given site/domain; 𝜓, 

an adjustment factor for the effective charge relative to the theoretical charge in 

solution for a given site/domain (see above). For the HEXA and DODECA models, 

ARD values were calculated from MSOS simulations of 𝐵22 𝐵22,𝑆𝑇⁄  vs. TIS for a 

range of 𝜀𝑆𝑅 and 𝜓 values. This generated surface plots (e.g., Figure A.4 in Appendix 

A) where the optimal range of values of both parameters were determined 

simultaneously. For the more computationally burdensome 1bC/D and 1bAA models, 

𝜀𝑆𝑅 was optimized for a given protein and pH value by matching the model predictions 

with 𝜓 = 0 to the corresponding experimental value of 𝐵22 𝐵22,𝑆𝑇⁄  at the highest TIS 

value available, such that the Debye length is small and electrostatic interactions are 

essentially fully screened. With that fixed 𝜀𝑆𝑅 value, 𝜓 was sampled until an optimal 

value was found when comparing to the full experimental 𝐵22 𝐵22,𝑆𝑇⁄  vs. TIS profile.  

2.3 Results and discussion 

Illustrative experimental 𝐵22 values as a function of TIS are shown in Figure 

2.2 for selected cases that show qualitatively different behavior. In Case (i), values of 

𝐵22 𝐵22,𝑆𝑇⁄  are large and positive at low TIS and decline monotonically with 
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increasing ionic strength until a plateau near zero 𝐵22 𝐵22,𝑆𝑇⁄  at high TIS values. In 

Case (ii), values of 𝐵22 𝐵22,𝑆𝑇⁄  are positive or near zero at very low TIS, then decrease 

and become negative at intermediate TIS, and increase monotonically with increasing 

ionic strength until a plateau near zero 𝐵22 𝐵22,𝑆𝑇⁄  at high TIS values. In Case (iii), 

values of 𝐵22 𝐵22,𝑆𝑇⁄  are large and negative at low TIS and increase monotonically 

with increasing ionic strength until a plateau near zero 𝐵22 𝐵22,𝑆𝑇⁄  at high TIS values. 

Experimental data for all five antibodies as a function of pH and TIS is shown in 

Figure A.1 (Appendix A). 

 

Figure 2.2: Experimental 𝐵22 𝐵22,𝑆𝑇⁄  values as a function of TIS for MAb 1 at pH 5 

(indigo squares), MAb B at pH 5 (green circles), and MAb 2 at pH 6.5 

(yellow triangles) to illustrate characteristic behavior for Cases (i), (ii), 

and (iii), respectively.42,49 
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Case (i) is an example of classic colloid-like behavior that would be expected 

for proteins with high net surface charge leading to self-interactions that are more 

repulsive than steric-only interactions (i.e., 𝐵22 𝐵22,𝑆𝑇⁄  values greater than 1) due to 

long-ranged electrostatic repulsions at low ionic strength, while electrostatic 

interactions become screened at high ionic strength and 𝐵22 𝐵22,𝑆𝑇⁄  values plateau at 

values close to zero. Case (ii) is expected for proteins with both positive and negative 

charges but there are sufficiently attractive interactions between opposite charges on 

neighboring proteins that there are net attractions at low to intermediate ionic strength, 

but at very low ionic strength the Debye screening length becomes so large that the 

high net charge on the proteins causes the net interactions to resemble more of a 

classic colloidal model. Case (iii) is expected if the net charge on the protein is near 

zero and the distribution of charges on the surface is such that enough charges of 

similar value are “clustered” spatially to create charge “patches” that can lead to very 

strong attractive interactions between groups of oppositely charged amino acids, 

although Case (iii) behavior can also occur when there is significant net charge on the 

protein. For the CG models considered in this chapter and elsewhere28,50,63,71,73,192–194, 

the underlying assumptions of a screened-Coulomb implicit solvent and implicit ion 

model are questionable at very low ionic strength for typical protein concentrations for 

measuring 𝐵22 (e.g., significantly below 10 mM TIS where the mean-field 

approximation likely breaks down).184,185 The comparisons between models and 

experimental data below will focus on TIS values above approximately 10 mM. 

The interaction potentials for the CG models that were used require the 

specification of bead diameters (sets of 𝜎𝑖 values, 𝑖 denoting different bead types that 

are summarized in Appendix A, see Table A3 and Table A6), the maximum strength 
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of short-ranged interactions (𝜀𝑆𝑅) and the adjustment factor for effective charges (𝜓). 

Sets of 𝜎𝑖 and 𝜀𝑆𝑅 values will be discussed in what follows and optimizing 𝜓 will be 

discussed in the next section. Bead diameters appear in all the interaction potentials 

and are the key parameter(s) that influences steric interactions once one sets the 

location of each bead. 𝐵22,𝑆𝑇 accounts for the steric or excluded volume contributions 

to 𝐵22. The HEXA and DODECA bead diameters were chosen as 4.4 nm and 3.5 nm 

respectively in prior work to match all-atom steric behavior (𝐵22,𝑆𝑇) of a model MAb, 

with all six (twelve) domain beads having the same diameter in the HEXA 

(DODECA) model.28,189 A similar procedure was used to determine the diameter of 

each of the twelve domain beads in the 1bC/D model, except that the value of 𝐵22,𝑆𝑇 

from an atomistic model for each MAb was used to match 𝐵22,𝑆𝑇 for the 1bC/D model. 

The value of 𝐵22,𝑆𝑇 was 11.4 mL/g for MAb A, 9.7 mL/g for MAb B, 12.0 mL/g for 

MAb C, 9.9 mL/g for MAb 1 and 10.6 mL/g for MAb 2.42,49,50 𝐵22,𝑆𝑇 was calculated 

for the 1bC/D model for each MAb as a function of domain bead diameter, shown in 

Figure A5 (Appendix A), with all charged sites represented explicitly and contributing 

to steric interactions. The domain bead diameters for the 1bC/D model to match with 

the 𝐵22,𝑆𝑇 values from the all-atom calculations were 2.7 nm for MAb A, 3.15 nm for 

MAb B, 2.9 nm for MAb C, 3.1 nm for MAb 1 and 3.35 nm for MAb 2. Protein shape 

plays a role in excluded volume, for example MAb A and MAb C have larger values 

of 𝐵22,𝑆𝑇 because the homology model structure is somewhat more extended in the 

hinge region than the homology models for the other antibodies considered here. 

At high TIS (e.g., ~300 mM) the Debye screening length is small, causing 

electrostatic interactions to be heavily screened and solution behavior to be dominated 

by the influence of steric repulsions and short-ranged non-electrostatic attractions. As 
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steric interactions are already determined by the choice of bead diameters, the 

maximum strength of non-electrostatic short-ranged attractions (𝜀𝑆𝑅) can be chosen by 

matching MSOS simulation results to experimental self-interaction measurements at 

high TIS. Figure 2.3 shows 𝐵22 𝐵22,𝑆𝑇⁄  as a function of 𝜀𝑆𝑅 for the 1bAA model for 

each MAb under conditions where the electrostatic potential is not included 

(equivalently, with 𝜓 = 0). Analogous results for the other CG models are shown in 

Figure A.6 (Appendix A). For the 1bC/D and 1bAA models, 𝜀𝑆𝑅 is chosen to match 

the experimental 𝐵22 𝐵22,𝑆𝑇⁄  for each MAb at TIS greater than 300 mM (independent 

of pH). The HEXA and DODECA models have fixed structures regardless of the 

choice of MAb, so the curves in Figure A.6A are the same for any given MAb. Values 

of 𝜀𝑆𝑅 for each MAb and choice of CG model and pH are listed in Table 2.1. At 

sufficiently high TIS, 𝐵22 𝐵22,𝑆𝑇⁄  values should not depend on pH. For some of the 

molecules compared here, sufficiently high TIS experimental data were available to 

show that expected behavior. However, for some of the molecules/pH conditions, the 

highest TIS values did show somewhat different values of 𝐵22 𝐵22,𝑆𝑇⁄ , and therefore 

the 𝜀𝑆𝑅 values were not necessarily the same within the available data. As HEXA has 

fewer beads, a higher value of 𝜀𝑆𝑅 is needed to achieve the same magnitude of 

𝐵22 𝐵22,𝑆𝑇⁄  at high TIS when compared to DODECA. 
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Figure 2.3: 𝐵22 𝐵22,𝑆𝑇⁄  as a function of 𝜀𝑆𝑅 in the limit where electrostatic 

interactions are not included (i.e., 𝜓 = 0) for the 1bAA model for MAbs 

1 (solid black), 2 (dashed indigo), A (dotted green), B (dash-dotted 

yellow), and C (dash-double dotted purple). 
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Table 2.1: Optimized values of 𝜀𝑆𝑅 (units of 𝑘𝐵𝑇) and 𝜓 (dimensionless) for each 

MAb, pH and CG model and the resulting percent ARD values.α 

MAb (pH) 
HEXA DODECA 1bC/D 1bAA 

𝜺𝑺𝑹 𝝍 ARD 𝜺𝑺𝑹 𝝍 ARD 𝜺𝑺𝑹 𝝍 ARD 𝜺𝑺𝑹 𝝍 ARD 

Case (i) 

MAb 1 (5) 1.40 0.42 25 0.72 0.68 22 1.07 0.9 32 0.50 0.67 16 

MAb 1 (6.5) 1.40 0.80 16 0.68 1.04 14 1.1 0.80 517 0.46 0.95 280 

MAb 2 (5) 1.30 0.44 18 0.64 0.60 12 0.75 0.98 38 0.44 0.75 24 

MAb A (5) 1.24 0.29 35 0.58 0.33 38 2.46 0.66 48 0.42 0.60 75 

MAb A (8) 1.32 0.23 19 0.66 0.30 14 2.54 0.6 13 0.42 0.20 25 

Case (ii) 

MAb B (5) 1.50 2.60 31 0.70 3.35 40 0.84 1.24 6 0.45 1.05 17 

MAb B (8) 1.10 0.56 33 0.55 1.03 32 0.50 1.3 7 0.31 1.20 29 

Case (iii) 

MAb 2 (6.5) 1.30 2.90 35 0.63 3.54 38 0.82 1.58 16 0.44 1.40 39 

MAb C (5) 1.55 0.00 72 0.80 0.00 72 1.90 1.48 20 0.52 1.35 21 

MAb C (8) 1.35 2.20 8 0.73 2.33 21 1.68 1.62 19 0.52 1.65 37 

αARD values are calculated using the listed 𝜀𝑆𝑅 and 𝜓 values for all TIS values for a 

given experimental data set. Cells shaded green, gray, and yellow correspond to good, 

fair, and poor qualitative agreement with the experimental data set, respectively. 

 

 

The full set of experimental 𝐵22 𝐵22,𝑆𝑇⁄  values as a function of pH and TIS are 

shown in Figure A.1 (Appendix A). As noted above, the 𝜀𝑆𝑅 value for a given model 

was set to match the value of 𝐵22 𝐵22,𝑆𝑇⁄  at the highest TIS value for a given 

experimental data set. The optimal 𝜓 values were selected based on minimizing the 

ARD between the simulated and experimental 𝐵22 𝐵22,𝑆𝑇⁄  values as a function of TIS, 

for a given choice of protein, pH, and CG model. Figure 2.4A shows an example of 
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Case (i) behavior and the comparison of the experimental data (symbols) with each 

optimized CG model (curves). Figure 2.4B shows an example of how ARD depends 

on 𝜓 for each model with the experimental conditions in Figure 2.4A, illustrating how 

𝜓 values were optimized by selecting 𝜓 to minimize ARD. Figure 2.5 shows examples 

of Case (ii) (Figure 2.5A) and Case (iii) (Figure 2.5B and 2.5C), analogous to Figure 

2.4A for Case (i). The other examples for each choice of MAb and pH across all the 

CG models are provided in Figure A.7 (Appendix A). 

 

Figure 2.4: (A) Experimental 𝐵22 𝐵22,𝑆𝑇⁄  values (black symbols and curve as guide 

to the eye) and simulated 𝐵22 𝐵22,𝑆𝑇⁄  values using 𝜓 values that 

minimized ARD for different models for MAb 1 at pH 5: HEXA (indigo 

curve), DODECA (green curve), 1bC/D (yellow curve) and 1bAA 

(purple curve); (B) ARD vs. 𝜓 for the experimental data in panel A for 

HEXA (indigo curve), DODECA (green curve), 1bC/D (yellow curve) 

and 1bAA (purple curve), illustrating how the 𝜓 value for a given model 

was selected for a given experimental data set. 
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Figure 2.5: Comparison of experimental 𝐵22 𝐵22,𝑆𝑇⁄  values (black symbols and line) 

and simulated predictions with 𝜓 values that minimized ARD for HEXA 

(indigo), DODECA (green), 1bC/D (yellow) and 1bAA (purple) models 

for: (A) MAb B at pH 5; (B) MAb 2 at pH 6.5; (C) MAb C at pH 5. 

Values in panel (C) are designated as −𝐺22 2𝐵22,𝑆𝑇⁄  instead of 

𝐵22 𝐵22,𝑆𝑇⁄  because some values are so large that they indicate multi-

body interactions at the experimental protein concentrations, rather than 

two-body interactions that are captured by 𝐵22.The corresponding ARD 

plots are shown in Figure A.7 (Appendix A). 
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Figure 2.5A shows that it is possible for all of the models to capture some or 

all of the experimental behavior over most of the TIS conditions, although there are 

inconsistencies at the lowest TIS values for the domain-level models (HEXA and 

DODECA). Figure 2.5B shows an example where all the CG models are able to 

capture the experimental behavior if the model parameters are sufficiently adjusted. 

Figure 2.5C shows a case where the lower resolution (domain-level) models cannot 

even qualitatively capture the experimental behavior. 

Table 2.1 provides a summary for each CG model across all the experimental 

data sets (figures are provided for each data set and model in Figure A.7 in Appendix 

A). The entries are color coded based on whether the model is able to reasonably 

capture the experiment behavior. If one does not have experimental data to 

parameterize the CG models, inspection of Table 2.1 for the cases where the model(s) 

capture the experimental data suggests some starting ranges for the adjustable 

parameters. The 𝜀𝑆𝑅 values for the HEXA, DODECA, and 1bAA models fall in a 

reasonably narrow range (units of 𝑘𝐵𝑇): 1.2-1.5, 0.55-0.7, and 0.4-0.5, respectively. 

For the 1bC/D model, 𝜀𝑆𝑅 values range more widely, in part because the domain bead 

diameter (and therefore the range of the short-ranged attractions) is adjusted on a case-

by-case basis in the 1bC/D model to capture the steric-only 𝐵22 value for a given all-

atom protein structure/homology model. 

𝜓 values for Case (i) with the available experimental data were 0.2-0.5, 0.3-

0.7, 0.6-1, and 0.6-0.75 for the HEXA, DODECA, 1bC/D, and 1bAA models, 

respectively. It can be seen that it is possible for each of the models to quantitatively 

or semi-quantitatively capture the experimental data for proteins and solution 

conditions that fall in the category of Case (i). This is not surprising, given that the 
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electrostatic contributions to the net self-interactions are predominantly repulsive, and 

therefore “lumping” charges into the domains does not cause significant attractive 

charge-charge interactions between oppositely charged amino acids to be missed in the 

domain-level CG potentials, compared to the higher resolution models. 

Because the models were restricted to data above 10 mM TIS, the “upturn” in 

the value of 𝐵22 𝐵22,𝑆𝑇⁄  at low TIS for MAb B at pH 5 was not considered when 

comparing the models. That notwithstanding, there are cases where the different CG 

models were or were not able to capture the experimental profiles that were in the 

Case (ii) category. The lower-resolution, domain-level CG models tended to be less 

effective at the lowest TIS values. They overpredicted increases in repulsive 

interactions at the lowest TIS conditions, as illustrated in Figure 2.5A with the upturns 

in 𝐵22 values versus TIS that the models predicted at higher ionic strength than 

experiments showed. This is perhaps not surprising since those models “lump” 

positive and negative charges into single domains with net charges, and therefore the 

strength of charge-charge repulsions between the domains would be overestimated at 

low TIS values. This is due, in part, because of the longer charge screening lengths 

since the interaction length-scales scale with the bead diameter. It is also because the 

charge-charge repulsions scale as the square of the domain charge for those models 

instead of the sum over the squared amino-acid/amino-acid charge pairs between 

antibody molecules. 

𝜓 values for Cases (ii) and (iii) with the available experimental data were 1-1.5 

for the 1bAA model. For the examples of Case (iii) behavior it is sometimes possible 

for the lower-resolution CG models to provide a reasonable fit to the 𝐵22 𝐵22,𝑆𝑇⁄  vs. 

TIS profiles, but it requires one to allow the model parameter(s) to reach extreme 
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values (e.g., 𝜓 ~3.5 for MAb 2 at pH 6.5, DODECA). In another case (e.g., MAb C at 

pH 5, Figure 2.5C), there were no combinations of model parameters for the domain-

level models that could even qualitatively reproduce the experimental results. Based 

on the results and analysis from higher resolution models such as 1bAA and 1bC/D for 

that case69, it is not surprising that domain-level models will not capture the strongly 

attractive interactions because those are due to a relatively small number oppositely 

charged amino acids that interact strongly between neighboring proteins. In addition, 

the domains in which those amino acids are located do not carry opposite charges to 

each other. As such, “lumped” domain-domain interactions will give qualitatively 

different behavior than interactions with explicit charges on the surface. This is a 

common issue of CG models where amino acids are grouped or lumped, whether by 

domains, sub-domains, or other rationales for grouping amino acids.28,62,73,106,193–198 

𝜓 values for the 1bC/D model are more nuanced, as they depend on the value 

of the putative hydration layer (𝛥𝐻). The relationship between 𝛥𝐻 and the profile of 

ARD as a function of 𝜓 for each MAb and pH is illustrated in Figure A.8 (Appendix 

A). For Case (i) behavior, there were broad ranges of 𝜓 that reproduced the 

experimental trends accurately, the putative hydration layer (𝛥𝐻) did not play a 

significant role in the optimal value of 𝜓, and the results in Table 2.1 for Case (i) were 

not sensitive to 𝛥𝐻. This is reasonable, since Case (i) corresponds to net colloidally 

repulsive interactions with primarily repulsions between charged sites, and close 

contacts between charged groups are less likely. 

However, for Case (ii) and (iii) behaviors (i.e., those that are strongly 

influenced by attractive electrostatic interactions), there were narrow minima for the 

optimal values of 𝜓 (denoted 𝜓𝑚𝑖𝑛) and there was a direct correlation between 𝛥𝐻 and 
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𝜓𝑚𝑖𝑛. The corresponding minimum ARD values and agreement between model and 

experimental results were similarly good for any of the 𝛥𝐻 values, indicating that the 

model is still able to capture the experimental data. The 𝜓𝑚𝑖𝑛 value decreased with 

decreasing 𝛥𝐻, as expected since the charged sites can approach more closely as 𝛥𝐻 

decreases. The results in Appendix A use the values of the domain diameter (𝜎𝑖) 

optimized using 𝛥𝐻 = 3 Å and 𝜓 = 0, and those 𝜎𝑖 values will change for different 𝛥𝐻 

values since the charged sites also contribute to the net 𝐵22,𝑆𝑇 values. Fully optimizing 

𝛥𝐻 and 𝜓 would therefore require a convoluted multi-parameter search of 𝛥𝐻, 𝜓, and 

of 𝜎𝑖, and could also be expanded to re-parameterizing the values of 𝜎𝑐,𝑖 from Cornell 

et al.183 That notwithstanding, these examples illustrate the balance of effects that need 

to be considered in designing CG models such as those portrayed in Figure 2.1. 

2.3.1 Higher order virial coefficients and higher protein concentrations 

This section illustrates extending the use of CG models to higher protein 

concentrations, as this becomes a major challenge for higher resolution models and is 

currently not tenable with all-atom models for most proteins of interest.28,49,50,68,76 This 

section will focus on higher-order virial coefficients that capture multi-protein 

interactions. As a starting point, steric interactions are fundamental for any CG model, 

as they determine the excluded volume of the protein and impact packing in 

concentrated systems.28,70,76 Virial coefficients for just the steric protein-protein 

interactions (𝐴𝑖,𝑆𝑇) up to the fifth virial coefficient (𝑖=2,3,4,5) for MAb B are shown in 

Figure 2.6 as an example for each CG model, normalized by the value calculated using 

the all-atom model. The structures for HEXA and DODECA are independent of MAb 

identity, so the results are general beyond MAb B. However, the bead sizes for the 

HEXA and DODECA models were not determined by the structure for MAb B, and 
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therefore it is not unexpected that the 𝐵22,𝑆𝑇 is not the same as for the all-atom model 

of MAb B.28,189 The domain bead diameters in the 1bC/D model are MAb-specific and 

chosen to match 𝐵22,𝑆𝑇, so the results match those for all-atom. 

 

Figure 2.6: Illustrative steric-only virial coefficient values (𝐴𝑖,𝑆𝑇, 𝑖 = 2 to 5) for MAb 

B, normalized by the value of 𝐴𝑖,𝑆𝑇 for the all-atom model (for a given 

virial coefficient, 𝑖=2,3,4,5), for HEXA (indigo), DODECA (green), 

1bC/D (yellow), and 1bAA (purple). Steric-only virial coefficients 𝑖 = 2 

to 5 for the DODECA model were reported in prior work.50 The values of 

𝐴𝑖,𝑆𝑇 for 𝑖 = 2 to 5 for the all-atom model were (9.46 ± 0.07) x 10-3 L/g, 

(5.45 ± 0.08) x 10-5 (L/g)2, (2.06 ± 0.02) x 10-7 (L/g)3, and (6.29 ± 0.02) x 

10-9 (L/g)4, respectively. Error was calculated as the 95% confidence 

interval from three independent simulations. The terms 𝐵22,𝑆𝑇 and 𝐴2,𝑆𝑇 

are used interchangeably. 
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Generally, as one considers higher-order virial coefficients, the models deviate 

from all-atom behavior to a greater extent. The 1bC/D and DODECA models have 

similar profiles in Figure 2.6 as the models deal with steric interactions in a similar 

way, although the charged sites in the 1bC/D model also contribute to a smaller extent 

to the net steric repulsions. The 1bAA model is the most accurate from among the 

current set of CG models for reproducing the all-atom steric interactions (within ~ 

10% for all coefficients). The results illustrate the importance of considering steric 

interactions when choosing a CG model and illustrate a procedure for determining 

how well a given CG model reproduces the steric interactions of an all-atom 

representations as one increasing protein concentration. 

Considering beyond steric-only interactions, higher order virial coefficients 

were calculated using the HEXA and DODECA models to predict self-interactions 

from low to high concentration at low and intermediate ionic strength values for MAb 

1 and 2 at pH 5 and 6.5 and shown to be tractable in prior work.49 The 1bAA model is 

overly computationally burdensome once one includes more than just steric 

interactions.28 The 1bC/D model is tractable for multi-body simulations, and provides 

the opportunity to study the effect of charge anisotropy at increased concentrations 

(see Chapter 4). As an illustration, Figure 2.7 shows up to the fifth virial coefficient 

for MAb B at pH 5 using the 1bC/D model as a function of TIS, with the virial 

coefficient values normalized by their respective steric-only value (i.e., from Figure 

2.6). The black horizontal line at an 𝐴𝑖 𝐴𝑖,𝑆𝑇⁄  value of 1 represents when a given virial 

coefficient transitions from net repulsive interactions (greater than 1) to net attractive 

interactions (less than 1) with respect to steric-only interactions. Based on Figure 2.7, 

the second virial coefficient (black symbols and curve) is always negative, suggesting 
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that in the regime of two body interactions, MAb B experiences net attractive self-

interactions. The attractions are strong at low TIS and decrease with increasing ionic 

strength (Case iii in the nomenclature above). By adding a third MAb B molecule, the 

interactions in low TIS change from strong attractions to strong repulsions (indigo 

symbols and curve). The strength of interactions becomes weaker as the salt 

concentration increases toward the region where short-ranged non-electrostatic 

interactions overcome electrostatic interactions. Adding a fourth molecule (green 

symbols and curve) changes the net interactions again from net repulsive to strongly 

attractive interactions in low TIS. The results for the fifth virial coefficient (yellow 

symbols and curve) are only shown for high TIS (125 mM and higher) because the 

magnitude of attractive interactions was so large that the simulations for the fifth virial 

coefficient did not converge for lower TIS values. 
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Figure 2.7: Virial coefficients with respect to steric-only behavior (𝐴𝑖 𝐴𝑖,𝑆𝑇⁄ ) 

illustrated for MAb B at pH 5 as a function of TIS using the 1bC/D 

model: 𝐵22 𝐵22,𝑆𝑇⁄  (black triangles and line), 𝐴3 𝐴3,𝑆𝑇⁄  (indigo circles 

and line), 𝐴4 𝐴4,𝑆𝑇⁄  (green squares and line) and 𝐴5 𝐴5,𝑆𝑇⁄  (yellow 

diamonds and line) coefficients. The black horizontal line represents net 

interactions equivalent to steric-only interactions for a given virial 

coefficient (𝑖=2, 3, 4, 5). 

2.3.2 Comparison of computational burden 

Computational burden is important to consider when selecting a CG model. 

While higher resolution models might provide more accurate results, they require 

more computational resources and can limit the practical application of a given model. 

The CG models were compared based on their relative computational burdens. Table 

2.2 shows the relative CPU time for 107 MSOS steps for each CG model, relative to 
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that for the HEXA model, as a function of the virial coefficient being calculated. The 

CPU times scale roughly with the square of the number of beads in the simulation, as 

expected. The footnote to Table 2.2 also indicates the typical order of magnitude for 

the CPU time for the HEXA model for each virial coefficient to allow the results for 

any of the models to be translated to real time, assuming a comparable processor. The 

1bC/D and 1bAA models do not have a fixed number of beads across all monoclonal 

antibodies, as the number of charged or titratable amino acids in the 1bC/D model will 

depend on the antibody sequence, and the number of total amino acids in the 1bAA 

model can also differ between different antibodies. For the example antibodies used 

here, the 1bC/D model showed computational burdens that were between 25 and 50 

times lower than the 1bAA model, while still providing a similar or improved 

resolution for the location of surface charges. CPU cost per configuration is not the 

only factor in the net computational burden, as different CG models may require a 

different number of configurations to converge for a given property (e.g., virial 

coefficient). Typically, solution conditions that result in strongly attractive net 

interactions (large and negative virial coefficient) require significantly larger numbers 

of configurations to converge the simulations; this is as expected based on the choice 

of reference state as steric-only interactions.178,180,199 
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Table 2.2: Order-of-magnitude relative CPU time for calculating virial coefficients 

for each CG model, normalized by the CPU time using the HEXA 

model 

Virial 

coefficient 

Normalized CPU time 

DODECA 1bC/D 1bAA 

2nd 30 103 5 x 104 

3rd 20 7 x 103 2 x 105 

4th 10 7 x 103 4 x 105 

5th 30 9 x 103 5 x 105 
The CPU time for the HEXA model was 29, 48, 96, and 132 seconds for the second, 

third, fourth, and fifth virial coefficients, respectively, for 107 MSOS steps in this 

particular example. 

 

 

2.3.3 Considerations in selecting among different CG models 

Ideally, one would be able to know a priori what level of CG model is needed 

to predict or capture the MAb self-interactions qualitatively or quantitatively, but 

results in the literature28,49,50,68 and illustrated here indicate that some experimental 

data is required so that regression or refinement of model parameters are needed on a 

case-by-case basis, both in terms of the protein in question and the solution conditions 

(e.g., pH and ionic strength, as well as the salt type28,49,50,200–202, and co-solute 

concentrations such as sucrose49,50). In principle, one should use the lowest resolution 

CG model needed to capture the relevant physics and contributions to the self-

interactions, so as to minimize the computational burden. It is clear that a major issue 

with low resolution models (e.g., domain-only models such as HEXA and DODECA 

in the present report) is that they do not accurately account for the location of 

individual charges. One can consider “lumping” charges in smaller groups73,198, or 
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trying to assign charge “patches” in an analogous way to assigning hydrophobic 

“patches”.75,192,203–207 However, it is questionable whether one can know a priori how 

to assign such “patches”. A hybrid approach such as the 1bC/D model offers one 

approach that balances the advantages of domain-level models (e.g., HEXA and 

DODECA) with explicit amino acid models (e.g., 1bAA) to explicitly account for the 

impact of the surface charge distribution while lumping the steric repulsions and non-

electrostatic short-ranged attractions. This does not account for geometrically highly 

specific hydrophobic or van der Waals “lock and key” 

configurations/interactions.208,209 

In addition, while a lower resolution model may be able to “tune” the model 

parameters to force the model to recapitulate the experimental values (e.g., 𝐵22) at low 

protein concentrations, the model may be (greatly) inaccurate at higher concentrations 

where multi-protein interactions become important.49 This is particularly a concern for 

conditions with strongly net attractive electrostatic interactions. One may still be able 

to fit or refine model parameters for such simplified models against the high 

concentration data directly38,155,195,210,211, but at that point the models are only 

recapitulating the known data rather than predicting the experimental behavior without 

already having the experimental results for comparison.49 

2.4 Summary and conclusions 

A series of CG models for proteins that spanned from domain-level 

descriptions to amino-acid-level descriptions were compared based on their ability to 

quantitatively and qualitatively capture experimental self-interactions at low protein 

concentrations as a function of solution ionic strength for five published monoclonal 

antibodies across multiple pH-buffer systems. The models were compared based on 
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their ability to capture qualitatively different experimental profiles, relative 

computational burdens, and extension to high protein-concentration conditions. 

Comparisons were made with emphasis on the ability of each model to accurately 

represent steric repulsions, electrostatic repulsions and attractions, and to a lesser 

extent on non-electrostatic attractions for net behavior that ranged from “colloid-like” 

electrostatic repulsions to the opposite extreme where particular oppositely charged 

amino acids lead to strong electrostatic attractions. The focus was on the impact of 

different levels of coarse-graining for the distribution of charged amino acids on the 

protein surface, rather than the distribution of hydrophobic amino acids. Domain-level 

models predicted net repulsive and mildly attractive net self-interactions with 

reasonable accuracy and much lower computational burden compared to higher 

resolution models but were inherently limited in the context of protein-solution 

conditions when attractive electrostatic interactions between oppositely charged amino 

acid residues dominated. In the latter case, explicit sites were needed for each charged 

amino acid or charged “site” on the protein surface. This is expected to be general 

across CG models beyond those considered here, and examples here illustrate that this 

will be exacerbated at higher protein concentrations. A hybrid model (1bC/D) was 

introduced that helps to balance each of these considerations for future applications to 

predicting the behavior of challenging MAb systems at high concentrations. 
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ELECTROSTATICALLY MEDIATED ATTRACTIVE SELF-

INTERACTIONS AND REVERSIBLE SELF-ASSOCIATION OF FC-FUSION 

PROTEINS 

3.1 Introduction 

As discussed in section 1.6.2, Fc-fusion proteins are a growing class of 

therapeutic proteins that are composed of an Fc domain from a MAb linked to a fusion 

partner (FP) protein with a peptide linker. The diversity in the FPs and linkers of Fc-

fusion proteins presents a greater challenge in their biophysical characterization in 

comparison with more established and structurally similar proteins such as 

MAbs.163,212,213 Biophysical behaviors that can negatively impact drug product 

development such as aggregation, elevated viscosity, low solubility, and phase 

separation are not uncommon for Fc-fusion proteins.118,153,214–218 Biophysical 

behaviors are challenging to predict a priori for Fc-fusion proteins (and therapeutic 

proteins as a whole) as they are dependent on not only the chosen Fc, fusion partner, 

and linker, but also on sequence optimization and formulation conditions (see also 

section 1.5).11,118,215,216,219 Given the significant biophysical challenges in the 

development of Fc-fusion proteins, there is an outstanding need for methods and tools 

to screen prospective drug candidates and formulation conditions.163 

This chapter is focused on a systematic biophysical characterization of two Fc-

fusion proteins (monovalent and bivalent) and the corresponding fusion partner 

protein, depicted in Figure 3.1. The fusion partner protein is a 15 kDa globular protein, 

Chapter 3 
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while the monovalent and bivalent Fc-fusion proteins have one and two fusion partner 

proteins, respectively, joined to the Fc region of a MAb (roughly 50 kDa) with a 

flexible peptide linker. SLS and DLS measurements were performed for the three 

proteins at two pH values (5 and 6.5) as a function of solution ionic strength (from 10 

mM to at least 300 mM) to characterize net self-interactions and reversible self-

association. In pH 6.5 solutions, the proteins displayed net attractive self-interactions 

and a propensity to form reversible oligomers, while for pH 5 solutions, the proteins 

typically displayed “simple-colloidal” electrostatic repulsions and a reduced 

propensity for reversible self-association. CG molecular simulations with a 1-bead-

per-amino-acid (1bAA) model (visualized in Figure 3.1) were used to model the self-

interactions and probe the pairwise electrostatic interactions between charged amino 

acids that were implicated in the net attractive experimental self-interactions and 

reversible self-association. The content in this chapter has been submitted to a peer-

reviewed journal. 
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Figure 3.1: Schematic diagrams (left) and 1bAA models (right), shown roughly to 

scale, compared to the 1bAA structures, of the three proteins in this 

chapter. 

3.2 Materials and methods 

3.2.1 Sample preparation 

Sodium acetate solutions were prepared at a concentration of 15.6 mM and at 

pH 5.0 ± 0.05 with glacial acetic acid (Thermo Fisher Scientific, Waltham, MA). 

Histidine hydrochloride solutions were prepared at a concentration of 10 mM and at 

pH 6.5 ± 0.05 with L-histidine monochloride monohydrate (Sigma-Aldrich, St. Louis, 

MO). Buffer concentrations were chosen such that the contribution to the total ionic 

strength of the solution was 10 mM. All solutions were prepared with deionized water 

(Elga LabWater, Veolia, Woodridge, IL), titrated with a 5 M sodium hydroxide 
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solution (Thermo Fisher Scientific), and filtered with 0.45 µm membrane filters 

(MilliporeSigma, Burlington, MA). 

Protein stock solutions were provided by Merck & Co., Inc. Three 24-h buffer 

exchanges against the buffer of interest were performed at 4 C with either 3.5 kDa 

molecular weight cutoff Slide-A-Lyzer dialysis cassettes (Thermo Fisher Scientific) 

for the fusion partner protein, or 10 kDa molecular weight cutoff dialysis tubing 

(Repligen, Waltham, MA) for the two Fc-fusion proteins. The protein solutions were 

then filtered with 0.22 µm low protein-binding filters (Celltreat, Pepperell, MA), and 

protein concentration was determined by UV absorbance at 280 nm (DeNovix DS-11, 

Wilmington, DE). Samples at varying protein concentrations and NaCl concentrations 

were prepared by gravimetric dilution with solutions of only buffer, and buffer with 

approximately 2 M NaCl (Thermo Fisher Scientific). Samples were centrifuged at 

20,000 rcf for 10 minutes immediately prior to light scattering measurements. 

3.2.2 Static light scattering 

SLS measurements were performed at 20 C with a DynaPro NanoStar 

instrument (Wyatt Technology, Santa Barbara, CA) at a laser wavelength of 662 nm. 

Excess Rayleigh scattering (𝑅90
𝑒𝑥) was determined from the mean scattering intensity at 

a 90° scattering angle. 𝑅90
𝑒𝑥 was divided by the optical constant 𝐾, to calculate the 

excess Rayleigh ratio (𝑅90
𝑒𝑥 𝐾⁄ ). 𝐾 is 

(2)2𝑛2(
𝑑𝑛

𝑑𝑐2
)
2

𝑁𝐴∗
4 , where 𝑛 is solvent refractive index, 

(
𝑑𝑛

𝑑𝑐2
) is the refractive index increment with respect to protein concentration, 𝑁𝐴 is 

Avogadro’s number, and  is the laser wavelength. For a given protein, pH, and NaCl 

concentration, measurements of 𝑅90
𝑒𝑥 𝐾⁄  as a function of protein concentration (𝑐2) 

were regressed using Equation 3.1 along with the true protein molecular weight (𝑀𝑤) 



 66 

to calculate the protein-protein Kirkwood-Buff integral (𝐺22) and apparent molecular 

weight (𝑀𝑤,𝑎𝑝𝑝).35 

 
𝑅90
𝑒𝑥

𝐾
⁄ = 𝑀𝑤,𝑎𝑝𝑝𝑐2 +𝑀𝑤𝐺22𝑐2

2 3.1 

𝑀𝑤,𝑎𝑝𝑝 is the weight average of the molecular weights of all species in the 

solution, with some contribution also from protein-solvent interactions.35 𝐺22 

quantifies the net self-interactions between proteins in solution. In cases where 

interactions are sufficiently weak (typically, |𝑐2𝐺22| << 1), 𝐺22 can be related to the 

second osmotic virial coefficient (𝐵22) via 𝐵22 = −
1

2
𝑙𝑖𝑚
𝑐2→0

𝐺22.35 𝐵22 is the 

concentration-independent analogue to 𝐺22 that quantifies net two-body self-

interactions. A value of 𝐵22 greater (less) than zero denotes net repulsions (attractions) 

with respect to an ideal gas mixture. Due to strong self-interactions at multiple 

conditions in this work, all experimental SLS measurements of net self-interactions 

were presented as −𝐺22/2 values so that the scale of the data were the same as that for 

𝐵22 and the measurements could be directly compared to simulated 𝐵22 values. 

3.2.3 Dynamic light scattering 

DLS was measured simultaneously with SLS with a Wyatt DynaPro NanoStar 

instrument. Time-dependent fluctuations in scattered light intensity at a 90° scattering 

angle were processed by an autocorrelator to calculate the intensity autocorrelation 

function 𝑔2(). For solutions with a sufficiently monodisperse particle size 

distribution (i.e., 𝑔2() with a single exponential decay), 𝑔2() was analyzed using the 

method of cumulants45,220 

 𝑔2() = 𝐵 + 𝑒−2 (1 +
𝜇2

2
2)

2

 3.2 
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where 𝐵 is the average baseline (~1),  is the coherence factor (dependent on 

instrumental configuration),  is delay time,  is the first cumulant (average decay rate 

of the distribution), and 𝜇2 is the second cumulant (variance in the decay rate). The 

method of cumulants quantifies the collective diffusion coefficient (𝐷𝐶) via 𝐷𝐶 =

 𝑞2⁄  and the dimensionless solution polydispersity (𝑝2) via 𝑝2 = 𝜇2 (𝐷𝐶𝑞
2)2⁄ , where 

𝑞 is the scattering wave vector 𝑞 =
4𝑛


𝑠𝑖𝑛( 2⁄ ). Measurements of 𝐷𝐶  as a function 

of protein concentration (𝑐2) were used to calculate the interaction parameter 𝑘𝐷 via 

𝐷𝐶 = 𝐷0(1 + 𝑘𝐷𝑐2), where 𝐷0 is the infinite-dilution or self-diffusion coefficient. 𝑘𝐷 

quantifies net self-interactions, but in contrast to 𝐵22 which is a purely thermodynamic 

quantity, 𝑘𝐷 also contains contributions from hydrodynamic interactions.184,221 𝐷0 is 

related to hydrodynamic radius (𝑟𝐻) via the Stokes-Einstein relation, 𝑟𝐻 =
𝑘𝐵𝑇

6𝜋𝜂𝐷0
⁄ , where 𝑘𝐵 is Boltzmann’s constant, 𝑇 is absolute temperature, and 𝜂 is 

the solvent viscosity.36 

3.2.4 1bAA CG molecular simulations and parameter optimization 

The 1bAA model, MSOS simulation algorithm, and interaction potentials used 

in this chapter are the same as those described in section 2.2.2. At least 106 

configurations were generated for each simulation, and simulations were performed in 

triplicate. In some cases, up to 108 configurations were needed to converge the integral 

in Equation 2.1, typically for systems with strong net attractions, similar to 

observations in previous work.48,49,179 The MSOS algorithm calculates 𝐵22 with 

respect to 𝐵22,𝑆𝑇, the steric contribution to 𝐵22, such that the output of a simulation is 

𝐵22/𝐵22,𝑆𝑇. The experimental −𝐺22/2 values were also normalized by 𝐵22,𝑆𝑇, which 

was calculated by a separate all-atom MSOS simulation.28 The values of 𝐵22,𝑆𝑇 were 

4.6, 9.1, and 9.5 mL/g for the FP, monovalent Fc-fusion, and bivalent Fc-fusion, 
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respectively. These values are in line with results for similar proteins in prior work 

(other globular proteins and MAbs).68,70,179 

As discussed in section 2.2.2 and section 2.2.4, the 1bAA model has two 

adjustable parameters that are optimized by experimental measurement of net self-

interactions (−𝐺22/2 in this chapter). The 𝜀𝑆𝑅 parameter represents attractive 

interactions other than those from electrostatics and was chosen to reproduce the 

experimental data at high ionic strength (> 300 mM) where electrostatic interactions 

are minimized due to Debye screening. For each protein and pH, MSOS simulations 

were performed to calculate the profile of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength 

over a range of 𝜓 values. The 𝜓 parameter adjusts the strength of electrostatic 

interactions to account for solution nonidealities, and was optimized by minimizing 

the error between the simulated predictions, 𝐵22
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖

, and the experimental data, 

(−𝐺22 2⁄ )𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙,𝑖.  

The error function used in this chapter (and Chapter 4) was different from 

ARD, which was used in Chapter 2 (Equation 2.7), to be more robust when 

considering experimental measurements near zero. Error was calculated as root-mean-

square deviation (RMSD), shown in Equation 3.3, where 𝑛 is the number of 

experimental datapoints for that protein and pH.  

 𝑅𝑀𝑆𝐷 = √
1

𝑛
∑ (

(−𝐺22 2⁄ )𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙,𝑖−𝐵22
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖

𝐵22,𝑆𝑇
)
2

𝑛
𝑖=1  3.3 

Uncertainty in the optimal value of 𝜓 was determined as the range of 𝜓 values 

that resulted in RMSD values within 20% of the minimum RMSD value, similar to 

prior work.48 
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3.2.5 Mayer-weighted average pairwise electrostatic energies 

Pairwise electrostatic interaction energies in each configuration (𝑘) in the 

1bAA simulations were calculated by averaging the electrostatic energy values 

(Equation 2.4) for each interacting pair of charged beads. The electrostatic energy 

between charged bead 𝑖 in protein 𝑎 and charged bead 𝑗 in protein 𝑏, and vice versa 

were averaged via Equation 3.4. 

 
𝑖𝑗
(𝑘) =

𝑢𝐸𝐿,𝑖𝑗
𝑎𝑏(𝑘)

+𝑢𝐸𝐿,𝑗𝑖
𝑎𝑏(𝑘)

2
 3.4 

The Mayer-weighted average (̃
𝑖𝑗

) of each 𝑖-𝑗 electrostatic pairwise interaction 

was determined by averaging 
𝑖𝑗
(𝑘)

 values over the total number of configurations 

generated in the simulation (𝑁𝐶), weighted by the Mayer function for the given 𝑘th 

configuration (𝑒−𝑊22/𝑘𝐵𝑇 − 1)𝑘 via 

 ̃
𝑖𝑗
=

1

𝑁𝐶

∑ (𝑒
−
𝑊22
𝑘𝐵𝑇−1)

𝑘

𝑁𝐶
𝑘=1  × 

𝑖𝑗
(𝑘)

∑ (𝑒
−
𝑊22
𝑘𝐵𝑇−1)

𝑘

𝑁𝐶
𝑘=1

 3.5 

where 𝑊22 is the potential of mean force for configuration 𝑘.44,48,69 (𝑒−𝑊22/𝑘𝐵𝑇 − 1) is 

the same as the integrand for 𝐵22 (Equation 2.1), so ̃
𝑖𝑗

 provides a reasonable measure 

of the average contribution of the interactions of a given pair of interacting charged 

beads to the computed 𝐵22/𝐵22,𝑆𝑇.  

3.3 Results and discussion 

3.3.1 SLS and DLS measurements of self-interactions and reversible self-

association 

SLS and DLS measurements were performed at a range of pH and ionic 

strength conditions designed to map a broad range of possible electrostatic 

contributions to the net self-interactions, while remaining within typical formulation 
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conditions for pH, ionic strength, and choice of buffer of commercially available 

therapeutic proteins.3 The two chosen pH values, 5 and 6.5, modulated the charge 

states of the ionizable residues in the proteins (primarily His at these pH values), and 

the elevated ionic strength conditions reduced the strength of electrostatic interactions 

via Debye screening. An illustrative subset of profiles of excess Rayleigh ratio values 

(𝑅90
𝑒𝑥 𝐾⁄ ) as a function of protein concentration (𝑐2) are shown in Figure 3.2A and 

3.2B for the FP protein and the monovalent Fc-fusion, respectively. Data are shown 

for buffer-only conditions at both pH values, and at both pH values with added 300 

mM NaCl, to illustrate the impact of the different pH values and elevated ionic 

strength conditions and for subsequent comparison with the data presented below for 

the bivalent Fc-fusion. Excess Rayleigh ratio profiles for the other ionic strength 

conditions can be found in Figure B.1 (Appendix B). The initial slope of the profile 

corresponds to the apparent molecular weight (𝑀𝑤,𝑎𝑝𝑝), and the curvature is due to net 

self-interactions that are quantified by 𝐺22, where downward curvature is due to net 

repulsive self-interactions and upward curvature is due to net attractive self-

interactions. 
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Figure 3.2: Excess Rayleigh ratio values (𝑅90
𝑒𝑥 𝐾⁄ ) as a function of protein 

concentration (𝑐2) for the fusion partner protein (A) and the monovalent 

Fc-fusion (B). Data are shown for a subset of the experimental 

conditions: pH 5 buffer-only (solid black squares), pH 5 + 300 mM NaCl 

(open black squares), pH 6.5 buffer-only (solid gray circles), and pH 6.5 

+ 300 mM NaCl (open gray circles). The curves are fits to Equation 3.1 

used to calculate 𝐺22 and 𝑀𝑤,𝑎𝑝𝑝. Illustrations in the corners are included 

to orient the reader when comparing between the different proteins (see 

Figure 3.1). 

−𝐺22/2𝐵22,𝑆𝑇 values calculated from SLS for the FP protein and the 

monovalent Fc-fusion protein are shown in Figure 3.3A and 3.3B, respectively. 

−𝐺22/2𝐵22,𝑆𝑇 values above (below) 0 indicate repulsions (attractions) with respect to 

an ideal gas mixture, and values above (below) 1 indicate repulsions (attractions) with 

respect to a reference state with only steric repulsions. For both the FP and the 

monovalent Fc-fusion, electrostatic interactions were net repulsive at pH 5 and 

displayed classical “simple-colloidal” behavior where the value of −𝐺22/2𝐵22,𝑆𝑇 was 

positive at low ionic strength and decreased monotonically with increased ionic 

strength (see Figure 3.3A and Figure 3.3B). In contrast, electrostatic interactions were 

strongly attractive for the FP protein at pH 6.5, as −𝐺22/2𝐵22,𝑆𝑇 values were negative 

and large in magnitude at low ionic strength and they increased with increasing ionic 
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strength (see Figure 3.3A). The monovalent Fc-fusion displayed a nonmonotonic 

relationship between −𝐺22/2𝐵22,𝑆𝑇 and ionic strength at pH 6.5 (see Figure 3.3B). At 

intermediate ionic strength conditions (30 - 110 mM), electrostatic interactions were 

attractive as −𝐺22/2𝐵22,𝑆𝑇 values were negative and less than those at the highest 

ionic strength conditions (> 300 mM), where electrostatic interactions are minimized 

due to Debye screening. At low ionic strength conditions (10 - 20 mM), electrostatic 

interactions were approximately net neutral as values of −𝐺22/2𝐵22,𝑆𝑇 were increased 

compared to those at intermediate ionic strength, and nearly equivalent to 

−𝐺22 2𝐵22,𝑆𝑇⁄  values at high ionic strength. The attractive electrostatic interactions 

between specific residues at the intermediate ionic strength conditions were offset by 

longer-ranged (“simple-colloidal”) repulsions driven by the net charge of the protein at 

low ionic strength.179 This behavior has been observed in other proteins such as MAbs 

in a manner consistent with the results shown here.42,48,171,205,222,223 
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Figure 3.3: −𝐺22/2𝐵22,𝑆𝑇 as a function of ionic strength for the fusion partner 

protein (A), and the monovalent Fc-fusion (B) at pH 5 (black squares) 

and pH 6.5 (gray circles). The horizontal dashed line at −𝐺22/2𝐵22,𝑆𝑇 =
1 corresponds to a steric-only reference state. Apparent molecular weight 

(𝑀𝑤,𝑎𝑝𝑝) as a function of ionic strength for the fusion partner protein (C), 

monovalent Fc-fusion (D), following the same color scheme. The 

horizontal dashed line corresponds to the true molecular weight. 

Illustrations are included in the corners to orient the reader when 

comparing between the different proteins (see Figure 3.1). 
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DLS measurements that were collected simultaneously with the SLS 

measurements broadly corroborate the conclusions from SLS outlined above. DLS 

correlograms for 2 mg/mL solutions of the fusion partner protein and the monovalent 

Fc-fusion are shown in Figure 3.4 for the same pH and ionic strength conditions as in 

Figure 3.2. The correlograms show a primarily monodisperse size distribution (i.e., 

with a single exponential decay of 𝑔2() without the presence of a significant 

“shoulder” and low polydispersity values), except for the fusion partner protein at pH 

5 conditions which showed a transient shoulder indicative of a relatively small number 

of multimers in solution. The experimental SLS and DLS data for the fusion partner 

protein at pH 5 should thus be considered qualitatively, but that does not impact the 

conclusions or simulations below.  

 

Figure 3.4: DLS correlograms for 2 mg/mL solutions of the FP protein (A) and the 

monovalent Fc-fusion (B). The correlograms are normalized by the value 

of the autocorrelation function at the shortest delay time (𝑔(0) − 1) for 

ease of comparison between conditions. Data are shown for a subset of 

the experimental conditions: pH 5 buffer-only (solid black lines), pH 5 + 

300 mM NaCl (dashed black lines), pH 6.5 buffer-only (solid gray lines), 

and pH 6.5 + 300 mM NaCl (dashed gray lines). Illustrations are 

included in the corners to orient the reader when comparing between the 

different proteins (see Figure 3.1). 
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Because the correlograms were largely indicative of a near-monodisperse size 

distribution, DLS data were analyzed with a standard cumulants analysis. Net self-

interactions, quantified by 𝑘𝐷, were qualitatively similar to 𝐵22 values as a function of 

pH and ionic strength, as shown in Figure 3.5A and Figure 3.5B for the FP protein and 

the monovalent Fc-fusion, respectively. The full set of DLS measurements (𝐷𝐶  as a 

function of and the corresponding polydispersity index values) are shown in Figure 

B.2 and B.3 (Appendix B) for the FP protein and the monovalent Fc-fusion, 

respectively. 
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Figure 3.5: 𝑘𝐷 as a function of ionic strength for the fusion partner protein (A), and 

the monovalent Fc-fusion (B) at pH 5 (black squares) and pH 6.5 (gray 

circles). Hydrodynamic radius (𝑟𝐻) as a function of ionic strength for the 

fusion partner protein (C), monovalent Fc-fusion (D), following the same 

color scheme. Illustrations are included in the corners to orient the reader 

when comparing between the different proteins (see Figure 3.1). 
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Apparent molecular weight (𝑀𝑤,𝑎𝑝𝑝) values from SLS for the FP protein and 

the monovalent Fc-fusion are shown in Figure 3.3C and 3.3D, respectively. 𝑀𝑤,𝑎𝑝𝑝 

values at pH 5 for both proteins were close to the true molecular weight across the 

ionic strength conditions, suggesting no significant formation of reversible oligomers. 

As mentioned above, the DLS measurements of the fusion partner protein at pH 5 

suggested the presence of a small number of multimers, which could also have caused 

the inconsistent 𝑀𝑤,𝑎𝑝𝑝 values in Figure 3.3C, and therefore the results for the fusion 

partner protein at pH 5 should be considered qualitatively. In contrast, at pH 6.5 both 

proteins had 𝑀𝑤,𝑎𝑝𝑝 values greater than the true molecular weight at low ionic 

strength, and as ionic strength was increased, the value of 𝑀𝑤,𝑎𝑝𝑝 decreased to near or 

less than the true molecular weight. Trends in hydrodynamic radius (𝑟𝐻) values from 

DLS (Figure 3.5A and 3.5B) as a function of ionic strength were qualitatively 

consistent with 𝑀𝑤,𝑎𝑝𝑝 values. The 𝑀𝑤,𝑎𝑝𝑝 and 𝑟𝐻 values at pH 6.5 conditions suggest 

the presence of reversible oligomers at low ionic strength that were mediated by 

electrostatic interactions and disrupted at higher ionic strength conditions when 

electrostatics were screened. Given the qualitative similarities between the fusion 

partner protein and the monovalent Fc-fusion in their net self-interactions and 

reversible self-association behavior, electrostatic interactions involving residues on the 

surface of the fusion partner protein are anticipated to play an important role. 

Although the −𝐺22/2𝐵22,𝑆𝑇 values for the FP and monovalent Fc-fusion in 

cases at pH 6.5 conditions where the 𝑀𝑤,𝑎𝑝𝑝 value was larger than the monomeric 

molecular weight may have been somewhat biased by interactions with reversible 

oligomers, the extent of self-association was relatively low (in comparison with, e.g., 

the bivalent Fc-fusion shown below) and the analysis utilizing 𝐺22 and 𝑘𝐷 values were 
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used as a reasonable estimate of interactions involving monomeric proteins. The low 

polydispersity index values and primarily monodisperse correlograms from DLS also 

support that approximation. 𝑀𝑤,𝑎𝑝𝑝 values significantly less than the true molecular 

weight at elevated ionic strength conditions for the fusion partner protein can be 

attributed to nonideal interactions between the protein and NaCl.35 Shifts in 𝑀𝑤,𝑎𝑝𝑝 

values due to nonideal interactions between a given protein and solution components 

(e.g., NaCl) are not uncommon for other proteins.41,48 

SLS and DLS measurements of the bivalent Fc-fusion were performed at pH 5 

and pH 6.5 for a subset of the ionic strength conditions, 10 mM (buffer-only) and 310 

mM, the same conditions as those shown in Figure 3.2 for the FP protein and 

monovalent Fc-fusion. Excess Rayleigh ratio values (𝑅90
𝑒𝑥 𝐾⁄ ) as a function of protein 

concentration (𝑐2) are shown in Figure 3.6A (analogous to Figure 3.2). −𝐺22/2𝐵22,𝑆𝑇 

values are not presented as the net self-interactions were strongly biased by 

interactions with a large population of higher molecular weight species present in each 

formulation (some of which were reversible oligomers) as evidenced by 𝑅90
𝑒𝑥 𝐾⁄  values 

that were an order of magnitude larger at the lowest protein concentrations (𝑐2) 

compared to those for the monovalent Fc-fusion (see Figure 3.2B). 𝑀𝑤,𝑎𝑝𝑝 values 

(Figure 3.6B) calculated from the 𝑅90
𝑒𝑥 𝐾⁄  profiles were 4-10 times larger than the 

monomeric molecular weight, indicating the presence of a significant number of 

higher molecular weight species that greatly skewed the 𝑀𝑤,𝑎𝑝𝑝 values. The curvature 

in each profile in Figure 3.6A is potentially the result of a convolution of monomer-

monomer, monomer-dimer, dimer-dimer, etc. interactions. 
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Figure 3.6: SLS and DLS measurements for the bivalent Fc-fusion at pH 5 buffer-

only (solid black squares), pH 5 + 300 mM NaCl (open black squares), 

pH 6.5 buffer-only (solid gray circles), and pH 6.5 + 300 mM NaCl 

(open gray circles). A) Excess Rayleigh ratio values (𝑅90
𝑒𝑥 𝐾⁄ ) as a 

function of protein concentration (𝑐2). The curves are fits to Equation 3.1 

used to calculate 𝑀𝑤,𝑎𝑝𝑝 values. B) Apparent molecular weight, 𝑀𝑤,𝑎𝑝𝑝, 

as a function of ionic strength, where the horizontal dashed line 

corresponds to the true molecular weight. C) Collective diffusion 

coefficient values, 𝐷𝐶 , as a function of protein concentration (𝑐2). The 

lines are linear fits, and 𝐷0 (the y-intercept of a given linear fit) was used 

to calculate hydrodynamic radius, 𝑟𝐻, shown in panel D. Illustrations in 

the corners are included to orient the reader when comparing between the 

different proteins (see Figure 3.1). 



 80 

𝑀𝑤,𝑎𝑝𝑝 values contain uncertainty due to strong interactions, particularly at the 

pH 5 + 300 mM NaCl condition (−𝐺22/2𝐵22,𝑆𝑇 = -76 ± 6), so the simultaneous DLS 

measurements were used as an orthogonal measure to support qualitative conclusions 

about the populations of higher molecular weight species and the dependence of 

reversible self-association on solution conditions. Collective diffusion coefficient 

values (𝐷𝑐) as a function of protein concentration (𝑐2) are shown in Figure 3.6C, as an 

analogue to the 𝑅90
𝑒𝑥 𝐾⁄  profiles in Figure 3.6A. Hydrodynamic radius (𝑟𝐻) values 

calculated by the Stokes-Einstein relation are shown in Figure 3.6D, to compare 

against 𝑀𝑤,𝑎𝑝𝑝 values from Figure 3.6B. DLS correlograms for 2 mg/mL solutions 

and polydispersity index as a function of 𝑐2 are shown in Figure 3.7 and Figure B.4 

(Appendix B), respectively. The correlograms show a broad, single exponential decay 

at much longer delay times than what were observed for the monovalent Fc-fusion, 

and polydispersity index values were fairly high (between 0.2 and 0.5), suggesting that 

there were a range of oligomer species present. Collective diffusion coefficient values 

(𝐷𝑐) and hydrodynamic radius (𝑟𝐻) values should be interpreted as representative of 

the distribution of species and not indicative of a monomeric solution and are shown 

as a method to quantify the relative differences between each formulation. DLS data 

were analyzed with a standard cumulants analysis as more complex analyses (e.g., 

regularization methods) yielded broad size distributions that did not indicate an 

obvious key oligomeric species. Like the FP protein and the monovalent Fc-fusion, 

𝑀𝑤,𝑎𝑝𝑝 and 𝑟𝐻 values were similar as a function of ionic strength at pH 5 conditions. 

At pH 6.5, 𝑀𝑤,𝑎𝑝𝑝 and 𝑟𝐻 values decreased when ionic strength was increased, again 

indicative of electrostatically driven reversible self-association. There was also a 

“baseline” of higher molecular weight species for the bivalent Fc-fusion that was 
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invariant with the different solution conditions in this study and led to a 𝑀𝑤,𝑎𝑝𝑝 value 

of approximately 300 kDa.  

 

Figure 3.7: DLS correlograms for 2 mg/mL solutions of the bivalent Fc-fusion. The 

correlograms are normalized by the value of the autocorrelation function 

at the shortest delay time (𝑔(0) − 1) for ease of comparison between 

conditions. Data are shown for a subset of the experimental conditions: 

pH 5 buffer-only (solid black lines), pH 5 + 300 mM NaCl (dashed black 

lines), pH 6.5 buffer-only (solid gray lines), and pH 6.5 + 300 mM NaCl 

(dashed gray lines). Illustrations are included in the corners to orient the 

reader when comparing between the different proteins (see Figure 3.1). 

3.3.2 CG molecular simulations to model self-interactions 

The FP protein, monovalent Fc-fusion, and bivalent Fc-fusion all displayed 

electrostatically mediated reversible self-association at pH 6.5 conditions, where 

𝑀𝑤,𝑎𝑝𝑝 values indicated the presence of a sub-population of reversible oligomers that 

dissociated in solutions with elevated ionic strength. Also, the net electrostatic self-

interactions for the fusion partner protein and monovalent Fc-fusion were attractive at 
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pH 6.5 (i.e., negative values of −𝐺22/2𝐵22,𝑆𝑇 that were less negative at high ionic 

strength). This finding was unsurprising, as attractive self-interactions and reversible 

self-association are phenomenologically linked.24,101–105 However, measurements of 

net self-interactions do not always directly correlate to reversible self-association and 

the formation of reversible oligomers.102 Even in this work, −𝐺22/2 values for the 

monovalent Fc-fusion at pH 6.5 were not consistently correlated with 𝑀𝑤,𝑎𝑝𝑝 values, 

as 𝑀𝑤,𝑎𝑝𝑝 values monotonically decreased with increased ionic strength, and −𝐺22/2 

values were nonmonotonic with ionic strength. To address the link between self-

interactions and reversible self-association for these proteins in more detail than what 

can be ascertained from experimental measurements of net self-interactions (i.e., 𝐺22 

or 𝑘𝐷 values), 1bAA molecular simulations were used that were tuned to reproduce 

the experimental net self-interactions. The 1bAA simulations were applied to: 1) 

evaluate whether the simulations could qualitatively or semi-quantitatively capture the 

experimental trends of net self-interactions for the fusion partner protein and 

monovalent Fc-fusion; 2) make qualitative predictions about net electrostatic self-

interactions for the bivalent Fc-fusion; and 3) gain insight into potential key charged 

amino acids involved in attractive electrostatic self-interactions at pH 6.5 that could 

also be implicated in electrostatically mediated reversible self-association. 

Experimental values of −𝐺22/2𝐵22,𝑆𝑇 were used to optimize two parameters in 

the 1bAA model, 𝜀𝑆𝑅 and 𝜓, such that the simulated values of 𝐵22/𝐵22,𝑆𝑇 reproduced 

the experimental data. The 𝜀𝑆𝑅 parameter scales the strength of short-ranged non-

electrostatic attractions and was chosen to match the data at high ionic strength (> 300 

mM) where electrostatic interactions were effectively fully screened. Then, the 𝜓 

parameter was chosen to minimize the prediction error (in the form of RMSD, 



 83 

Equation 3.3) of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength for a given pH. Optimal 

values of 𝜀𝑆𝑅 and 𝜓 are shown in Table 3.1, and plots of RMSD vs. 𝜓 are available in 

Figure B.5 (Appendix B). Uncertainty in 𝜓 was estimated as the range of 𝜓 values that 

fell within 20% of the minimum RMSD. 

Table 3.1: Parameter values for 1bAA simulations 

Protein pH 𝜺𝑺𝑹 (kBT) 𝝍 

Fusion partner 5 0.40 1.00 ± 0.20 

Fusion partner 6.5 0.50 1.40 ± 0.10 

Monovalent Fc-fusion 5 0.38 0.72 ± 0.06 

Monovalent Fc-fusion 6.5 0.50 1.25 ± 0.05 

Bivalent Fc-fusionα 5 0.38 0.72 ± 0.06 

Bivalent Fc-fusionα 6.5 0.50 1.25 ± 0.05 

αParameter values for the bivalent Fc-fusion were chosen to match those for the 

monovalent Fc-fusion because the presence of large amounts of higher molecular 

weight species precluded reliable experimental measurement of 𝐺22 values for the 

bivalent Fc-fusion. 
Uncertainty in the 𝜓 parameter was defined as the range that resulted in RMSD 

values within 20% of the minimum. 

 

 

Predictions of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength and pH are shown in 

Figure 3.8A for the FP protein, and Figure 3.8B for the monovalent Fc-fusion. The 

1bAA simulations reproduced the qualitative behavior of net self-interactions for the 

FP protein at both pH values, although they could not reach the magnitude of strong 

repulsions present at pH 5. Electrostatic repulsions for the monovalent Fc-fusion at pH 

5 were captured quantitatively by the 1bAA simulations. The simulations accurately 

predicted the presence and magnitude of strong electrostatic attractions at pH 6.5, but 
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not the nonmonotonic trend in the experimental data, as the simulations did not 

capture that the net self-interactions became less attractive at the lowest ionic strength 

values. This deficiency may stem from representing charged amino acids in the 1bAA 

model as having static, rather than fluctuating, charges. Quantitative accuracy for 

complex systems such as the monovalent Fc-fusion at pH 6.5 might be improved by 

implementation of charge fluctuations, but that was out of scope for this chapter (see 

Chapter 4) and could prove to be computationally burdensome with the 1bAA 

model.83 

 

Figure 3.8: 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength calculated by 1bAA 

simulations for the FP protein (A) and the monovalent Fc-fusion (B). 

Experimental measurements are reproduced from Figure 3.3 where data 

at pH 5 is shown as black squares and at pH 6.5 as gray circles. The 

shaded regions correspond to predictions from the 1bAA simulations at 

pH 5 (indigo) and pH 6.5 (green) based on uncertainty in the 𝜓 

parameter. 1bAA diagrams in the corners are included to orient the reader 

when comparing between the different proteins (see Figure 1). 

The experimental data for the bivalent Fc-fusion was convoluted by the 

presence of many higher molecular weight species and therefore were not used to 
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calculate −𝐺22/2 values. The 1bAA simulations were leveraged as an alternative 

approach to make qualitative predictions of the net electrostatic self-interactions via 

contour plots. These plots indicated how the simulated 𝐵22/𝐵22,𝑆𝑇 was predicted to 

change for the bivalent Fc-fusion as a function of ionic strength and 𝜓 for a given pH, 

shown in Figure 3.9A (pH 5) and Figure 3.9B (pH 6.5). These simulations did not 

require experimental data from SLS or DLS and were based only on the amino acid 

sequence, homology model structure, and a fixed value of 𝜀𝑆𝑅, while the ionic strength 

and 𝜓 values were sampled systematically. Analogous contour plots for the other two 

proteins are available in Figure B.6 (Appendix B). This method is useful to 

qualitatively screen potential candidates or formulation conditions (pH and ionic 

strength) based on the potential net electrostatic self-interactions. The simulations 

predicted similar qualitative behavior to the monovalent Fc-fusion and the FP protein: 

net electrostatic repulsions at pH 5 and net electrostatic attractions at pH 6.5. With the 

optimal 𝜀𝑆𝑅 and 𝜓 values for the monovalent Fc-fusion, the 1bAA simulations 

predicted stronger repulsions at pH 5 and stronger attractions at pH 6.5 for the bivalent 

Fc-fusion. 
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Figure 3.9: Simulated contour plots of 𝐵22/𝐵22,𝑆𝑇 as a function of 𝜓 and ionic 

strength for the bivalent Fc-fusion at pH 5 (A) and pH 6.5 (B). 

3.3.3 Identification of specific electrostatic interactions involved in attractive 

self-interactions 

The presence of strongly attractive electrostatic self-interactions and reversible 

self-association in pH 6.5 conditions for all three proteins that could be reduced by 

elevated ionic strength conditions was noteworthy, but the results above did not 

directly address the question of which charged amino acids or pairs of charged amino 

acids interacting between adjacent proteins were more influential in mediating this 

behavior. To help address this question, interaction heatmaps of average Mayer-

weighted pairwise electrostatic energy values (̃
𝑖𝑗

 from Equation 3.5) were generated 

from the 1bAA simulations and are shown in Figure 3.10 for each protein at pH 6.5 

and 10 mM ionic strength conditions. The corresponding simulated 𝐵22/𝐵22,𝑆𝑇 values 

for the FP protein (panel A), monovalent Fc-fusion (panel B), and bivalent Fc-fusion 

(panel C) at these conditions were -7.9 ± 0.2, -2.7 ± 0.1, and -11.1 ± 0.4, respectively. 

The heatmaps show the ̃
𝑖𝑗

 value for each pairwise interaction between two charged 

amino acids in the simulations, where attractive ̃
𝑖𝑗

 values are shown in red, repulsive 



 87 

̃
𝑖𝑗

 values are shown in blue, and ̃
𝑖𝑗

 values smaller in magnitude transition to white. 

The x-axis and y-axis represent the charged sites in the protein in sequence order, and 

the color in the heatmap for charged amino acid 𝑖 interacting with charged amino acid 

𝑗 on the adjacent protein is the ̃
𝑖𝑗

 value. Heatmaps for the two Fc-fusion proteins 

(panels B and C) were split by whether the charged amino acid was in the Fc portion 

or FP domain of the molecule.  

 

 

Figure 3.10: Mayer-weighted average pairwise electrostatic energy values (̃
𝑖𝑗

) for 

charged sites in the FP protein (A), the monovalent Fc-fusion (B), and the 

bivalent Fc-fusion (C) at pH 6.5 and 10 mM ionic strength. Pairwise 

repulsions (positive ̃
𝑖𝑗

 values) are shown in blue, and attractions 

(negative ̃
𝑖𝑗

 values) are shown in red. The heatmaps for the Fc-fusion 

proteins are ordered based on the structural domains. 
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Results at pH 5 and 10 mM ionic strength are shown in Figure 3.11 as a 

contrast for solution conditions where the simulated 𝐵22 values correspond to net 

repulsions. The corresponding simulated 𝐵22/𝐵22,𝑆𝑇 values for the FP (panel A), 

monovalent Fc-fusion (panel B), and bivalent Fc-fusion (panel C) at these conditions 

were 1.69 ± 0.0, 3.2 ± 0.0, and 5.3 ± 0.0 respectively. 

 

 

Figure 3.11: Mayer-weighted average pairwise electrostatic energy values (̃
𝑖𝑗

) for 

charged sites in the FP protein (A), the monovalent Fc-fusion (B), and the 

bivalent Fc-fusion (C) at pH 5 and 10 mM ionic strength. Pairwise 

repulsions (positive ̃
𝑖𝑗

 values) are shown in blue, and attractions 

(negative ̃
𝑖𝑗

 values) are shown in red. The heatmaps for the Fc-fusion 

proteins are ordered based on the structural domains. 
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Simulations were performed at 10 mM ionic strength, where electrostatic 

interactions are only mildly screened. Because the 1bAA simulations did not capture 

the nonmonotonic experimental behavior of −𝐺22/2𝐵22,𝑆𝑇 as a function of ionic 

strength for the monovalent Fc-fusion at pH 6.5, the heatmaps were also generated at 

30 mM ionic strength for the two Fc-fusions where the model could quantitatively 

capture the experimental value of 𝐵22/𝐵22,𝑆𝑇 for the monovalent Fc-fusion, shown in 

Figure 3.12. The results were qualitatively similar, with average energy values smaller 

in magnitude than they were at 10 mM ionic strength, as expected due to charge 

screening. The corresponding simulated 𝐵22/𝐵22,𝑆𝑇 values for the monovalent Fc-

fusion (panel A), and bivalent Fc-fusion (panel B) at these conditions were -1.8 ± 0.1, 

and -3.4 ± 0.3 respectively. 

 

Figure 3.12: Mayer-weighted average pairwise electrostatic energies (̃
𝑖𝑗

) for charged 

sites in the monovalent Fc-fusion (A) and bivalent Fc-fusion (B) at pH 

6.5 and 30 mM ionic strength. Repulsions are shown in blue, and 

attractions are shown in red. The heatmaps are ordered based on the 

structural domains. 
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The FP protein by itself had both relatively large positive (repulsive) and 

negative (attractive) values of ̃
𝑖𝑗

 at pH 6.5 (see Figure 3.10A) that on balance lead to 

net electrostatic attractions, consistent with findings from prior work.44,69 In 

comparison, ̃
𝑖𝑗

 values were significantly smaller at pH 5 (by approximately 1 order of 

magnitude). ̃
𝑖𝑗

 values (both positive and negative) were close to zero for all pairwise 

interactions at pH 5 for the two Fc-fusion proteins (Figure 3.11B and Figure 3.11C), 

which is consistent with “simple colloidal” models for electrostatic net repulsions of 

this magnitude.44,69 While the Fc-Fc and FP-FP interaction regions in the heatmaps for 

the monovalent Fc-fusion and bivalent Fc-fusion at pH 6.5 (Figure 3.10B and Figure 

3.10C, respectively) primarily contained ̃
𝑖𝑗

 values near zero, the Fc-FP cross-domain 

interaction regions were saturated with positive (repulsive) and negative (attractive) 

values of ̃
𝑖𝑗

. CH3-CH3 interactions (the top right quadrant in the Fc-Fc region) 

contained some significant ̃
𝑖𝑗

 values for the bivalent Fc-fusion as well. Those results 

suggest that the net attractive electrostatic self-interactions observed for the 

monovalent Fc-fusion and the bivalent Fc-fusion at pH 6.5 were principally due to 

many of the pairwise cross-domain interactions between the fusion partner and the Fc 

domains. Given the phenomenological links between attractive self-interactions and 

reversible self-association as well as the apparent relationship between net attractive 

electrostatic self-interactions and reversible self-association in this work, that finding 

also suggests that Fc-FP cross-domain interactions were relevant to the reversible self-

association that was observed for the two Fc-fusion proteins. 

Similar to the Fc-fusion proteins, the fusion partner protein by itself displayed 

attractive electrostatic self-interactions and reversible self-association at pH 6.5. 

However, there was no Fc domain present, so that behavior could not have been due to 
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cross-domain interactions between the fusion partner and the Fc domains. There were 

several amino acid pairings that had strongly attractive electrostatic self-interactions 

(negative ̃
𝑖𝑗

 values in Figure 3.10A), but those same pairings were not particularly 

notable in terms of their ̃
𝑖𝑗

 values for the Fc-fusion proteins (i.e., the FP-FP region in 

Figure 3.10B and Figure 3.10C). Many of the individual amino acids that were 

involved in strongly attractive pairwise electrostatic self-interactions for the FP protein 

were also involved in different strongly attractive pairwise electrostatic self-

interactions with amino acids in the Fc region of either Fc-fusion protein. For 

example, charged residues 12-14 (each of which are negatively charged) in the fusion 

partner protein had several strongly attractive values of ̃
𝑖𝑗

 with charged residues 4-7 

(each of which are positively charged), as shown in Figure 3.10A. As a part of an Fc-

fusion protein, those same negatively charged amino acids in the FP (charged residues 

63-65 for the Fc-fusion proteins) had strongly attractive pairwise electrostatic 

interactions with charged residues 15-17 (each of which are positively charged) in the 

Fc region (see Figure 3.10B and Figure 3.10C). That suggests that there are particular 

charged amino acids on the surface of the fusion partner protein that are more likely to 

be involved in strongly attractive electrostatic interactions. Those charged amino acid 

subgroups and others that may appear to be groups by inspection of the heatmaps are 

not necessarily spatially proximal to each other on the protein surface (i.e., they do not 

form a visually obvious “charge patch”), but rather were adjacent in the protein 

sequence when uncharged residues were removed. As a precursor to future 

experimental work, preliminary simulations showed that the value of 𝐵22/𝐵22,𝑆𝑇 and 

the heatmaps of average Mayer-weighted pairwise electrostatic energy values were 

sensitive to charge swap mutations of key charged amino acids based on the results 
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from Figure 3.10 (see Appendix B.1), and those may be candidate mutations for 

mitigating the reversible self-association behavior of these proteins. 

It is important to note that the simulations in this chapter do not explicitly 

model the intermittent intermolecular interactions that link reversible oligomers, but 

rather sample spatial configurations between two identical proteins that could include 

interactions that are relevant to reversible self-association. The configuration space 

that is sampled in the simulations is limited by the rigid structure of the 1bAA model 

that does not capture unfolding or flexibility of the peptide linker used to connect the 

fusion partner protein(s) to the Fc. Addressing these limitations was beyond the scope 

of this chapter but could also be the subject of future work to refine the simulation 

methods to more accurately model reversible self-association and the amino acids or 

regions (e.g., APRs) in the protein that are prone to reversible self-association. 

Applying experimental techniques to isolate and characterize oligomer species, 

validate the regions active in reversible self-association111,224, or screen excipients that 

disrupt electrostatic attractions and/or inhibit reversible self-association are also 

promising areas for future studies. 

3.4 Summary and conclusions 

Net self-interactions and reversible self-association were characterized 

experimentally for a range of pH (5 and 6.5) and ionic strength conditions (10 mM to 

at least 300 mM) via SLS and DLS for a FP protein and its corresponding monovalent 

Fc-fusion and bivalent Fc-fusion proteins. All three proteins displayed electrostatically 

mediated attractions and reversible self-association at pH 6.5 conditions, and this was 

mitigated upon increased solution ionic strength. The FP protein and the 

corresponding monovalent Fc-fusion had similar experimental self-interaction 
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behaviors: “simple colloidal” net electrostatic repulsions at pH 5, but notable net 

electrostatic attractions at pH 6.5. 1bAA molecular simulations reasonably captured 

those net self-interactions, except for the nonmonotonic dependence of the self-

interactions with respect to ionic strength for the monovalent Fc-fusion at pH 6.5. The 

bivalent Fc-fusion results indicated reversible higher molecular weight species, across 

all solution conditions which precluded the use of standard 𝐺22 or 𝑘𝐷 analyses of the 

SLS and DLS data. As an analog to the results for the monovalent fusion protein and 

the partner protein, 1bAA simulations for the bivalent Fc-fusion were used to 

qualitatively compare the results at pH 5 (net repulsive interactions) and pH 6.5 (net 

attractive interactions). Analysis of Mayer-weighted average pairwise electrostatic 

energy values across the different proteins and solution conditions in those simulations 

highlighted the potential importance of cross-domain interactions between the Fc and 

fusion partner domains as a primary source of electrostatic attractions. Future work 

could explore the space of possible charge variants, potential isolation of oligomer 

species, determination of regions involved in reversible self-association, or screening 

of excipients that could reduce net attractive electrostatic self-interactions and/or 

inhibit the formation of reversible oligomers. 
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SIMULATION OF HIGH-CONCENTRATION SELF-INTERACTIONS FOR 

MONOCLONAL ANTIBODIES FROM WELL-BEHAVED TO POORLY-

BEHAVED SYSTEMS  

4.1 Introduction 

As discussed in Chapter 1, prediction and mitigation of potential poor high-

concentration behaviors of therapeutic proteins is of great interest in industrial drug 

development. Many of those poor behaviors (e.g., aggregation, reversible self-

association, opalescence, and phase separation) are related to self-interactions and can 

be key bottlenecks in the development process, in part because material availability 

may limit experimental evaluation of high-concentration samples of drug candidates at 

early stages of development.16,23,25,125 Moreover, these behaviors are dependent on the 

formulation conditions, e.g., protein concentration, pH, cosolute concentrations, and 

ionic strength. This presents a complex, multiparameter optimization problem when 

determining the most promising candidate(s) and formulation(s).91 

Self-interactions can be challenging to predict at high-concentration via 

extrapolation of low-concentration measures as the balance between electrostatic 

interactions, short-ranged non-electrostatic attractions, and steric repulsions can shift 

as intermolecular distances decrease and, on average, proteins experience significant 

interactions with multiple neighboring proteins.49 To help address this, prior work 

used measurements of 𝐵22 via SLS to parameterize relatively simple domain-level CG 

models for use in MC molecular simulations to quantitatively predict self-interactions 

Chapter 4 
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at high protein concentration that could be directly compared to experimental SLS 

data.49,50,68 The predictions were found to be accurate for “simple-colloidal” net 

repulsions and mildly net attractive conditions. However, strongly net attractive 

conditions due to electrostatic interactions were not well-captured by the domain-level 

CG models. The highest resolution CG model was the DODECA model, which 

contains 12 beads, one for each MAb domain.28,49,50 

In Chapter 2, it was noted that the 1-bead-per-charge-and-domain (1bC/D) 

model was potentially tractable for use in high-concentration simulations, while 

providing improved accuracy in representing strong electrostatic attractions in MSOS 

simulations of 𝐵22 𝐵22,𝑆𝑇⁄ . The key advantage of the 1bC/D model over the DODECA 

model is the increased resolution of electrostatic attractions and repulsions, where 

instead of charged interactions being “lumped” into domain beads (that represent ~100 

amino acids per domain for a typical MAb), the model has explicit charged sites for 

each charged atom in the protein. Schematic illustrations of the DODECA and 1bC/D 

models are shown in Figure 4.1. 
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Figure 4.1: Schematic diagrams of the DODECA and 1bC/D models shown to scale. 

Linkers shown between the Fc and Fab are for illustrative purposes only. 

Charged sites in the 1bC/D model are blue (red) for positively 

(negatively) charged atoms. The DODECA model is reproduced from 

Calero-Rubio et al.28 

This chapter improves upon previously developed methodologies to couple 

sample-sparing experimental measurements of 𝐵22 with low- to high-concentration 

1bC/D CG molecular simulations to accurately predict a broad range of high-

concentration net self-interactions. Predictions of the zero-𝑞 limit of the static 

structure factor, 𝑆𝑞=0, as a function of protein concentration (up to 160 mg/mL) were 

compared between the DODECA and 1bC/D models for six MAbs at two pH values 

(5 and 6.5), and at two ionic strengths (~10 mM and ~110 mM). The accuracy of those 

predictions were determined by comparison with experimental SLS measurements at 

the same conditions. The six MAbs are MAb 1, MAb 2, MAb 3, MAb 4, MAb 5, and 

MAb 6. 𝐵22 𝐵22,𝑆𝑇⁄  values for MAb 1 and MAb 2 were also used as test cases in 

Chapter 2, and data for the other four MAbs are presented here for the first time. The 

data span a broad range of net self-interactions at elevated protein concentrations, 

from strongly repulsive to strongly attractive. The results indicate that the 1bC/D 

model provides improved predictions of electrostatic attractions at high protein 
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concentration in comparison with the DODECA model. Some challenges with respect 

to the representation of charge equilibria were identified and methods to model the 

effects of charge equilibria more accurately were evaluated, with partial success. The 

two models provided equivalent predictions for cases where there were strong net 

repulsions between MAbs and/or weak net repulsions or attractions. The 1bC/D model 

was tractable at high protein concentrations with an expected increase in 

computational burden compared to dilute protein solutions, in agreement with Chapter 

2.179 Parts of this chapter were published in a peer-reviewed journal and are 

reproduced here with permission (Appendix E).48 

4.2 Materials and methods 

4.2.1 Sample preparation 

The solution conditions for low-concentration SLS measurements are the same 

as described in section 3.2.1. Stock solutions of MAb 3, MAb 4, MAb 5, and MAb 6 

were provided by Bristol-Myers Squibb (New Brunswick, NJ). Low-concentration 

MAb stock solutions (below approximately 15 mg/mL) were prepared by three 24 

hour buffer exchanges at 4 °C against buffer solutions using 10 kDa molecular weight 

cutoff dialysis tubing (Repligen). 

High-concentration MAb stock solutions (for measurements above ~10 

mg/mL) were prepared at roughly 150 mg/mL by membrane centrifugation at 3 x 103 

rcf using 10 kDa molecular weight cutoff Amicon Ultra centrifugal filtration tubes 

(MilliporeSigma). An iterative procedure of concentration and reconstituting the 

concentrate with buffer four times was used to buffer exchange the MAb stocks. 

Buffer solutions used in this process had reduced pH values to account for shifts in pH 
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at high protein concentration due to the Donnan equilibrium effect. The initial pH 

values before centrifugal concentration steps for MAb 3 and MAb 4 were 

approximately pH 4.3 for low ionic strength pH 5 solutions, pH 4.8 for intermediate 

ionic strength pH 5 solutions, and pH 6.3 for pH 6.5 solutions (low and intermediate 

ionic strength). pH values were verified to be within 0.1 of the target after the 

centrifugation procedure to concentrate and buffer exchange MAb stock solutions. 

MAb stock concentrations were determined by UV absorbance at 280 nm 

(Agilent 8453 or DeNovix DS-11). Samples at low protein concentrations were 

prepared by gravimetric dilution to the desired protein concentration and desired NaCl 

concentration with an appropriate ratio of buffer solution and buffer with 1 M NaCl 

(Fisher Scientific). Buffer solutions and MAb stock solutions for samples at high 

protein concentrations were prepared with the desired NaCl concentration. Solution 

density was used to adjust calculated protein concentrations based on density 

measurements made with a DDM 2911 Plus (Rudolph Scientific) at 22.00 ± 0.02 °C, 

shown in Figure 4.2. All buffer and low-concentration MAb stock solutions were 

filtered using 0.22 μm low protein binding filters (Celltreat) before use. High-

concentration MAb stock solutions were filtered prior to centrifugation. 
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Figure 4.2: Solution density as a function of MAb concentration (𝑐2) for MAb 3 (A), 

MAb 4 (B), MAb 5 (C), and MAb 6 (D) in the following buffer 

solutions: pH 5 low IS (filled purple circles), pH 5 high IS (open purple 

circles), pH 6.5 low IS (filled green triangles) and pH 6.5 high IS (open 

green triangles).  

4.2.2 Static and dynamic light scattering 

SLS and DLS measurements were conducted using a Wyatt DynaPro NanoStar 

with a laser wavelength of 662 nm at 25.0 °C with the same methodologies as 

described in sections 3.2.2 and 3.2.3, respectively. High-𝑐2 data are not presented in 

terms of a single parameter (e.g., 𝐵22 or 𝑘𝐷) because multi-body interactions lead to 

concentration-dependent self-interactions. Instead, high-𝑐2 SLS data are presented and 
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discussed in terms of the concentration-dependent profile of the zero-𝑞 limit of the 

static structure factor, 𝑆𝑞=0, where 𝑆𝑞=0 = 1 + 𝐺22𝑐2. 𝑆𝑞=0 values above (below) 1 

correspond to net attractions (repulsions).225 The corresponding high-𝑐2 DLS data are 

presented as collective diffusion coefficients (𝐷𝐶  values). Only DLS measurements 

with a polydispersity value below 0.1 are presented to ensure that measurements were 

not influenced significantly by the presence of aggregates or other unfiltered particles. 

𝐷𝐶  is related to the zero-𝑞 limit of the static structure factor (𝑆𝑞=0) and the 

hydrodynamic factor (𝐻𝑞=0) by 𝐷𝐶 =
𝐷0𝐻𝑞=0

𝑆𝑞=0
, where 𝐷0 is the infinite-dilution or self-

diffusion coefficient.221  

4.2.3 CG models, interaction potentials, B22 simulations and CG model 

parameterization 

The CG models, interaction potentials, and MSOS simulations of 𝐵22 𝐵22,𝑆𝑇⁄  

are largely the same as what was described in section 2.2. The error function for 

simulated and experimental 𝐵22 𝐵22,𝑆𝑇⁄  values was RMSD, described in section 3.2.4 

and Equation 3.3. A summary of some of the most pertinent details, a description of 

one change in the 1bC/D model, and some MAb-specific details are provided below. 

The DODECA and 1bC/D models use the same mathematical form for the 

interaction potentials for short-ranged non-electrostatic attractions (e.g., hydrophobic 

interactions and van der Waals forces) as well as electrostatic attractions and 

repulsions, but with different parameter values that are optimized by minimizing 

RMSD. The DODECA model and the 1bC/D model both contain 12 beads that each 

correspond to one MAb domain composed of a roughly equivalent number of amino 

acids. In the DODECA model those 12 beads are used to model both short-ranged 

non-electrostatic attractions and electrostatic attractions and repulsions. Domain bead 
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valences in DODECA models for a given MAb and pH are shown in Table C.1 

(Appendix C). However, in addition to the 12 domain beads, the 1bC/D model 

contains explicit charged beads at the location of each charged atom in the MAb. The 

domain beads in the 1bC/D model participate in short-ranged non-electrostatic 

interactions, and the charged sites contribute to electrostatic attractions and repulsions. 

Domain beads in the 1bC/D model correspond to the same amino acid sequences in 

the DODECA model. Each domain bead has the same diameter and value of 𝑠𝑟. 

However, in contrast to the DODECA model, domain beads are placed at the 

geometric center of each domain based on a homology model for a given MAb, and 

therefore their locations can be somewhat different for each MAb or homology model. 

Domain beads in the 1bC/D model have hard-sphere steric repulsions and short-ranged 

non-electrostatic attractions with domain beads in other MAbs, but do not contribute 

to electrostatic attractions and repulsions.  

𝑠𝑟 was chosen for each MAb (independent of pH) by matching the predicted 

𝐵22/𝐵22,𝑆𝑇 values where no electrostatic interactions are present (i.e., 𝜓 = 0) to 

experimental data at high ionic strength, where electrostatic interactions are 

sufficiently screened such that and there is no longer a change in 𝐵22 with increased 

ionic strength and experimental data are equivalent at both pH values. After 𝑠𝑟 was 

selected, simulations were performed sampling across a range of values for 𝜓 to 

determine the optimal value (i.e., minimum RMSD value) that best reproduced the full 

experimental profile of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength. The uncertainty of 

𝜓 was estimated as values of 𝜓 for which RMSD fell within 20% of the minimum 

RMSD. If the minimum RMSD was less than 0.05, the uncertainty of 𝜓 was estimated 

as values of 𝜓 for which the RMSD fell within 0.05 of the minimum RMSD. 
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The treatment of steric repulsions was different for the 1bC/D model here as 

compared to Chapter 2 to better account for packing in crowded systems (see the 

following subsection on high-concentration simulations). In the 1bC/D model, domain 

beads only have hard-sphere steric repulsions with other domain beads and charged 

beads only have hard-sphere steric repulsions with other charged beads. This approach 

was chosen to ensure that the charged beads were not buried, but remained surface 

exposed as they would be in the real protein structure. Additionally, the charged beads 

can impede domain beads from other MAb molecules from approaching each other 

when compared to a domain-level model such as DODECA.179 This results in larger 

values of 𝑠𝑟 compared to those for a purely domain-level model such as DODECA, in 

order to provide equivalent model results at high ionic strength where non-electrostatic 

attractions and steric repulsions dominate the behavior.179 

As described in section 2.2.2, domain bead diameters for the 1bC/D model are 

MAb-specific and chosen to reproduce the second osmotic virial coefficient due to 

only steric repulsions, 𝐵22,𝑆𝑇, as calculated by an implicit solvent, all-atom MC 

simulation for each MAb.179 The values of 𝐵22,𝑆𝑇 were 9.9 mL/g for MAb 1, 9.9 mL/g 

MAb 2, 10.0 mL/g for MAb 3, 10.3 mL/g for MAb 4, 9.9 mL/g for MAb 5, and 10.2 

mL/g for MAb 6. The corresponding domain bead diameters (𝐷) were 3.47 nm for 

MAb 1, 3.36 nm MAb 2, 3.35 nm for MAb 3, 3.34 nm for MAb 4, 3.30 for MAb 5, 

and 3.39 for MAb 6.  

4.2.4 Simulations at high protein concentrations 

High-𝑐2 (≥ 10 mg/ml) simulations were performed in the grand canonical 

ensemble (fixed temperature, system volume, and protein chemical potential)226 at 25 

°C with a box length of 60 nm with periodic boundary conditions and a cubic box 
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geometry. Simulations were run with the optimal 𝜓 value, and the lower and upper 

bounds of 𝜓 based on its uncertainty. Protein chemical potential values were 

determined by preliminary simulations that mapped protein chemical potential to 𝑐2. 

For each MC attempt, one of the following moves was attempted: a translation, a 

rigid-body rotation around the MAb center of mass, a MAb insertion, or a MAb 

deletion. 30% of the moves were translations or rotations, and the remaining 70% 

were insertions or deletions. A pre-equilibration period was used to determine 

translation distance and rotation angle. The probability distribution of 𝑁2 (the number 

of MAbs in the simulation box) was used to compute 𝐺22 with Equation 4.1 where 𝑉 

is the box volume, 〈𝑁2〉 is the ensemble average value of 𝑁2, and 〈𝑁2
2〉 − 〈𝑁2〉

2 is the 

variance of 𝑁2. To calculate 𝑆𝑞=0, the simplifying assumption that 𝑀𝑤,𝑎𝑝𝑝 = 𝑀𝑤 was 

used and Equation 3.1 was inverted to yield 𝑆𝑞=0 = 1 + 𝐺22𝑐2.50 

 𝐺22 = 𝑉(
〈𝑁2
2〉−〈𝑁2〉

2

〈𝑁2〉
2  – 

1

⟨𝑁2⟩
)  4.1 

High-𝑐2 simulations with the DODECA model were performed using transition 

matrix Monte Carlo (TMMC) using the methodology described in prior work.50 With 

TMMC, the simulation is biased towards sampling less likely states (values of 𝑁2), 

leading to roughly even sampling in the specified bounds of 𝑁2 (so-called “flat-

histogram” sampling).227 After each cycle (5000 MC attempts in the present work), the 

probability distribution of 𝑁2 was recalculated and used to rationally bias the 

simulation. Simulations at varying bounds of 𝑁2 and different protein chemical 

potential values were performed, at least in triplicate for at least 104 cycles, until the 

combined probability distribution for the full desired protein concentration range had 

converged. The probability distribution of 𝑁2 used in Equation 4.1 was reweighted 
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using histogram reweighting techniques to compute 𝐺22 as a continuous function of 

𝑐2.28,227 

1bC/D simulations were performed using grand canonical MC (GCMC), the 

unbiased analog to TMMC. This reduced the computational burden associated with 

simulating a higher resolution CG model and resulted in predictions of self-

interactions at a specific protein concentration that corresponded with the specified 

protein chemical potential. Each simulation was run in triplicate, where the number of 

MC attempts required to reach convergence was a function of both the protein 

concentration being simulated and how attractive the self-interactions were. For 

simulations at ~130 mg/mL, at least 107 attempts were needed, with more than 108 for 

strongly attractive systems. 

4.2.5 Explicit charge equilibria algorithm 

Simulations with an algorithm for explicit representation of charge fluctuations 

were performed in this chapter for pH 6.5 conditions where electrostatic interactions 

were not always properly captured in 1bC/D simulations. That algorithm was 

introduced and explained in further detail in Shahfar et al.83 For each generated 

configuration, each of the His residues had its valence (either 0 or +1) randomized 

based on the charge probability at the simulated pH via the Henderson-Hasselbalch 

equation. In the context of this chapter where the pH condition of interest is 6.5, the 

probability that a given His residue (pKa = 6.04) was charged was approximately 

26%. To be specific, for each His residue, a random number between 0 and 1 was 

generated. The His charged site had +1 valence if the random number was less than 

~0.26 and it had 0 valence otherwise. For GCMC simulations, His charge states were 
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fluctuated only for the MAb associated with the MC attempt (a translation, rotation, or 

insertion). 

4.2.6 Mayer-averaged electrostatic energies 

Similar to Chapter 3, averaged electrostatic energies for charged sites in the 

1bC/D model were calculated from the MSOS (i.e., 𝐵22) simulations to quantify the 

specific contributions to electrostatic attractions at the amino acid level and rank their 

relative importance. Some details are different here than in Chapter 3, so the full 

method is provided here for clarity. 

The electrostatic energy (
𝑖
(𝑘)

) for a given charged site (𝑖) on one protein 

molecule, with contributions from all other charged sites (𝑗) on the adjacent protein, 

was calculated for a given configuration (𝑘) as the sum of the electrostatic interactions 

(𝑢𝑖𝑗
𝐸𝐿 in Equation 2.4) via 

 
𝑖
(𝑘) = ∑

𝑢𝐸𝐿,𝑖𝑗
𝑎𝑏(𝑘)

+𝑢𝐸𝐿,𝑗𝑖
𝑎𝑏(𝑘)

2

𝑁𝐶𝑆
𝑗=1  4.2 

where 𝑎 and 𝑏 refer to the two interacting MAbs, and 𝑗 is the index of summation for 

all charged sites, 𝑁𝐶𝑆.42 The Mayer-weighted average of the electrostatic energy for a 

given charged site (̃
𝑖
) was defined as 

 ̃
𝑖
=

1

𝑁𝐶

∑ (𝑒−𝑊22/𝑘𝐵𝑇−1)
𝑁𝐶
𝑘  × 

𝑖
(𝑘)

∑ (𝑒−𝑊22/𝑘𝐵𝑇−1)
𝑁𝐶
𝑘

 4.3 

Where 𝑘 is the index of summation for the number of simulated configurations 𝑁𝐶 and 

𝑊22 is the potential of mean force for configuration 𝑘 (see also Equation 2.1). 
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4.3 Results and discussion 

4.3.1 Experimental SLS and DLS measurements 

SLS and DLS measurements were performed at dilute protein concentrations 

(𝑐2) to determine the second osmotic virial coefficient (𝐵22) and interaction parameter 

(𝑘𝐷) for a given pH and ionic strength. SLS and DLS measurements at elevated 

protein concentrations (greater than 10 mg/mL) quantified the concentration-

dependent self-interactions by the zero-𝑞 limit of the static structure factor (𝑆𝑞=0; see 

section 4.2.2) and by the collective diffusion coefficient (𝐷𝑐), respectively. SLS 

measurements were used to parameterize and validate the results of the CG molecular 

simulations, and DLS measurements corroborated the findings from SLS and provided 

information about the polydispersity of the samples. A value of 𝐵22 above 0, or a 

value of 𝑆𝑞=0 below 1, indicates net repulsions relative to an ideal gas mixture 

reference state.225 This will be further discussed below in the context of the 

experimental data and computational predictions. 

At low-𝑐2, MAb solutions were formulated at pH 5 and pH 6.5 for a range of 

ionic strength values that were adjusted by the addition of NaCl. The two selected pH 

values modulated the charge states of ionizable residues in the MAbs (primarily 

histidine residues at these pH values). Increasing ionic strength was used to decrease 

the impact of electrostatic interactions via charge screening.29 At high-𝑐2, 

measurements were performed at pH values of 5 and 6.5 and at two ionic strength 

conditions: (1) low ionic strength (6-10 mM) where electrostatic interactions are 

relatively strong, and (2) intermediate ionic strength (106-110 mM) where electrostatic 

interactions are weaker but might not be fully screened. 𝑐2 values ranged from 10 
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mg/mL to at least 130 mg/mL. Table 4.1 lists the solution conditions for samples at 

high-𝑐2. 

Table 4.1: Summary of solution conditions for samples at high protein concentration 

Formulation Ionic Strength 

pH 5, low ionic strength 6-10 mM 

pH 5, intermediate ionic strength 106 mM 

pH 6.5, low ionic strength 10 mM 

pH 6.5, intermediate ionic strength 110 mM 

 

 

SLS measurements for MAb 1 and MAb 2 were reported in prior work49,50, 

while SLS and DLS measurements for MAb 3, MAb 4, MAb 5, and MAb 6 have not 

been reported previously. 𝐵22/𝐵22,𝑆𝑇 values for each MAb are shown in Figure 4.3. 

𝐵22 values were normalized by the value of 𝐵22 due to steric repulsions (𝐵22,𝑆𝑇) for 

each MAb that were calculated by an all-atom MSOS simulation.179 Each of the 𝐵22,𝑆𝑇 

values for the four MAbs were roughly 10 mL/g (see section 4.2.3). 
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Figure 4.3: 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength for MAb 1 (a), MAb 2 (b), 

MAb 3 (c), MAb 4 (d), MAb 5 (e), and MAb 6 (f) at pH 5 (black squares) 

and pH 6.5 (gray circles), with lines to guide the eye.49,50 The y-axis scale 

for MAb 2 (panel b) is extended to fit all of the data. 
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All of the MAbs in this chapter showed strong electrostatic repulsions 

(𝐵22 𝐵22,𝑆𝑇⁄  > 1) at pH 5 and low ionic strength, and those repulsions decreased 

monotonically with increased ionic strength until the net interactions were effectively 

independent of pH or ionic strength (i.e., not dependent on electrostatics) at high ionic 

strength. This was consistent with classic “simple-colloidal” behavior for proteins with 

a high net surface charge due to the solution environment being far above or far below 

the protein’s pI.179 The experimental pI values were 8.6 for MAb 1, 7.8 for MAb 2, 8.4 

for MAb 3, 7.5 for MAb 4, 8.5 for MAb 5, and 9.2 for MAb 6. Using the Henderson-

Hasselbalch equation with nominal pKa values for each ionizable amino acid, the 

computed pI values were 9.0 for MAb 1, 8.4 for MAb 2, 9.0 for MAb 3, 8.8 for MAb 

4, 8.9 for MAb 5, and 9.3 for MAb 6. At pH 6.5, the results were dependent on the 

nature of electrostatic interactions as a function of ionic strength. If the value of 

𝐵22/𝐵22,𝑆𝑇 at a given ionic strength was above (below) the value at high ionic strength 

(i.e., at the plateau in Figure 4.3), then electrostatic interactions were net repulsive (net 

attractive) for that condition. For MAb 1, MAb 5, and MAb 6 (Figure 4.3a, 4.3e, and 

4.3f, respectively), electrostatic interactions were net repulsive in all cases, but less so 

at pH 6.5 than at pH 5. Electrostatic attractions at low ionic strength were strong for 

MAb 2 (Figure 4.3b) and weak for MAb 4 (Figure 4.3d). MAb 3 (Figure 4.3c) showed 

electrostatic repulsions at the lowest ionic strength values tested (i.e., 10 mM). 

However, there was a nonmonotonic dependence of 𝐵22 as a function of ionic 

strength, where electrostatic interactions were net attractive at intermediate ionic 

strengths (i.e., 30 to 110 mM). This suggests that MAb 3 has considerable charge 

anisotropy at pH 6.5 that results in attractive interactions at intermediate ionic 

strengths, while the net charge dominates at low ionic strength where the Debye 
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screening length becomes large enough to shift the self-interactions to “simple-

colloidal” net repulsions.179 A nonmonotonic dependence of 𝐵22 as a function of ionic 

strength has been observed in other MAbs and proteins (including the monovalent Fc-

fusion in Chapter 3), consistent with that interpretation of the results for MAb 

3.42,171,205,222 

Simultaneous low-𝑐2 DLS measurements of 𝑘𝐷 for MAb 3, MAb 4, MAb 5, 

and MAb 6, shown in Figure 4.4, broadly corroborate the conclusions about two-body 

net self-interactions from the SLS measurements of 𝐵22/𝐵22,𝑆𝑇 outlined above. 

Although DLS is influenced by hydrodynamic interactions in addition to 

thermodynamic interactions184,221, the value of 𝑘𝐷 is well-correlated with 𝐵22 for 

MAbs and other proteins41,42,54, and the data in this work is consistent with those 

results (see also Figure 1.1). The qualitative conclusions from molecular simulations 

below would be equivalent if experimental 𝐵22 values had been inferred from the 𝑘𝐷 

measurements. In practice, one might prefer to use DLS to refine model parameters if 

it can be performed with higher throughput.  
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Figure 4.4: 𝑘𝐷 as a function of ionic strength for MAb 3 (a), MAb 4 (b), MAb 5 (c), 

and MAb 6 (d) at pH 5 (black squares) and pH 6.5 (gray circles), with 

lines to guide the eye. 

The corresponding apparent molecular weight (𝑀𝑤,𝑎𝑝𝑝) values from low-𝑐2 

SLS and DLS measurements are shown in Figure 4.5. 𝑀𝑤,𝑎𝑝𝑝 values at low IS in most 

cases were near or below the protein molecular weight (the black dashed lines in 

Figure 4.5), indicating a largely monodisperse solution. 𝑐2-dependent values of 

polydispersity index (PDI) from DLS support that conclusion for low- to high-

concentration samples for MAb 3, MAb 4, MAb 5, and MAb 6, shown in Figure 4.6. 

𝑀𝑤,𝑎𝑝𝑝 generally reduced as ionic strength was increased, which can be explained by 

nonideal interactions between the MAbs and NaCl ions.35,41 MAb 2 at pH 6.5 and 

MAb 3 at pH 5 have low IS 𝑀𝑤,𝑎𝑝𝑝 values significantly above the protein molecular 



 112 

weight, indicative of a relatively small subpopulation of reversible oligomers or 

aggregates. MAb 2 at pH 6.5 had strongly attractive electrostatic self-interactions (i.e., 

𝐵22 𝐵22,𝑆𝑇⁄  << 0) and had a tendency for aggregation and phase separation; one or 

both of those factors likely accounts for the observed increase in 𝑀𝑤,𝑎𝑝𝑝. Preliminary 

experiments for MAb 3 at pH 5 showed that the increased 𝑀𝑤,𝑎𝑝𝑝 values were due to 

aggregates formed during sample preparation and that the values of 𝐵22 𝐵22,𝑆𝑇⁄  and 𝑘𝐷 

were approximately the same when the sample preparation procedure was improved 

such that the aggregates were no longer present. The high-𝑐2 SLS and DLS 

experiments discussed below for MAb 3 were performed with 3 independently 

prepared protein stocks that did not contain that subpopulation of aggregates.  
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Figure 4.5: 𝑀𝑤,𝑎𝑝𝑝 as a function of ionic strength for MAb 1 (a), MAb 2 (b), MAb 3 

(c), MAb 4 (d), MAb 5 (e), and MAb 6 (f) at pH 5 (black squares) and 

pH 6.5 (gray circles).49,50 𝑀𝑤,𝑎𝑝𝑝 values at other ionic strength conditions 

for MAb 1 were not reported in prior work. 
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Figure 4.6: Polydispersity index (PDI) as a function of 𝑐2 for MAb 3 (a), MAb 4 (b), 

MAb 5 (c), and MAb 6 (d) for the formulations shown in Table 4.1: pH 5 

at low ionic strength (filled black squares), pH 5 at intermediate ionic 

strength (open black squares), pH 6.5 at low ionic strength (filled gray 

circles), and pH 6.5 at intermediate ionic strength (open gray circles). 

High-𝑐2 SLS measurements of 𝑆𝑞=0 are shown in Figure 4.7, and the 𝐺22 

values used to calculate 𝑆𝑞=0 are shown in Figure C.1 (Appendix C). A reference state 

for steric repulsions is also included in Figure 4.7 based on simulation results from 

prior work.50 Measurements at intermediate ionic strength at both pH values were 

attractive with respect to steric repulsions for all six MAbs. Intermediate ionic strength 

data also gave insight into electrostatic interactions. When 𝑆𝑞=0 values for low ionic 

strength conditions were below (above) the higher ionic strength measurements, 

electrostatic interactions were net repulsive (attractive). High-𝑐2 SLS measurements at 
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pH 5 and low ionic strength for all six MAbs had 𝑆𝑞=0 values far below one in 

accordance with the strong repulsive self-interactions observed at low-𝑐2. The same 

qualitative low ionic strength electrostatic contributions were consistent at high-𝑐2 at 

pH 6.5 and low ionic strength: MAb 1, MAb 3, MAb 5, and MAb 6 had electrostatic 

repulsions, MAb 4 had weak electrostatic attractions, and MAb 2 had strong 

electrostatic attractions. 𝑆𝑞=0 decreased at high-𝑐2 values due at least in part to steric 

repulsions from crowding. Despite the qualitative agreement with low-𝑐2 data, one 

could not extrapolate these results with just a measurement of 𝐵22 or 𝑘𝐷 as multi-body 

interactions and steric repulsions from crowding at high-𝑐2 lead to nonlinearity in 𝑆𝑞=0 

profiles. 
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Figure 4.7: 𝑆𝑞=0 as a function of 𝑐2 for MAb 1 (a), MAb 2 (b), MAb 3 (c), MAb 4 

(d), MAb 5 €, and MAb 6 (f) for the formulations shown in Table 4.1: pH 

5 at low ionic strength (filled black squares), pH 5 at intermediate ionic 

strength (open black squares), pH 6.5 at low ionic strength (filled gray 

circles), and pH 6.5 at intermediate ionic strength (open gray circles).49,50 

The purple dot-dashed line is a steric repulsion equation of state.50 The y-

axis scale for MAb 2 (panel b) is extended to fit all of the data. 
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Simultaneous DLS measurements of 𝐷𝐶  are shown in Figure 4.8 and are 

consistent with the conclusions from SLS outlined below, although perhaps more 

convoluted due to the less straightforward interpretation of 𝐷𝐶  with respect to e.g., a 

steric reference state or consideration of hydrodynamic contributions. There are 

ongoing efforts to predict hydrodynamic contributions to 𝐷𝐶  for MAbs in the context 

of viscosity74,194,228, however this is out of the scope of this work.  

 

Figure 4.8: 𝐷𝐶  as a function of 𝑐2 for MAb 3 (a), MAb 4 (b), MAb 5 (c), and MAb 6 

(d) for the formulations shown in Table 4.1: pH 5 at low ionic strength 

(filled black squares), pH 5 at intermediate ionic strength (open black 

squares), pH 6.5 at low ionic strength (filled gray circles), and pH 6.5 at 

intermediate ionic strength (open gray circles). Data for MAb 3 at pH 5 at 

low ionic strength above 75 mg/mL are omitted due to polydispersity 

values significantly above 0.1.  
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4.3.2 High-concentration predictions of self-interactions from CG simulations 

As described in section 4.2.3, MSOS simulations were performed to optimize 

parameters that scale the relative strength of short-ranged non-electrostatic and 

electrostatic interactions, 𝑠𝑟 and 𝜓, respectively. 𝑠𝑟 was set for each MAb and CG 

model and was chosen to match 𝐵22/𝐵22,𝑆𝑇 at high ionic strength independent of pH, 

illustrated in Figure 4.9. 

 

Figure 4.9: 𝐵22/𝐵22,𝑆𝑇 as a function of 𝑠𝑟 where no electrostatic interactions are 

present (i.e., 𝜓 = 0) for the DODECA (a) and 1bC/D (b) models. The 

DODECA model is not MAb-specific, so one curve is shown in black. 

The results for the 1bC/D model are specific to the MAb structure and 

are shown in indigo for MAb 1, green for MAb 2, purple for MAb 3, 

yellow for MAb 4, light blue for MAb 5, and gray for MAb 6. Points in 

both figures correspond to the chosen 𝑠𝑟 value for each MAb and match 

the previously listed colors. 

The values of 𝜓 were determined for each MAb, pH, and CG model to 

minimize the RMSD (see Equation 3.3) between the simulated and experimental 

profile of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength. Optimized values of 𝑠𝑟 and 𝜓 

are shown in Table 4.2 for the 1bC/D and DODECA models, separated by whether the 
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net electrostatic self-interactions were attractive or repulsive. The corresponding 

figures of RMSD as a function of 𝜓 are shown in Figure C.2 and C.3 (Appendix C) for 

pH 5 and pH 6.5 formulations, respectively. 
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Table 4.2: Optimized values of 𝑠𝑟 and 𝜓 for each MAb, pH and CG model and 

qualitative agreement with high-𝑐2 experimental data 

MAb (pH) 

DODECA 1bC/D 

Pred. 𝒔𝒓 
(𝒌𝑩𝑻) 

𝝍  Pred. 𝒔𝒓 
(𝒌𝑩𝑻) 

𝝍  

Electrostatic repulsions 

MAb 1 (5) ✓ 0.69 
0.45  

(0.41-0.48) 
~ 0.57 

0.54  

(0.50-0.58) 

MAb 1 (6.5) ✓ 0.69 
0.78  

(0.72-0.88) 
~ 0.57 

1.05  

(0.90-1.20) 

MAb 2 (5) ✓ 0.64 
0.54  

(0.49-0.59) 
✓ 0.55 

0.78  

(0.74-0.80) 

MAb 3 (5) ✓ 0.61 
0.66  

(0.63-0.73) 
✓ 0.53 

0.70  

(0.66-0.75) 

MAb 3 (6.5) ~ 0.61 
0.42  

(0.24-0.69) 
~ 0.53 

1.05  

(0.90-1.10) 

MAb 4 (5) ✓ 0.52 
0.41  

(0.37-0.44) 
✓ 0.46 

0.50  

(0.46-0.54) 

MAb 5 (5) ✓ 0.57 
0.58 

(0.55-0.60) 
✓ 0.49 

0.68 

(0.64-0.72) 

MAb 5 (6.5) ✓ 0.57 
0.91 

(0.88-0.95) 
X 0.49 

0.90 

(0.50-1.10) 

MAb 6 (5) ✓ 0.65 
0.54  

(0.50-0.58) 
✓ 0.55 

0.60 

(0.54-0.64) 

MAb 6 (6.5) ✓ 0.65 
0.71 

(0.66-0.76) 
✓ 0.55 

1.02 

(0.95-1.10) 

Electrostatic attractions 

MAb 2 (6.5) X 0.64 
1.73  

(1.66-1.78) 
✓ 0.55 

1.125  

(1.10-1.15) 

MAb 4 (6.5) X 0.52 
1.48  

(1.45-1.52) 
✓ 0.46 

0.92  

(0.88-0.96) 
Check marks (✓), tildes (~), and Xs correspond to good, fair, and poor qualitative 

agreement with high-𝑐2 experimental data, respectively. Results are shown for the 

1bC/D model with nominal pKa values. 
The first value listed is the optimal value, and in parentheses are the uncertainty 

bounds that shown as error bars in the high-𝑐2 predictions. 
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Simulated profiles of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength are shown in 

Figure 4.10 for the six MAbs at pH 5 conditions, where experimental results indicated 

“simple colloidal” behavior. These simulations were used to optimize the 𝜓 parameter 

and what is shown in Figure 4.10 are the results using the optimal 𝜓 values and their 

estimated uncertainties (see Table 4.2). Both the DODECA and 1bC/D models capture 

the “simple colloidal” electrostatic repulsions well, quantitatively or semi-

quantitatively in all cases. High-𝑐2 simulations with the DODECA and 1bC/D models 

were performed with the optimal 𝑠𝑟 value and three 𝜓 values: the optimal value, and 

the lower and upper bounds of the estimated uncertainty (see Table 4.2 and section 

4.2.3). The simulations were performed for the same formulations as the experimental 

measurements (see Table 4.1) and were used to predict self-interactions in the form of 

𝑆𝑞=0 profiles as a function of 𝑐2, shown in Figure 4.11. Predictions from the 

DODECA model are presented as curves based on TMMC simulations, while 

predictions from the 1bC/D model were from direct GCMC simulations at particular 

values of 𝑐2 to reduce computational burden (see section 4.2.3). High-𝑐2 predictions 

were also accurate at a quantitative or semi-quantitative level for all MAbs with both 

CG models, with the exception of the 1bC/D model for MAb 1 where the predicted 

electrostatic repulsions were not as strong as the experimental measurements. At pH 5, 

each of the MAbs was far below its pI, thus “simple-colloidal” net repulsions were 

expected to be dominant at low ionic strength and driven by the net charge of the 

protein, while at intermediate ionic strength, electrostatic repulsions were weakened 

by Debye screening. This behavior is captured by the DODECA model, corroborating 

prior work (including in Chapter 2) that has shown that domain-level models can 
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capture repulsive and weakly attractive (non-electrostatic) self-interactions at high-𝑐2 

conditions.49,50,68 

 

 

Figure 4.10: MSOS simulations of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength at pH 5 

for MAb 1 (a), MAb 2 (b), MAb 3 (c), MAb 4 (d), MAb 5 (e), and MAb 

6 (f). The experimental data are reproduced from Figure 4.3 (black 

squares), DODECA results are dashed green lines, and 1bC/D results are 

solid indigo lines. Shaded regions correspond to uncertainty in the 𝜓 

parameter from Table 4.2. 
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Figure 4.11: High-𝑐2 predictions of 𝑆𝑞=0 as a function of MAb concentration (𝑐2) at 

pH 5 for MAb 1 (a), MAb 2 (b), MAb 3 (c), MAb 4 (d), MAb 5 (e), and 

MAb 6 (f). The experimental data are reproduced from Figure 4.3 as 

filled (open) black squares for low (intermediate) ionic strength 

conditions. Predictions with the optimal 𝜓 value by the 1bC/D model are 

filled (open) indigo triangles for low (intermediate) ionic strength. 

Predictions with the optimal 𝜓 value by the DODECA model are solid 

(dashed) green lines for low (intermediate) ionic strength. Shaded regions 

for DODECA and error bars for 1bC/D correspond to uncertainty of the 

𝜓 parameter (see Table 4.2). The purple dash-dotted line is a steric-only 

equation of state.50 
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Similar to the results presented above for pH 5 formulations, low-𝑐2 

simulations of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength and the predicted profiles of 

𝑆𝑞=0 as a function of 𝑐2 for pH 6.5 conditions are shown in Figure 4.12 and 4.13, 

respectively. Most notably, the 1bC/D model correctly predicts significant electrostatic 

attractions at high-𝑐2 for MAb 2 (Figure 4.13b) and MAb 4 (Figure 4.13d), while the 

DODECA model underestimates electrostatic attractions (MAb 2) or predicts 

electrostatic repulsions (MAb 4). The consolidation of all charged sites in a MAb into 

domains (in this case, 12 domain beads) with “lumped” net charges in the DODECA 

model is clearly an inadequate estimation when attempting to capture electrostatic 

interactions that are not well described as “simple-colloidal” net repulsions. This is 

because the DODECA model does not have the proper structural resolution to account 

for molecular configurations with oppositely charged amino acids that contribute 

significantly to, or even dominate, electrostatic attractions. It is clear from these results 

that the surface charge locations that are more accurately depicted by the 1bC/D model 

were key to accurately model electrostatic attractions at high-𝑐2. DODECA results for 

MAb 2 at high-𝑐2 are a useful example of where the domain-level model is 

misleading, as the 1bC/D results clearly indicate poor solution behavior due to strong 

attractions while the DODECA model is unable to capture that behavior. The 

experimental behavior corroborates this, as MAb 2 in the pH 6.5, low ionic strength 

condition displays opalescence and ultimately liquid-liquid phase separation on longer 

time scales at protein concentrations above ~40 mg/mL. It is important for a predictive 

tool to avoid “false negatives”, in this case predictions that do not accurately 

reproduce strong attractions at high-𝑐2 like those for MAb 2.  
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Figure 4.12: MSOS simulations of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength at pH 6.5 

for MAb 1 (a), MAb 2 (b), MAb 3 (c), MAb 4 (d), MAb 5 (e), and MAb 

6 (f). The experimental data are reproduced from Figure 4.3 (gray 

circles), DODECA results are dashed green lines, and 1bC/D results are 

solid indigo lines. Shaded regions correspond to uncertainty in the 𝜓 

parameter from Table 4.2. The y-axis scale for MAb 2 (panel b) is 

extended to fit all of the data. 
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Figure 4.13: High-𝑐2 predictions of 𝑆𝑞=0 as a function of MAb concentration (𝑐2) at 

pH 6.5 for MAb 1 (a), MAb 2 (b), MAb 3 (c), MAb 4 (d), MAb 5 (e), 

and MAb 6 (f). The experimental data are reproduced from Figure 4.3 as 

filled (open) gray circles for low (intermediate) ionic strength conditions. 

Predictions with the optimal 𝜓 value by the 1bC/D model are filled 

(open) indigo triangles for low (intermediate) ionic strength. Predictions 

with the optimal 𝜓 value by the DODECA model are solid (dashed) 

green lines for low (intermediate) ionic strength. Shaded regions for 

DODECA and error bars for 1bC/D correspond to uncertainty of the 𝜓 

parameter (see Table 4.2). The purple dash-dotted line is a steric-only 

equation of state.50 The y-axis scale for MAb 2 (panel b) is extended to 

fit all of the data. 
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Qualitative accuracy of the high-𝑐2 predictions (i.e., either “good”, “fair”, or 

“poor”) are summarized in Table 4.2. While the 1bC/D model was clearly preferable 

to the DODECA model in cases with net attractive electrostatic interactions (i.e., MAb 

2 and MAb 4), the DODECA model was equal to or preferable to the 1bC/D model for 

systems with net repulsions (i.e., MAb 1, MAb 3, MAb 5, and MAb 6). High-𝑐2 

predictions at pH 6.5 from the DODECA model were nearly quantitative for MAb 1, 

MAb 5, and MAb 6 (Figure 4.13a, 4.13e, and 4.13f, respectively) in comparison with 

the 1bC/D model which underestimated electrostatic repulsions at low and 

intermediate ionic strength values. 1bC/D predictions were poor for MAb 5 where the 

model predicted quite mild electrostatic repulsions that were particularly inconsistent 

with the experimental data. The results are similar between the two CG models for 

MAb 3 at pH 6.5 (Figure 4.13c), although there was large uncertainty in the 𝜓 

parameter for the DODECA model. The broad range of predicted profiles would make 

the DODECA model less useful from a quantitative rather than qualitative perspective. 

This was in part due to the choice of matching the entire 𝐵22 vs. ionic strength profile 

when determining 𝜓 rather than only a particular ionic strength of interest for high-𝑐2 

predictions as neither model could quantitatively capture the nonmonotonic behavior 

of 𝐵22. For MAb 3, the 𝜓 value that matched the low ionic strength 𝐵22/𝐵22,𝑆𝑇 value 

for DODECA yielded the best high-𝑐2 prediction (the lower bound of the 𝑆𝑞=0 

prediction). 

4.3.3 Methods to improve representation of charge equilibria 

As noted above, many of the high-𝑐2 predictions from the 1bC/D model were 

lacking at pH 6.5 formulations (see Figure 4.13). For MAb 1, MAb 3, MAb 5, and 

MAb 6, there was no value of 𝜓 that could capture the strength of electrostatic 
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repulsions at low ionic strength and low-𝑐2 (i.e., the 𝐵22/𝐵22,𝑆𝑇 value at 10 mM ionic 

strength). The nonmonotonic 𝐵22/𝐵22,𝑆𝑇 profile as a function of ionic strength for 

MAb 3 at pH 6.5 was not captured by either model. Although the 1bC/D model could 

properly capture the low ionic strength 𝐵22/𝐵22,𝑆𝑇 values for MAb 2 and MAb 4, 

which both had net attractive electrostatic interactions, the ionic strength dependence 

could be improved and the high-𝑐2 predictions for MAb 2 had high error and required 

an exceptional amount of computational resources compared to the other conditions.  

These challenges could be attributed to the treatment of charge states in the 

model; His residues were uncharged at pH 6.5 in the 1bC/D model, and the 

corresponding charged sites were excluded, while each His residue in the DODECA 

model was assigned a partial charge based on the Henderson-Hasselbalch equation and 

contributed to the overall domain bead charge.28 This is of particular practical 

relevance as the nominal pKa value of His is approximately 6.0, and is within one pH 

unit of the pH of most commercially-available high-𝑐2 antibody therapies.3,229 Two 

different approaches to more realistically represent charge equilibria with the 1bC/D 

model were evaluated: 1) assigning pKa values of each ionizable residue individually, 

rather than assuming nominal pKa values for all residues of a given amino acid type, 

and 2) explicitly modeling dynamic charge equilibria in the simulations.  

Unique pKa values for each ionizable residue were estimated with 

PROPKA186, one of many algorithms available for this purpose.230–232 The PROPKA 

algorithm accounts for the impact of the local environment in the protein (i.e., the 

location and identity of proximal residues) on the pKa of a given sidechain. This 

technique is frequently used in molecular dynamics simulations of proteins.106,233,234 

At pH 6.5, PROPKA estimated that a subset of the His residues had pKa values greater 
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than 6.5, which led to the addition of roughly 20 positive charged sites for each MAb, 

compared to ~250 total charged sites. The algorithm for explicit charge fluctuations 

was developed in prior work and is described in section 4.2.5.83 The valence of the His 

charged sites could fluctuate between +1 and 0 per configuration which was also 

implicitly dependent on the local environment in a given configuration. At pH 6.5, no 

other ionizable residues have nominal pKa values close enough to 6.5 for the potential 

fluctuations to be significant. While applying PROPKA pKa values did not increase 

the computational burden of the simulations, explicit fluctuating charges increased the 

computational burden by approximately 2 times as the sampling space was larger. 

More configurations were needed to converge the value of 𝐵22/𝐵22,𝑆𝑇 or 𝑆𝑞=0 because 

the simulations also had to sample the distribution of valence microstates for all of the 

His residues.83 The three different methods will be referred to hereafter as 1) “static 

nominal”, 2) “static PROPKA”, and 3) “fluctuating nominal”. Preliminary simulations 

where the charge states fluctuated with pKa values calculated by the PROPKA 

algorithm (which would be termed “fluctuating PROPKA”) suggested that the two 

methods combined did not provide any additional improvements. 

A comparison of the results from 1bC/D MSOS simulations between the 

different methods is shown in Figure 4.14. 𝜓 values and a summary of qualitative 

agreement with the low-𝑐2 experimental data are shown in Table 4.3. RMSD as a 

function of 𝜓 is shown in Figure C.4 (Appendix C). In cases where the static nominal 

simulations could not reproduce the strength of electrostatic repulsions at low ionic 

strength (i.e., MAb 1, MAb 3, MAb 5, and MAb 6), both the static PROPKA and 

fluctuating nominal methods were able to capture the strength of those repulsions 

quantitatively. Both the static PROPKA and fluctuating nominal methods increased 
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the average net valence of the MAbs by adding positive charges to the proteins, thus 

“simple-colloidal" net repulsions would be expected to increase in strength. The 

nonmonotonic profile of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength for MAb 3 was 

captured by the fluctuating nominal method, although there was quite high sensitivity 

with respect to the 𝜓 parameter which required many simulations to optimize. 

𝐵22/𝐵22,𝑆𝑇 values for MAb 2 were not considerably different between the three 

methods and some of the apparent differences in Figure 4.14 are due to sensitivity to 

the exact value of the 𝜓 parameter. For MAb 4, the static PROPKA method 

erroneously produced a nonmonotonic profile, while the fluctuating nominal 

simulations matched the ionic strength dependence more accurately than the static 

nominal simulations. Overall, the static PROPKA simulations performed better than 

the static nominal simulations only for net repulsive electrostatic self-interactions, 

while the fluctuating nominal simulations were also equal or better for net attractive 

electrostatic self-interactions, but with significantly increased computational burden. 
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Figure 4.14: MSOS simulations of 𝐵22/𝐵22,𝑆𝑇 as a function of ionic strength at pH 6.5 

for MAb 1 (a), MAb 2 (b), MAb 3 (c), MAb 4 (d), MAb 5 (e), and MAb 

6 (f). The experimental data are gray circles (reproduced from Figure 

4.3), static nominal results are solid blue lines (reproduced from Figure 

4.12), static PROPKA results are dashed orange lines, and fluctuating 

nominal results are dash-dotted red lines. Shaded regions correspond to 

uncertainty in the 𝜓 parameter from Table 4.3. The y-axis scale for MAb 

2 (panel b) is extended to fit all of the data. 
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Table 4.3: Optimized values of 𝜓 for each MAb and charge equilibria model and 

qualitative agreement with low-𝑐2 experimental data 

MAb 

Static nominal Static PROPKA Fluctuating nominal 

Pred. 𝝍  Pred. 𝝍  Pred. 𝝍  

Electrostatic repulsions 

MAb 1 ~ 
1.05  

(0.90-1.20) 
✓ 

0.475 

(0.45-0.50) 
✓ 

0.74 

(0.70-0.76) 

MAb 3 ~ 
1.05  

(0.90-1.10) 
~ 

0.40 

(0.38-0.43) 
✓ 

1.31 

(1.30-1.33) 

MAb 5 X 
0.90 

(0.50-1.10) 
✓ 

0.56 

(0.50-0.62) 
✓ 

0.80 

(0.70-0.90) 

MAb 6 ~ 
1.02 

(0.95-1.10) 
✓ 

0.52 

(0.50-0.56) 
✓ 

0.68 

(0.64-0.72) 

Electrostatic attractions 

MAb 2 ✓ 
1.125  

(1.10-1.15) 
✓ 

1.225 

(1.20-1.25) 
✓ 

1.155 

(1.13-1.18) 

MAb 4 ✓ 
0.92  

(0.88-0.96) 
X 

1.26 

(1.22-1.28) 
✓ 

1.125 

(1.10-1.15) 
Check marks (✓), tildes (~), and Xs correspond to good, fair, and poor qualitative 

agreement with low-𝑐2 experimental data, respectively. 
The first value listed is the optimal value, and in parentheses are the uncertainty 

bounds that shown as error bars in the low-𝑐2 predictions. 

 

 

An analogous comparison of the high-𝑐2 predictions of 𝑆𝑞=0 between the three 

charge representation methods for the 1bC/D model is shown in Figure 4.15. The 

analysis was limited to low ionic strength conditions, where the differences in the 

treatment of electrostatic interactions were the most impactful, and where the error in 

high-𝑐2 predictions was generally the largest. Qualitative agreement with the 

experimental data for each method is shown in Table 4.4. Predictions for MAb 1, 

MAb 5, and MAb 6 were improved by both the static PROPKA and the fluctuating 

nominal methods with statistically indistinguishable results for all three MAbs. 
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Predictions were improved for MAb 3 as well, but with significantly stronger 

repulsions than even the experimental data with the fluctuating nominal method. 

Overall, predictions of high-𝑐2 self-interactions where electrostatic interactions were 

net repulsive were improved by both alternate methods of considering charge 

equilibria. 
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Figure 4.15: High-𝑐2 predictions of 𝑆𝑞=0 as a function of MAb concentration (𝑐2) at 

the pH 6.5 low ionic strength formulation for MAb 1 (a), MAb 2 (b), 

MAb 3 (c), MAb 4 (d), MAb 5 (e), and MAb 6 (f). The experimental data 

are filled gray circles (reproduced from Figure 4.3) and predictions with 

the static nominal method are filled blue triangles (reproduced from 

Figure 4.13). Predictions from the static PROPKA and fluctuating 

nominal methods are shown as open orange squares and open red 

diamonds, respectively. Lines connecting the predictions are guides to 

the eye and match the formatting from Figure 4.14. Error bars correspond 

to uncertainty of the 𝜓 parameter (see Table 4.3). The purple dash-dotted 

line is a steric-only equation of state.50 The y-axis scale for MAb 2 (panel 

b) is extended to fit all of the data. 
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Table 4.4: Qualitative agreement with high-𝑐2 experimental data for each MAb and 

charge equilibria method 

MAb 
Static nominal 

Static 

PROPKA 

Fluctuating 

nominal 

Pred. Pred. Pred. 

Electrostatic repulsions 

MAb 1 ~ ✓ ✓ 

MAb 3 ~ ✓ ~ 

MAb 5 X ✓ ✓ 

MAb 6 ✓ ✓ ✓ 

Electrostatic attractions 

MAb 2 ✓ X ✓ 

MAb 4 ✓ N/A ~ 

Check marks (✓), tildes (~), and Xs correspond to good, fair, and poor qualitative 

agreement with high-𝑐2 experimental data, respectively. 

 

 

Predictions of high-𝑐2 self-interactions where electrostatic interactions were 

net attractive were not particularly improved when compared to the static nominal 

method that was used in the previous section. For MAb 2, the static PROPKA method 

predicted much weaker electrostatic attractions and the results were not representative 

of the experimental data. The predictions with the fluctuating nominal method were 

qualitatively similar to the static nominal method in that they predicted strong 

electrostatic attractions, but the computational burden was much higher 

(approximately an order of magnitude more) compared to the static nominal method. 

For MAb 4, the nominal PROPKA method was not attempted as the simulated low-𝑐2 

𝐵22 𝐵22,𝑆𝑇⁄  profiles were inconsistent with the experimental data. The high-𝑐2 

predictions with the nominal fluctuating method were significantly worse than those 
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with the static nominal method. The predicted high-𝑐2 net self-interactions were less 

attractive than the results from the static nominal simulations or experimental 

measurements, and the net electrostatic interactions were approximately neutral such 

that the 𝑆𝑞=0 values did not change significantly at higher ionic strength (see Figure 

C.5 in Appendix C).  

4.3.4 Context-driven CG model and charge equilibria method selection 

In summary, the ideal CG model and for the 1bC/D model, the ideal method 

used to represent charge equilibria, was context dependent with no clear universal 

setup to capture low- to high-𝑐2 net self-interactions regardless of their magnitude or 

sign (i.e., repulsive or attractive). In cases with “simple-colloidal” electrostatic net 

repulsions, one can reliably apply the DODECA model, or for a significant increase in 

computational burden, the 1bC/D model with the static PROPKA or nominal 

fluctuating charge representation methods. However, those methods all had limitations 

in cases with net attractive electrostatic self-interactions. The static nominal method 

with the 1bC/D model works well for cases with net attractive electrostatic self-

interactions but performs very poorly for cases with “simple-colloidal” electrostatic 

net repulsions at pH 6.5. With experimental 𝐵22 𝐵22,𝑆𝑇⁄  values, a conditional approach 

to predicting high-𝑐2 net self-interactions would be successful, at least with the dataset 

in this Chapter. 

Without experimental data (e.g., if used as a screening tool in early-stage drug 

development), the DODECA model would be prone to false negatives as it 

erroneously predicted electrostatic repulsions at high-𝑐2 and could not capture the 

nonmonotonic value of 𝐵22 𝐵22,𝑆𝑇⁄  as a function of ionic strength at low-𝑐2 for MAb 3 

at pH 6.5. There were other cases in Chapter 2 where the DODECA model could not 
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capture electrostatic attractions at low-𝑐2 as well. The static PROPKA method could 

not capture the nonmonotonic low-𝑐2 𝐵22 𝐵22,𝑆𝑇⁄  values for MAb 3 either and 

struggled generally in cases with net attractive electrostatic interactions. The static 

nominal method would be prone to false positives as it could not consistently capture 

the strength of electrostatic repulsions, particularly in the case of MAb 5 that might be 

flagged as potentially problematic. The fluctuating nominal method was the only 

universally successful simulation setup at low-𝑐2, but the high-𝑐2 predictions for MAb 

3 and in cases with net attractive electrostatic interactions were equal to or worse than 

those for the static nominal method. Further improvements would be needed for 

consistently reliable qualitative low- to high-𝑐2 predictions. 

4.3.5 Ranking average electrostatic energies of charged sites for strong 

electrostatic attractions 

In this chapter, the net self-interactions for MAb 2 at pH 6.5 were by far the 

most problematic. The net electrostatic interactions were strongly attractive, which is 

associated with many poor biophysical behaviors, some of which were observed 

experimentally (e.g., phase separation and opalescence).49 To further investigate the 

electrostatic origins of those attractions, the Mayer-weighted average electrostatic 

energy for each charged site (̃
𝑖
) in 1bC/D MSOS simulations (with the static nominal 

method) of MAb 2 was calculated and is shown in Figure 4.16a for pH 5 at low ionic 

strength and Figure 4.16b for pH 6.5 at low ionic strength. His residues are shown for 

pH 5 but omitted for pH 6.5 as they were uncharged in the model. In recent work, a 

similar procedure was used with the 1bC/D model to predict MAb variants that would 

reduce strongly attractive electrostatic self-interactions, which were confirmed by SLS 

and DLS measurements.44 The results shown in this section are similar in concept to 
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those in section 3.3.3, but on the individual amino acid level rather than based on 

specific charge-charge pairwise interactions. 

 

Figure 4.16: Mayer-weighted average electrostatic energy (̃
𝑖
) for charged sites in 

MAb 2 at pH 5 at low ionic strength (a) and pH 6.5 at low ionic strength 

(b). Positively (negatively) charged atoms are shown in blue (red). 

Domain boundaries are vertical dashed grey lines with labels on the x-

axis. The black dashed line at ̃
𝑖
= 0 denotes zero net energy. Error bars 

are 95% confidence intervals from 3 independent simulations. 

The results for MAb 2 at pH 5 (Figure 4.16a) show that all Mayer-weighted 

energies were small with respect to 𝑘𝐵𝑇, thus specific, strongly attractive electrostatic 

interactions were not necessarily favored. This was expected given the repulsive 𝐵22 

value at pH 5, which suggested that more general “simple-colloidal” net repulsions 

based on overall net surface charge were dominant. Results for other MAbs at pH 5 

and pH 6.5 were analogous (i.e., small values of ̃
𝑖
 with respect to 𝑘𝐵𝑇), consistent 

with 𝐵22 values that were repulsive or at most were weakly attractive and thus were 

not as dependent on specific molecular configurations with strong electrostatic 

attractions between particular residues. 
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However, for MAb 2 at pH 6.5, where 𝐵22 indicated strongly attractive self-

interactions, there were several residues that had large, negative values of ̃
𝑖
 (note the 

difference in scale between panels a and b). Charged sites in the CH2 domain played 

the largest role in the strong electrostatic attractions compared to the other domains, 

although some charged sites in other domains had notably negative values of ̃
𝑖
 as 

well. Table 4.5 lists the amino acids with the most negative average electrostatic 

energies at pH 6.5. This analysis gives insight into the amino acids that are most 

relevant to the specific configurations that lead to electrostatic attractions and could 

help identify promising protein variants. 

Table 4.5: Ranking of the 10 amino acids with the most negative ̃
𝑖
 values for 

1bC/D MSOS simulations of MAb 2 at pH 6.5 

Charged residue ̃
𝒊
 (kBT) 

Arg474 -1.31 

Glu512 -1.04 

Glu488 -0.99 

Lys467 -0.93 

Arg436 -0.85 

Lys465 -0.80 

Asp489 -0.75 

Glu491 -0.58 

Lys183 -0.55 

Lys126 -0.51 

 

 



 140 

4.4 Summary and conclusions 

Self-interactions for six MAbs in a range of industrially relevant solution 

conditions were experimentally quantified with SLS at low and high-𝑐2 conditions. 

For four of the MAbs, DLS was used as an orthogonal measure of self-interactions 

that corroborated findings from SLS measurements. A domain-level CG molecular 

model, DODECA, and a higher resolution hybrid model, 1bC/D, were compared based 

on their accuracy in predicting high-𝑐2 net self-interactions in the form of zero-𝑞 static 

structure factor (𝑆𝑞=0) profiles from SLS. When low-𝑐2 behavior was “simple-

colloidal” (i.e., electrostatic repulsions at low ionic strength that monotonically decay 

to weak non-electrostatic attractions at high ionic strength), the domain-level model 

(DODECA) predicted high-𝑐2 behavior well, consistent with previously reported work 

and findings in Chapter 2.49,50,68,179 The 1bC/D model was able to correctly predict the 

nature of electrostatic interactions (i.e., attractive or repulsive) in all cases, even for 

strong electrostatic attractions, while the DODECA model gave poor predictions for 

systems with significant electrostatic attractions. Those poor predictions would be 

misleading if used when determining formulation conditions or selecting prospective 

MAb candidate(s) based on their anticipated developability challenges. With only low-

𝑐2 SLS measurements of the second osmotic virial coefficient 𝐵22 (or 𝑘𝐷 from DLS), 

the 1bC/D model can predict the balance between steric repulsions due to crowding, 

short-ranged non-electrostatic interactions such as hydrogen bonding or hydrophobic 

interactions, and electrostatic attractions and repulsions at high-𝑐2. This method is not 

exclusive to MAbs and is easily transferable to other proteins provided that their 

sequences and homology models are available.  

Challenges that stemmed from the representation of charge equilibria were 

addressed by two different methods: one that individually assigned pKa values for 
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each ionizable residue and another that explicitly represented dynamic charge 

fluctuations. For cases with net repulsive electrostatic interactions, low- to high-𝑐2 

simulations were more accurate, particularly with the latter method. Analysis of 

average interaction energies from charged sites for the MAb with the strongest 

electrostatic attractions (MAb 2) suggested that specific interactions involving amino 

acids in the CH2 domain were prominent in driving those strong attractions. Future 

work with the 1bC/D model could include the incorporation of hinge flexibility to 

sample a more complex configuration space, or algorithms such as configurational 

bias to improve acceptance rates at high-𝑐2.76,226 Future work could also focus on the 

effects of cosolutes such as ions, surfactants, or ionic liquids on electrostatic self-

interactions by explicitly representing them in the simulations.  
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DECONVOLUTING THE BIOPHYSICAL PHENOMENA THAT INFLUENCE 

LONG-TERM AGGREGATION RATES OF HIGH-CONCENTRATION 

MONOCLONAL ANTIBODY FORMULATIONS 

5.1 Introduction 

As discussed in section 1.3.3, irreversible protein aggregation (hereafter 

referred to as aggregation) is a problematic and ubiquitous challenge within drug 

development of therapeutic proteins. Aggregation can create challenges in many 

processes within development and manufacturing, limit product shelf-life, and trigger 

unwanted immunogenic responses when introduced to a patient.114,125–128 This chapter 

is focused on the long-term stability of high-concentration (i.e., > 100 mg/mL) MAb 

solutions, such as those intended for subcutaneous injection. In this context, long-term 

stability refers to the rate of aggregation over timescales on the order of months to 

years. Formulations that minimize aggregation can be challenging to develop as 

solution conditions like pH, excipient concentrations, and protein concentration can 

have complex relationships with the aggregation process that can differ between 

different proteins.125,147,235–237 With a large selection of solution conditions to choose 

from, and limited available protein material in earlier stages of development, 

determining stable solution conditions can be a difficult process to do quickly (see also 

section 1.5).91,229,238 

From an industrial / practical perspective, there is a need for tools and methods 

to predict long-term, high-concentration aggregation rates as early as possible in the 

Chapter 5 
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product discovery and development lifecycles as a part of developability assessment, 

or even to expand the space of “developable” proteins by accurate prediction of 

suitable solution conditions. The range of possible solution conditions is typically 

reduced by high-throughput screening experiments (i.e., sample sparing and short 

time-scale) that measure quantities that could be considered to be a proxy for poor 

long-term stability.11,53 Measurements of conformational stability (e.g., via differential 

scanning calorimetry (DSC) or isothermal chemical denaturation) are common (see 

also section 1.3.1), but only directly apply to a subcase of conditions where the 

measured conformational change (e.g., domain-level unfolding or misfolding) is 

quantified and determinate of the aggregation rate.92,139,239–245 Measurements of self-

interactions are also commonplace (e.g., via SLS and DLS) and similarly, there is 

evidence to support that these quantities are related to aggregation rates in certain 

subcases, such as when electrostatic repulsions reduce aggregation rates.43,85,137–140 

Computational methods are available, with varied degrees of success, that attempt to 

predict fundamental quantities related to conformational stability, self-interactions, or 

amino acid sequences that could be considered aggregation “hot spots”.11,25,91,151 

Experimental and computational screening may be able to partially reduce the space of 

possible solution conditions (and protein candidates), but have not been broadly 

successful in quantitatively predicting long-term aggregation rates, particularly with 

respect to changes in solution conditions.53,56–61 There has been much recent interest in 

using machine learning (ML) methods to parse the features relevant to protein 

aggregation and make predictions of long-term physical stability.40,85,148,170,233,246–249 

Significant progress has been made in other related areas, particularly in prediction of 

elevated viscosity.99,233,250,251 The inherently confidential nature of drug development 
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is a challenge as many pharmaceutical companies generate data that could be useful in 

effectively parsing the important features to protein aggregation, but that data is not 

publicly available. The long-term stability of commercially available therapeutics is 

inherently biased towards stable formulations, and information about the formulations 

that were less stable, and thus the potential sources of their instability, is not typically 

disclosed. 

In this chapter, aggregation rates for four MAbs (introduced in Chapter 4 as 

MAb 3, MAb 4, MAb 5, and MAb 6) were measured at a range of solution conditions 

(pH 5 and pH 6.5; 10 mM and ~110 mM ionic strength), MAb concentrations (10, 35, 

and 130 mg/mL) and incubation temperatures (4 C, 30 C, and 45-50 C) 

representative of industrial stability studies and/or commercial drug product storage 

conditions.3,15,91,252 The measured aggregation rates spanned several orders of 

magnitude, from hours to years. The dataset in this chapter was designed to 

systematically test specific formulation features (i.e., pH, ionic strength, and protein 

concentration) with respect to incubation temperature to better understand the global 

features of MAb aggregation. Aggregation rates in the initial-rate regime were 

quantified with size-exclusion chromatography (SEC), and subvisible particle 

formation was monitored with backgrounded membrane imaging (BMI). Each MAb 

was also characterized based on its conformational stability (via DSC), and self-

interactions (via SLS and DLS, data shown in Chapter 4) across the solution 

conditions from the stability studies. MAb 1 from Chapters 2 and 4 is also referenced, 

but was not studied in the context of long-term stability in this work.43,48–50,179 

Interpretable statistical models based on ML methods were applied to parse and 

quantify the features relevant to the measured aggregation rates at high-concentration 
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(i.e., 130 mg/mL). The models provided a more rigorous framework for determining 

statistical significance that could distinguish between somewhat collinear features. 

Aggregation rates of high-concentration protein solutions at realistic long-term storage 

conditions such as what are presented here have been limited to a relatively small 

number of reports in the literature, and have been confined to smaller sets of 

formulations and/or proteins.56,129,145,151,160,169,214,253 The result indicate some guidance 

for rational stability study design, as well as toward the development of robust ML 

models for prediction of long-term aggregation rates. The formulation conditions in 

this work are broadly similar to those from Chapter 4 and are shown in Table 5.1. 

Table 5.1: Formulation conditions for stability studies in this chapterα 

Formulation 

NaCl 

concentration 

(mM) 

Total ionic 

strength (mM) 
Symbol types 

pH 5 low IS 4 10 Purple filled circle 

pH 5 high IS 100 106 Purple open circle 

pH 6.5 low IS 0 10 Green filled triangle 

pH 6.5 high IS 110 110 Green open triangle 
α All studies were performed for 10, 35, and 130 mg/mL MAb concentrations 
 Symbol types that correspond to results in Figures in this chapter 

5.2 Materials and methods 

5.2.1 Backgrounded membrane imaging 

Subvisible particle formation was quantified with a Halo Labs HORIZON 

instrument (Halo Labs, Burlingame, CA). Samples were diluted to 1 mg/mL with 

matching buffer, and 3 50 μL aliquots of a given sample were pipetted onto 3 different 
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wells of a 96-well membrane plate with 0.4 μm pore size polycarbonate filters. A 350 

mbar vacuum was applied to remove the liquid and immobilize the subvisible 

particles, and wicking paper was used to remove liquid that might have adhered to the 

bottom of the membranes. Images were taken of the membrane and image analysis 

was performed with HORIZON VUE software. Further details about the technique 

and comparisons with similar instruments (e.g., MFI, FlowCam, and HIAC) have been 

reported elsewhere.88,254–257 

The histogram of particle counts for a given sample by equivalent circular 

diameter, minus any particles from a buffer-only measurement, were converted to 

particle area. The cumulative subvisible particles of all sizes present in the solution 

were quantified as total particle area per 100 mg protein, to normalize for different 

starting concentrations. Although particle counts, rather than areas, are the typical 

quantity monitored by regulatory agencies, particle areas were used here to connect 

more directly to the mass of protein being incorporated into the subvisible particles. 

In this chapter, BMI results were separated into 2 binary categories based on 

whether significant subvisible particle formation occurred over the span of the stability 

study. A stability study was considered prone to subvisible particle formation if the 

total subvisible particle area consistently increased over time, or if the following 

threshold was ever exceeded: no more than 5,000 particles greater than 10 μm in 

diameter, and no more than 500 particles greater than 50 μm in diameter (based on 

USP <787>, and <788> for products with dosage volumes less than 100 mL).135,136 

That threshold was converted roughly to particle area by assuming 500 particles of 75 

μm diameter, and 4,500 particles of 30 μm diameter, which have a total particle area 

per 100 mg protein of 5.4 x 106 μm2. This additional threshold was considered to take 
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into account formulations that were prone to subvisible particle formation such that 

the unstressed, “T0” sample already contained many subvisible particles that in some 

cases would dissociate when heated.  

5.2.2 Differential scanning calorimetry 

Differential scanning calorimetry was performed with a MicroCal VP-DSC 

instrument (Malvern Panalytical, Malvern, UK) for 1 mg/mL solutions of all 4 MAbs 

at each of the formulations listed in Table 5.1. Thermal scans were performed from 25 

°C to 90 °C at a rate of 60 °C per hour. At least 4 buffer/buffer baseline scans were 

averaged to determine the instrument background that was subtracted from the 

subsequent protein scan. The thermograms were transformed to absolute, partial 

specific heat capacity (𝑐𝑝,𝑎𝑏𝑠) via Equation 5.1258 

 𝑐𝑝,𝑎𝑏𝑠 = 𝑐𝑝,𝑤
𝑉𝑝

𝑉𝑤
−

𝑐𝑝,𝑎𝑝𝑝

𝑚𝑝
 5.1 

𝑐𝑝,𝑤 is the heat capacity of water (approximately 1 cal/g-K), 𝑉𝑝 is the partial 

specific volume of the protein (estimated as 0.72 mL/g), 𝑉𝑤 is the specific volume of 

water (approximately 1 mL/g), 𝑐𝑝,𝑎𝑝𝑝 is the buffer subtracted DSC signal scaled by 

the scan rate, and 𝑚𝑝 is the total protein mass in the cell (roughly 0.5 mg in this work). 

Midpoint unfolding temperatures (𝑇𝑚,𝑎𝑝𝑝1 and 𝑇𝑚,𝑎𝑝𝑝2) were the temperatures where a 

local maximum occurred in the 𝑐𝑝,𝑎𝑏𝑠 profile, and the onset unfolding temperature 

(𝑇𝑚,𝑜𝑛𝑠𝑒𝑡) was the temperature where 𝑐𝑝,𝑎𝑏𝑠 increased 10% from the baseline value. In 

all cases, either the 𝑐𝑝,𝑎𝑏𝑠 profiles had a sharp exotherm before reaching 90 °C, or the 

MAb solutions were visibly hazy after cooling to room temperature, indicating 

significant irreversible aggregation and precipitation. As unfolding was likely not 

reversible in some cases, the results were considered as nonequilibrium and additional 
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thermodynamic quantities (e.g., enthalpy and free energy of unfolding) were not 

calculated.43,92,258,259 

5.2.3 Size-exclusion chromatography 

An Agilent 1100 high-performance liquid chromatography (HPLC) instrument 

(Agilent Technologies) with a Tosoh TSKgel G3000SWxl (Tosoh Bioscience, 

Montgomeryville, PA) size-exclusion column was used for size-exclusion 

chromatography (SEC) for MAb samples from stability studies. Integrated peak areas 

for aggregates, monomeric protein, and low molecular weight (LMW) MAb fragments 

were determined with Agilent ChemStation (Agilent Technologies) software from 

chromatograms of absorbance at a 280 nm detection wavelength and a 1 mL/min 

flowrate. Aggregate, monomer, and LMW fragment fractions were determined by 

integrated peak areas calibrated to standard samples that were also used to normalize 

for variability in the laser and changes in separation performance of the SEC column 

over time. Samples were diluted to 10 mg/mL with matching buffer, centrifuged at 

5000 rcf for 1 minute to remove impurities or insoluble aggregates, and the 

supernatant was used for subsequent SEC analysis. Integrated peak areas for 3 

nonconsecutive 100 μg injections were averaged for a given sample.  

A preliminary screen of mobile phase conditions was performed for each MAb 

to choose conditions where aggregates did not precipitate or dissociate, and that 

provided clearly resolved peaks for aggregates, monomeric proteins, and LMW 

fragments.43,260 All mobile phase solutions were prepared with deionized water and 

0.5% volume fraction ortho-phosphoric acid (Fisher Scientific). For MAb 3 and MAb 

4, the mobile phase was at pH 5 with 100 mM NaCl. For MAb 5 and MAb 6, the 

mobile phase was at pH 3.5 with 50 mM NaCl. 
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5.2.4 Isothermal stability studies 

Samples were prepared for stability studies at MAb concentrations of 10, 35, 

or 130 mg/mL. Deactivated clear glass screw neck autosampler vials (Waters 

Corporation, Milford, MA) were filled with minimal headspace and then hermetically 

sealed with PTFE screw caps (Waters Corporation). Quiescent, isothermal incubations 

were performed on the stability samples with an incubator set to the desired incubation 

temperature (𝑇𝑖𝑛𝑐) and with the vials stored upright in an opaque box. The samples for 

refrigerated studies were stored in a dedicated laboratory refrigerator with more strict 

temperature control than domestic refrigerators (approximately ± 1 °C). At a given 

timepoint, a sample was removed from the incubator and cooled via immersion in an 

ice-water bath for at least 5 minutes. Stability studies were performed for the four 

MAbs in the formulations shown in Table 5.1, at refrigerated, 30 °C, and accelerated 

conditions, and at 3 MAb concentrations: 10, 35, and 130 mg/mL. 

All refrigerated studies proceeded for at least 12 months with at least 3 samples 

analyzed at varying timepoints. 30 °C studies proceeded for at least 6 months with at 

least 5 samples analyzed at varying timepoints. At least 6 samples were analyzed for 

accelerated studies, where the studies proceeded such that the final sample had at least 

10% monomer loss. The 𝑇𝑖𝑛𝑐 values for accelerated studies were chosen for a given 

MAb and pH (i.e., the same 𝑇𝑖𝑛𝑐 for both low and high IS) by preliminary stability 

studies such that a 10 mg/mL solution at the low IS formulation had a monomer loss 

rate of about 1% per week. The accelerated 𝑇𝑖𝑛𝑐 was also confirmed to be at least 10 

°C below the first midpoint unfolding temperature (𝑇𝑚,𝑎𝑝𝑝1) from DSC measurements 

(see also section 5.2.2 above). 
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5.2.5 Aggregation rate calculations 

Analysis was restricted to stability samples within the initial-rate regime, 

where aggregate concentration as a function of time was linear and thus the dominant 

aggregation pathway was likely the same throughout.92 The earliest extents/stages of 

aggregation are also the most directly applicable to the problem of long-term stability 

for drug products.92 The observed aggregation rate coefficient (𝑘𝑜𝑏𝑠) was determined 

by linear regression of aggregate fraction (𝑎) as a function of incubation time (𝑡) via 

Equation 5.2. 

 
𝑑𝑎

𝑑𝑡
=  𝑘𝑜𝑏𝑠 5.2 

Reported uncertainty in 𝑘𝑜𝑏𝑠 were 95% confidence intervals from the linear 

regression. The minimum aggregation rate that could be quantified in this work was 

𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] = -4.86 (0.5% aggregate per year, on a mass basis). 

Aggregate concentration was determined for each stability sample and an 

unheated, “T0” sample with SEC (see section 5.2.3 above). All T0 samples had less 

than 1% aggregate fraction. There were two different procedures for calculating 

aggregate fraction, based on the potential for bias from the formation of fragments: 

case 1, where negligible fragmentation occurred (i.e., little to no change in LMW 

fragment peak area in SEC chromatograms), and case 2, where significant 

fragmentation was observed. In case 1, aggregate concentration was determined as the 

decrease in monomer fraction (i.e., the change in monomeric protein peak area in SEC 

chromatograms). In case 2, some fragments (e.g., ~100 kDa) eluted at similar retention 

volumes as monomer and could not be reliably deconvoluted, so aggregate fraction 

was determined directly from the peak area(s) for aggregates. The advantage of case 1 

is that any insoluble aggregates or aggregates that might travel through the column but 
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have absorbance at 280 nm disproportionate to their mass do not impact the calculated 

aggregate concentration.260 In either case, it was confirmed that the aggregate fractions 

were reasonably linear with time, satisfying the initial-rate assumption. A table of 

aggregate concentration case by formulation is shown in Table D.1 (Appendix D), and 

a parity plot comparing aggregation rates calculated by case 1 vs. case 2 is shown in 

Figure D.1 (Appendix D).  

LMW fragment fraction was also monitored for linearity, in case of “cross-

interactions” where fragments could be incorporated into aggregates, or where 

aggregates could lose mass due to fragmentation. There were no cases in this work 

that suggested that fragments were significantly impacting the measured aggregation 

rates. 

5.2.6 Elastic net regression models 

Possible input features for a given high-concentration (i.e., 130 mg/mL) 

stability study condition (i.e., a specific MAb, pH, NaCl concentration, and 𝑇𝑖𝑛𝑐) were 

collected from information about the formulation (e.g., pH and ionic strength), 

experimental measurements (e.g., from SLS and DSC), and results from stability 

studies at other conditions (e.g., the same formulation but at accelerated 𝑇𝑖𝑛𝑐). The 

output or predictor variable was the measured aggregation rate at that condition, which 

was converted to 𝑙𝑜𝑔10(𝑘𝑜𝑏𝑠). The features were screened for groups of features that 

were intended to describe the same phenomenon and were highly correlated (via the 

Pearson correlation coefficient, R) to avoid overfitting of the statistical models. The 

full initial set of features, those that were highly correlated (|R| > ~0.7), and the 

features that remained after screening are shown in Appendix D.1. Inputs from 

stability studies were also chosen such that no overlapping information was used (e.g., 
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if an Arrhenius extrapolated 𝑘𝑜𝑏𝑠 value was selected, the 𝑘𝑜𝑏𝑠 values used in that 

extrapolation were not selected). The input features were standardized such that the 

mean of each feature was 0, and the standard deviation was 1. This put all of the inputs 

on a similar scale to avoid bias and so that the coefficients for each feature could be 

quantitatively interpreted in terms of which features were more or less important.  

Elastic net regression (ENR)261 was performed to relate the screened feature 

sets (described above) to aggregation rates for all 130 mg/mL formulations at a given 

stability condition (refrigerated, 30 °C, or accelerated conditions). ENR is an ML 

method that adds two penalties to the typical least-squares residuals from multilinear 

regression, the L1 and the L2 norms (also known as lasso and ridge regression, 

respectively). Two hyperparameters in the elastic net models,  and EL, scale the 

relative contributions of the L1 and L2 norms, and the strength of the penalties. ENR 

was used to reduce overfitting and help in feature selection by shrinking coefficients 

towards 0.247 Linear ENR was performed for all three 𝑇𝑖𝑛𝑐 conditions, and for the 

refrigerated condition, logistic ENR was also performed. Logistic regression predicts 

the log-odds (logit) of the probability of a binary outcome occurring. The binary 

criterion was whether the value of 𝑙𝑜𝑔10(𝑘𝑜𝑏𝑠) was greater than -4.56 (1% aggregation 

per year). 

ENR models were trained iteratively with recursive feature elimination (RFE) 

to generate a model with the lowest number of features while maintaining that each 

feature was statistically significant in reducing the model error. After each feature 

selection “round”, the feature with the lowest coefficient magnitude (or all features 

with a coefficient of 0) was removed, and the model was trained again. That process 

repeated until one feature remained, and the optimal model was chosen based on the 
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95% confidence interval overlap test. “Leave-one-protein-out” cross-validation 

(LOPO CV) was used to train the ENR models where the dataset was split into “folds” 

or subsets based on the MAb identity.248 The model with  and EL values that 

minimized the mean absolute error (MAE; linear ENR) or deviance (logistic ENR) 

between the model predictions and test sets was chosen.  

The observed aggregation rates in some cases contained significant 

uncertainties, which were accounted for with Monte Carlo (MC) sampling. For a given 

feature selection round, each 𝑘𝑜𝑏𝑠 value that the model tested against for a given 

condition was sampled 50 times from the Gaussian distribution defined by the 𝑘𝑜𝑏𝑠 

value that was measured and its variance. Reported uncertainties for feature 

coefficients and model error values are based on the 95% confidence interval of results 

with different MC sampled training sets. 

5.3 Results and discussion 

5.3.1 Stability study design 

Stability studies for the four MAbs were designed to parse some fundamental 

features of typical solution conditions for commercial MAb therapies, in ambient 

conditions characteristic of industrial accelerated and long-term stability studies used 

to screen MAb candidates and formulations, and demonstrate satisfactory long-term 

shelf-life.144,262 pH and ionic strength were varied in a 2-level full factorial design (see 

Table 5.1) intended to sample a range of electrostatic contributions to the protein self-

interactions and conformational stability that can be fundamental to protein 

aggregation. The two pH values (5 and 6.5) altered the charge state of ionizable 

residues in the proteins (primary His at these pH values). The two ionic strength (IS) 
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values (10 mM and ~110 mM, referred to as low IS and high IS hereafter; note that 

“high” was referred to as “intermediate” in the previous chapter) scaled the strength of 

electrostatic interactions from relatively strong to weakened but likely not fully 

screened via the Debye screening effect. For each combination of pH and ionic 

strength (i.e., each row in Table 5.1), stability studies were performed for formulations 

with MAb concentrations (𝑐2 values) of 10, 35, and 130 mg/mL. Those concentrations 

are roughly log-spaced, to scale with phenomenological models of aggregation that 

propose that some rate limiting processes for aggregation (e.g., monomer addition for 

aggregate growth) are first order or pseudo first order with protein 

concentration.105,117,263 130 mg/mL is representative of high-concentration MAb 

formulations intended for subcutaneous injection3,15, but it would be sample-sparing to 

understand when low-concentration aggregation rates correlate with those at high-

concentration, and phenomenologically insightful to understand how aggregation rates 

change over a range of concentrations. MAb subtype, experimental pI values, and 

accelerated 𝑇𝑖𝑛𝑐 values for each MAb are shown in Table 5.2. 

Table 5.2: Subtype, pI, and incubation temperature (𝑇𝑖𝑛𝑐) for accelerated condition 

of each MAb 

MAb Subtype pI Accelerated 𝑻𝒊𝒏𝒄 (C) 

MAb 3 IgG1 8.4 50 (pH 5); 45 (pH 6.5) 

MAb 4 IgG4 7.5 45 

MAb 5 IgG1 8.5 50 

MAb 6 IgG1 9.2 50 

 pI values are certain to approximately ± 0.1 
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Each formulation (MAb, pH, IS, and 𝑐2) was tested at refrigerated (4 °C), 30 

°C, and accelerated conditions (45 °C or 50 °C, see Table 5.2). Preliminary studies 

were used to determine the 𝑇𝑖𝑛𝑐 value for the accelerated conditions in an attempt to 

keep accelerated studies fairly rapid (i.e., useful in the industrial context) while 

avoiding even faster rates where the dominant aggregation mechanism might be more 

likely to be different than that for 30 °C or refrigerated conditions (see section 

5.2.4).263 The accelerated temperatures chosen from those stability studies are a rough 

estimate of the rankings of relative rates for 10 mg/mL low IS formulations, and 

should not necessarily be considered as indicative of stability at other conditions. All 

midpoint unfolding temperatures (𝑇𝑚,𝑎𝑝𝑝1 values) from DSC were at least 10 °C 

higher than the accelerated 𝑇𝑖𝑛𝑐 that was chosen. 

High-concentration MAb formulations are commonly intended for refrigerated 

storage160, where 30 °C might be considered an “accelerated” condition as well as a 

conservative estimate of room temperature conditions.252,262 45 °C to 50 °C are 

denoted as accelerated conditions here to represent the more preliminary studies 

performed in early-stage development for formulation and candidate screening.91,144 

Based on the length of the long-term studies and inherent uncertainty in aggregate 

concentrations for samples with a relatively low number of aggregates, the minimum 

aggregation rate that could be reliably quantified in this chapter was 

𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] = -4.86 (0.5% aggregation per year, on a mass basis.). 

5.3.2 Results from stability studies 

Aggregation rates at accelerated conditions (45 °C or 50 °C; see Table 5.2) are 

shown in Figure 5.1 in the form of observed rate coefficient values (𝑘𝑜𝑏𝑠; see Equation 

5.2). Generally, the pH 6.5 formulations had slower aggregation rates than pH 5 
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formulations, although that finding was not clear for MAb 3 as the 𝑇𝑖𝑛𝑐 was 50 °C for 

pH 5 conditions, and 45 °C for pH 6.5 conditions. The pH 5 high IS condition had the 

fastest aggregation rate of all four formulations for a given MAb and 𝑐2, except for 

MAb 4 at 130 mg/mL where the aggregation rate at the pH 5 low IS condition was 

similar. Aggregation rates were broadly similar between the low IS and high IS 

formulations at pH 6.5 for a given MAb and 𝑐2. MAb 5 and MAb 6 were typically 

more stable than MAb 3 and MAb 4 for a given formulation and 𝑐2, particularly 

considering that the 𝑇𝑖𝑛𝑐 was lower for MAb 3 and MAb 4 in most cases. 
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Figure 5.1: Observed aggregation rate coefficient (𝑘𝑜𝑏𝑠) values as a function of MAb 

concentration (𝑐2) at accelerated conditions (see Table 5.2) for MAb 3 

(A), MAb 4 (B), MAb 5 (C), and MAb 6 (D), with the corresponding 

increase in aggregate fraction (𝑎) per year on the right y-axis. The 

legend is the same for all panels where symbols for each formulation 

correspond to Table 5.1 and error bars are 95% confidence intervals. 

Solid (dashed) lines connecting the data points correspond to low (high) 

IS and are guides to the eye. 

Aggregation rates (𝑘𝑜𝑏𝑠 values) at 30 °C conditions are shown in Figure 5.2. 

Similar to the accelerated studies (see Figure 5.1), MAb 5 and MAb 6 had slower 

aggregation rates than MAb 3 and MAb 4 for a given formulation and 𝑐2 value. The 

pH 5 high IS condition still typically had the fastest aggregation rate, but only at 10 
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mg/mL. In contrast with aggregation rates for accelerated conditions, the relative 

stability rankings of each formulation for a given MAb and 𝑐2 at 30 °C were not as 

systematically consistent and often statistically indistinguishable. Notably, there was a 

“crossover” for MAb 4 where the pH 6.5 formulations were more stable than the pH 5 

formulations at 10 and 35 mg/mL but had faster aggregation rates than pH 5 

formulations at 130 mg/mL. 
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Figure 5.2: Observed aggregation rate coefficient (𝑘𝑜𝑏𝑠) values as a function of MAb 

concentration (𝑐2) at 30 °C for MAb 3 (A), MAb 4 (B), MAb 5 (C), and 

MAb 6 (D), with the corresponding increase in aggregate fraction (𝑎) 

per year on the right y-axis. The legend is the same for all panels where 

symbols for each formulation correspond to Table 5.1 and error bars are 

95% confidence intervals. Solid (dashed) lines connecting the data points 

correspond to low (high) IS and are guides to the eye. The gray shaded 

region for 𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] < -4.86 represents the measurement 

noise floor and any formulations with data not shown were below the 

measurement noise floor. 

Aggregation rates (𝑘𝑜𝑏𝑠 values) at refrigerated conditions for 130 mg/mL 

formulations are shown in Figure 5.3. All of the 10 and 35 mg/mL formulations had 

aggregation rates below the measurement floor, without exception. For all four MAbs, 
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the pH 5 formulations had significantly slower aggregation rates than the pH 6.5 

formulations. MAb 3 was the most stable (had the slowest aggregation rate) in every 

formulation, although at the pH 5 low IS and pH 6.5 high IS formulations, aggregation 

rates were not significantly different between MAb 3 and MAb 6. 

 

Figure 5.3: Observed aggregation rate coefficient (𝑘𝑜𝑏𝑠) values at refrigerated 

conditions for 130 mg/mL solutions, with the corresponding increase in 

aggregate fraction (𝑎) per year on the right y-axis. Symbols for each 

formulation correspond to Table 5.1 and error bars are 95% confidence 

intervals. MAb identities are listed on the x-axis. Aggregation rates for 

MAb 3 at pH 5 low IS, MAb 3 at pH 5 high IS, and MAb 6 at pH 5 low 

IS were below the measurement floor (the shaded region for 

𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] < -4.86) after at least 1 year. Error bars are 95% 

confidence intervals. 

Aggregation rates were slower as 𝑇𝑖𝑛𝑐 was decreased, which was generally 

expected for the 𝑇𝑖𝑛𝑐 values in this work.24,264 The only exceptions were 130 mg/mL, 

pH 6.5 formulations of MAb 5 and MAb 6, which had similar aggregation rates 
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between 30 °C and refrigerated conditions. However, the relative rankings of each 

formulation at 130 mg/mL for a given MAb were inconsistent between different 𝑇𝑖𝑛𝑐 

conditions, as depicted in Figure 5.4. Studies at accelerated conditions suggested that 

pH 6.5 formulations were the most stable, there was not a clear trend with pH in 30 °C 

studies, and at refrigerated conditions, pH 6.5 formulations were the least stable. The 

aggregation rates at accelerated and refrigerated conditions were fairly anti-correlated 

(R = -0.58). The only case where relative formulation rankings for 130 mg/mL 

formulations at refrigerated conditions were consistent with a different 𝑇𝑖𝑛𝑐 was for 

MAb 4 at 30 °C, where there was a “crossover” between 35 and 130 mg/mL.  
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Figure 5.4: Relative stability rankings, where a higher ranking was a slower 𝑘𝑜𝑏𝑠 
value, of each 130 mg/mL formulation as a function of 𝑇𝑖𝑛𝑐 (nonlinear in 

x-axis; “Acc.” is short for accelerated and “Ref.” is short for refrigerated) 

for MAb 3 (A), MAb 4 (B), MAb 5 (C), and MAb 6 (D). The legend is 

the same for all panels where symbols for each formulation correspond to 

Table 5.1 and solid (dashed) lines connecting the data points correspond 

to low (high) IS. When the 𝑘𝑜𝑏𝑠 values of multiple formulations were 

statistically indistinguishable, the rankings were averaged. 

The results from the accelerated and 10-35 mg/mL 30 °C studies suggested 

that low IS formulations were most stable, but at 130 mg/mL 30 °C and refrigerated 
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conditions, there was not as significant of a trend with respect to IS values. Parity plots 

comparing aggregation rates between pH 5 and pH 6.5 formulations and low and high 

IS formulations are shown in Figure 5.5.  

 

Figure 5.5: Parity plots comparing aggregation rates for accelerated (blue triangles), 

30 °C (orange circles), and refrigerated (red squares, 130 mg/mL only) 

conditions between: (A) pH 5 and pH 6.5 formulations, and (B) low and 

high ionic strength formulations. Aggregation rates for MAb 3 at 

accelerated temperature conditions are omitted from panel A as the 

incubation temperatures were different between the two pH conditions 

(see Table 5.2). The black dashed line is the parity line, and the gray 

region represents the measurement floor of the study 

(𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] = -4.86). The numbers shown in the measurement 

floor regions correspond to formulations where one or both of the 

aggregation rates were less than the measurement floor at 30 °C or 

refrigerated conditions. 

When comparing aggregation rates for a given formulation across the different 

𝑇𝑖𝑛𝑐 conditions, it is clear that the aggregation rates were non-Arrhenius, as shown in 

Figure 5.6 which compares measured aggregation rate at 130 mg/mL and refrigerated 

conditions with the aggregation rate predicted by applying Arrhenius extrapolation to 
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the measured 130 mg/mL aggregation rates at accelerated and 30 °C conditions. The 

Arrhenius extrapolated 𝑘𝑜𝑏𝑠 values were all underestimates of the measured 𝑘𝑜𝑏𝑠 

values, especially for the pH 5 formulations where extrapolated 𝑘𝑜𝑏𝑠 values were 

several orders of magnitude lower than the measured values. That result is indicative 

of either a change in mechanism or an inherently non-Arrhenius mechanism (e.g., one 

dependent on a Gibbs free energy of unfolding), and has been reported several times 

for MAbs and other proteins.92,129,239,263,265–268 Despite clear non-Arrhenius behavior, 

the Arrhenius extrapolated 𝑘𝑜𝑏𝑠 values were fairly correlated with the measured values 

at refrigerated conditions (R = 0.70). Many other analytical models could be used as 

well, but broadly those models are out of scope for this study as aggregation rates 

were only measured at 3 temperatures.145 
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Figure 5.6: Parity plot comparing 𝑘𝑜𝑏𝑠 values at refrigerated conditions for 130 

mg/mL formulations that were measured experimentally (y-axis) and 

𝑘𝑜𝑏𝑠 values predicted by Arrhenius extrapolation (x-axis) via rates at 30 

°C (Figure 5.2) and accelerated conditions (Figure 5.1). The black dashed 

line is the parity line. Symbols for each formulation correspond to Table 

1 and error bars are 95% confidence intervals. 

As mentioned above, the dependence of aggregation rates on 𝑐2 was different 

between the accelerated and 30 °C conditions. At accelerated conditions, the 𝑘𝑜𝑏𝑠 

values scaled consistently with 𝑐2 (linear in the context of the log-log plot in Figure 

5.1), with the possible exception of MAb 4 at the pH 5 low IS condition. That result 

would suggest that the rate limiting step in the dominant aggregation mechanism 

might have been constant as a function of 𝑐2. The slope of 𝑐2 with respect to 𝑘𝑜𝑏𝑠 was 

generally larger at pH 5 conditions than pH 6.5 conditions, suggesting that there were 

different driving forces for aggregation at those conditions. In contrast, the 

dependence of 𝑘𝑜𝑏𝑠 values on 𝑐2 was less apparent at 30 °C conditions, which 

suggests that the dominant aggregation mechanism might have been dependent on 𝑐2. 
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The fractional monomer loss based aggregation rates for all 𝑇𝑖𝑛𝑐 conditions generally 

increased as 𝑐2 was increased, which rules out zeroth order mechanisms such as those 

where unfolding is rate limiting or where aggregation is surface mediated.92,141 

Aggregate size as measured by SEC was also highly dependent on 𝑇𝑖𝑛𝑐. For 

samples from refrigerated studies, there were no formulations where a significant high 

molecular weight (HMW) aggregate population (i.e., oligomers or multimers that 

eluted at the void volume in SEC) was detected. Only 13 out of 40 formulations from 

30 °C studies that showed significant aggregation (i.e., 𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] > -4.86) 

had HMW aggregates in SEC chromatograms: 9 out of 12 for MAb 3 and 4 out of 12 

for MAb 4. Conversely, 39 out of 48 formulations in the accelerated studies had 

HMW aggregates. Illustrative chromatograms and a summary table of HMW 

formation are shown in Figure 5.7 and Table 5.3, respectively. The aggregates that 

were formed at accelerated conditions were much more likely to grow into HMW 

aggregates than those at 30 °C or refrigerated conditions, which is consistent with 

other reports of MAb physical stability.129,239,269 The observed differences in aggregate 

sizes were consistent with shifting aggregation mechanisms between the different 𝑇𝑖𝑛𝑐 

conditions in this study, although that does not indicate whether mechanistically 

aggregate growth was rate limiting with respect to monomer loss. Formation of HMW 

aggregates did not necessarily translate into higher propensity to form subvisible 

particles (discussed in more detail in section 5.3.5) for a given MAb and formulation, 

but it was generally true that subvisible particles were more likely to form at higher 

𝑇𝑖𝑛𝑐 conditions. 
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Figure 5.7: SEC chromatograms that illustrate differences in HMW formation as a 

function of 𝑇𝑖𝑛𝑐. The 130 mg/mL MAb 4 at pH 6.5 low IS formulation 

was used as the example case. Each panel is a time course of samples 

from (A) accelerated, (B) 30 °C, and (C) refrigerated studies. Incubation 

times are shown in the legend, where T0 represents the unstressed 

sample. 
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Table 5.3: High molecular weight aggregate formation case by formulation 

MAb Form. 

Accelerated 30 °C Refrigerated 

10 
mg/mL 

35 
mg/mL 

130 
mg/mL 

10 
mg/mL 

35 
mg/mL 

130 
mg/mL 

10 
mg/mL 

35 
mg/mL 

130 
mg/mL 

MAb 

3 

pH 5 low IS + + + + + + N/A N/A N/A 

pH 5 high 
IS 

+ + + + + + N/A N/A N/A 

pH 6.5 low 
IS 

+ + + - + - N/A N/A - 

pH 6.5 high 

IS 
+ + + + - + N/A N/A - 

MAb 

4 

pH 5 low IS - + + - - - N/A N/A - 

pH 5 high 
IS 

+ + + - + + N/A N/A - 

pH 6.5 low 

IS 
+ + + - - + N/A N/A - 

pH 6.5 high 

IS 
+ + + - - + N/A N/A - 

MAb 

5 

pH 5 low IS - - - N/A N/A - N/A N/A - 

pH 5 high 
IS 

+ + + - - - N/A N/A - 

pH 6.5 low 

IS 
+ + + N/A - - N/A N/A - 

pH 6.5 high 

IS 
+ + + N/A - - N/A N/A - 

MAb 

6 

pH 5 low IS - - - N/A N/A - N/A N/A - 

pH 5 high 

IS 
+ + + - - - N/A N/A - 

pH 6.5 low 

IS 
+ + + N/A - - N/A N/A - 

pH 6.5 high 
IS 

+ + + N/A - - N/A N/A - 

 Formulations that were prone to HMW aggregate formation are shown in purple and 

with + symbols, those that were not prone to HMW aggregate formation are shown in 

green and with - symbols, and cases with aggregation rates below the measurement 

noise floor are shown in gray and with “N/A”. 
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At refrigerated conditions, fragmentation rates were slow and typically a 

significant increase in LMW fragments (~50 kDa, putatively a single MAb fragment) 

was not observed. Significant fragmentation was observed at 30 °C and accelerated 

conditions, which was expected based on the temperature dependence of peptide bond 

cleavage.89 Fragmentation rates were fastest for pH 5 high IS, then pH 5 low IS 

formulations, followed by both pH 6.5 formulations. At a given 𝑇𝑖𝑛𝑐, the three IgG1 

MAbs (MAb 3, MAb 5, and MAb 6) had nearly identical fragmentation rates (with 

respect to fractional concentration) at a given pH and IS that were independent of 𝑐2, 

which is consistent with prior reports of IgG1 fragmentation.89,265,270 MAb 4 had 

notably the slowest fragmentation rates, which was expected as the IgG4 subtype is 

known to be more resistant to fragmentation.160 This analysis assumes that the 

fragmentation mechanism is a single step where a monomeric MAb fragments into 

one ~50 kDa LMW fragment (that is resolved by SEC) and one ~100 kDa HMW 

fragment (Fc+Fab or Fab+Fab; convoluted with the monomer peak in SEC). If there 

are other steps that split the HMW fragment into two ~50 kDa fragments, or if any 

fragments were involved in the formation of or fragmentation of aggregates, then the 

fragmentation rate of monomeric proteins may not be the same as what would be 

inferred from analysis of the LMW fragment concentration measured by SEC. The 

nearly identical fragmentation rates between the three IgG1 MAbs for a given pH and 

IS would suggest that the same fragmentation pathway was dominant at a given 

condition and was not significantly impacted by sequence differences or the presence 

of aggregates in solution. LMW fragment concentrations were linear with time and not 

dependent on 𝑐2, suggesting that fragmentation did not significantly impact the 

measured aggregation rates. 
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5.3.3 Impacts of conformational stability and self-interactions on aggregation 

rates 

The impact of the formulation conditions (i.e., 𝑐2, pH, and IS) on relative 

aggregation rates was not consistent for different 𝑇𝑖𝑛𝑐 conditions, or between the 

different MAbs, which is agreement with prior reports129,160,265 and with the current 

paradigm of industrial formulation screening.24,91,156,271 Formulation development 

relies in part on high-throughput experimental assays that probe how the formulation 

conditions impact conformational stability and self-interactions, which are known to 

be some of the most important factors in mediating protein aggregation.24,53,91 Solution 

conditions have an indirect influence on aggregation rates by mediating changes in 

more fundamental phenomena that can be specific to the protein in question. For 

example, pH is not expected to be directly relevant to aggregation in a quantitative 

sense, but rather how the pH impacts the spatial distribution of charged residues and 

the resultant intermolecular and intramolecular electrostatic interactions.  

In this chapter, the difference between the pI and the pH was fairly correlated 

with aggregation rates at 130 mg/mL for a given 𝑇𝑖𝑛𝑐, as shown in Figure 5.8. In this 

chapter the quantity is described as the absolute value of the difference between the pI 

and the pH (|pH-pI|), despite all pI values being greater than 6.5 (see Table 5.2), to 

clarify that the magnitude of the net valence was likely the relevant fundamental 

feature, rather than the magnitude and sign of the net valence. |pH-pI| was an accurate 

proxy for net valence as evidenced by Figure D.1.1.1 (Appendix D.1) where |pH-pI| 

was highly correlated with theoretical net valences calculated by the Henderson–

Hasselbalch equation with either nominal pKa values or pKa values computed by the 

PROPKA algorithm (R = 0.93 and R = 0.97, respectively).186 In practice, one may 

prefer to use a theoretical calculation if experimental measures are not available, but 
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here the experimental pI was used because it did not make any assumptions about the 

pKa values of ionizable residues. 

 

Figure 5.8: Observed aggregation rate coefficient values (𝑘𝑜𝑏𝑠) as a function of the 

difference between the pH and pI (|pH-pI|) for 130 mg/mL formulations 

at refrigerated (red squares), 30 °C (orange circles), and accelerated (blue 

triangles) conditions. For the accelerated conditions, 50 °C rates are 

shown as blue upwards triangles, and 45 °C rates are shown as light blue 

downwards triangles. Filled and open symbols correspond to low IS and 

high IS conditions, respectively. The gray region represents the 

measurement floor of the study (𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] = -4.86). 

The relationship between |pH-pI| and aggregation rate was differentiated in 

terms of the value of the incubation temperature: at accelerated 𝑇𝑖𝑛𝑐 conditions, lower 

|pH-pI| conditions had slower aggregation rates (R = 0.42, but note that there were two 

different 𝑇𝑖𝑛𝑐 values), while at 30 °C and refrigerated conditions, lower |pH-pI| 

conditions had faster aggregation rates (R = -0.75 and R = -0.62, respectively). At 
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refrigerated conditions, the three formulations with aggregation rates below the 

measurement floor had |pH-pI| values of 3.4 and 4.2. Analogous plots to Figure 5.8 for 

10 and 35 mg/mL formulations are shown in Figure 5.9. Qualitatively, the results were 

not as clear for accelerated conditions but were consistent for 30 °C conditions when 

accounting for the many formulations with aggregation rates below the measurement 

floor. There have been several reported cases of electrostatic repulsions reducing 

aggregation rates43,85,137–140, which could also explain the negative correlation between 

|pH-pI| and aggregation rates for 30 °C and refrigerated conditions in this work, as 

high net valence will typically lead to strong net repulsive electrostatic self-

interactions.179,272 Proteins are more likely to undergo thermally induced unfolding at 

higher incubation temperature, and high net valence can reduce conformational 

stability as well.273–277 If the conformational stability was a primary factor in the 

dominant aggregation pathway at accelerated conditions, which has been shown in 

other reports92,139,239–245, that would be consistent with the positive correlation between 

|pH-pI| and aggregation rates at accelerated conditions.273–277 The competing impacts 

of conformational stability and self-interactions (typically electrostatic repulsions) 

with respect to aggregation rates as a function of 𝑇𝑖𝑛𝑐 has been reported previously for 

MAbs and other proteins and is explored in more detail for this dataset 

below.24,129,141,243,265 



 173 

 

Figure 5.9: Observed aggregation rate coefficient values (𝑘𝑜𝑏𝑠) as a function of the 

difference between the pH and pI (|pH-pI|) for (A) 10 mg/mL and (B) 35 

mg/mL formulations at 30 °C (orange circles) and accelerated (blue 

triangles) conditions. For the accelerated conditions, 50 °C rates are 

shown as blue upwards triangles, and 45 °C rates are shown as light blue 

downwards triangles. Filled and open symbols correspond to low IS and 

high IS conditions, respectively. The gray region represents the 

measurement floor of the study (𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] = -4.86). 

The impacts of each formulation on conformational stability were quantified 

with DSC, where unfolding events were described based on midpoint unfolding 

temperatures (𝑇𝑚,𝑎𝑝𝑝 values) of DSC thermograms shown in Figure 5.10. MAbs 

typically have 3 independent unfolding transitions that correspond to the CH2, CH3, 

and Fab regions. The first small peak corresponds to the CH2 domain, the second small 

peak corresponds to the CH3 domain, and the large peak corresponds to the Fab 

fragment, any of which might overlap in a given thermogram.89,259 𝑇𝑚,𝑎𝑝𝑝 values were 

used as a proxy for more specific thermodynamic quantities that describe 

conformational stability such as the Gibbs free energy of unfolding for a given 

unfolding transition that were not accessible in this work as unfolding was likely 

irreversible in most cases (see section 5.2.2).43,92 The DSC results from this work 
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(Figure 5.10 and Table 5.4) confirmed that for a given MAb, the pH 5 conditions had 

lower 𝑇𝑜𝑛𝑠𝑒𝑡 and 𝑇𝑚,𝑎𝑝𝑝1 values than the pH 6.5 conditions, except for MAb 3 where 

the low IS formulations had approximately the same 𝑇𝑜𝑛𝑠𝑒𝑡 and 𝑇𝑚,𝑎𝑝𝑝1 values.  
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Figure 5.10: DSC thermograms for MAb 3 (A), MAb 4 (B), MAb 5 (C), and MAb 6 

(D) in the following buffer solutions: pH 5 low IS (blue), pH 5 high IS 

(green), pH 6.5 low IS (purple) and pH 6.5 high IS (yellow). 
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Table 5.4: Onset unfolding temperature and midpoint unfolding temperatures for 

each formulation via DSC 

MAb Formulation 𝑻𝒎,𝒐𝒏𝒔𝒆𝒕 (°C) 𝑻𝒎,𝒂𝒑𝒑𝟏 (°C) 𝑻𝒎,𝒂𝒑𝒑𝟐 (°C) 

MAb 3 

pH 5 low IS 62.8 71.2 82.2 

pH 5 high IS 58.4 65.0 72.3 

pH 6.5 low IS 63.2 70.8 82.1 

pH 6.5 high IS 63.2 71.1 N/A 

MAb 4 

pH 5 low IS 59.3 63.0 69.0 

pH 5 high IS 53.4 59.0 66.2 

pH 6.5 low IS 61.4 69.0 N/A 

pH 6.5 high IS 60.4 68.2 N/A 

MAb 5 

pH 5 low IS 63.2 68.7 81.1 

pH 5 high IS 59.1 64.4 79.3 

pH 6.5 low IS 65.7 72.0 81.2 

pH 6.5 high IS 64.4 70.4 80.1 

MAb 6 

pH 5 low IS 63.1 68.7 84.4 

pH 5 high IS 58.1 64.3 83.5 

pH 6.5 low IS 65.3 71.6 84.0 

pH 6.5 high IS 64.1 70.3 82.9 

 𝑇𝑚,𝑜𝑛𝑠𝑒𝑡 was calculated as the temperature where 𝑐𝑝,𝑎𝑏𝑠 had increased 10% from the 

baseline value. 
 N/A is listed for conditions where a sharp exotherm occurred before a second peak. 

 

 

The difference between the first midpoint unfolding temperature (𝑇𝑚,𝑎𝑝𝑝1) and 

the 𝑇𝑖𝑛𝑐 was highly correlated to the aggregation rate at accelerated conditions for a 

given MAb and 𝑐2, as shown in Figure 5.11. The linear fits all had high correlation 

coefficients (|R| > 0.95 for all, except MAb 4 at 130 mg/mL, where |R| = 0.89). In 

Figure 6, the lowest value of 𝑇𝑚,𝑎𝑝𝑝1 − 𝑇𝑖𝑛𝑐 (~14 °C for all 4 MAbs) corresponded to 
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the pH 5 high IS formulation, the second lowest value to the pH 5 low IS formulation, 

and the two highest values to the two pH 6.5 formulations. 

 

Figure 5.11: Aggregation rates (𝑘𝑜𝑏𝑠 values) at accelerated conditions for MAb 3 (A), 

MAb 4 (B), MAb 5 (C) and MAb 6 (D) plotted against the difference 

between the 𝑇𝑖𝑛𝑐 (45 °C or 50 °C, see Table 5.2) and the first midpoint 

unfolding temperature (𝑇𝑚,𝑎𝑝𝑝1). Rates at 𝑐2 values of 10, 35, and 130 

mg/mL are shown as red squares, orange circles, and blue triangles, 

respectively. Dashed lines are linear fits for a given 𝑐2 and error bars are 

95% confidence intervals. 
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These results suggest that aggregation rates at accelerated conditions for a 

given MAb were mediated by conformational stability. Mechanistically, that is 

consistent with some degree of unfolding being involved in the formation of key 

intermediate species that impacts the overall aggregation rate.263 However, as 

mentioned previously, the unfolding step itself was not rate limiting because the 

aggregation rates (based on monomer fraction) were dependent on 𝑐2 (i.e., the rate-

limiting step was was not unimolecular). Corresponding plots for 30 °C and 

refrigerated conditions are shown in Figure 5.12 and Figure 5.13, respectively. Those 

results did not reveal the same relationship and statistical uncertainties were much 

higher.  
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Figure 5.12: Aggregation rates (𝑘𝑜𝑏𝑠 values) at 30 °C conditions for MAb 3 (A), MAb 

4 (B), MAb 5 (C) and MAb 6 (D) plotted against the difference between 

the 𝑇𝑖𝑛𝑐 (30 °C) and the first midpoint unfolding temperature (𝑇𝑚,𝑎𝑝𝑝1). 

Rates at 𝑐2 values of 10, 35, and 130 mg/mL are shown as red squares, 

orange circles, and blue triangles, respectively. Dashed lines are linear 

fits for a given 𝑐2 and error bars are 95% confidence intervals. The gray 

region represents the measurement floor of the study 

(𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] = -4.86). 
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Figure 5.13: Aggregation rates (𝑘𝑜𝑏𝑠 values) at refrigerated conditions for MAb 3 (A), 

MAb 4 (B), MAb 5 (C) and MAb 6 (D) plotted against the difference 

between the 𝑇𝑖𝑛𝑐 (4 °C) and the first midpoint unfolding temperature 

(𝑇𝑚,𝑎𝑝𝑝1). Rates at 130 mg/mL are shown as blue triangles. Dashed lines 

are linear fits for a given 𝑐2 and error bars are 95% confidence intervals. 

The gray region represents the measurement floor of the study 

(𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] = -4.86). 

For MAb 5 and MAb 6, 𝑇𝑚,𝑎𝑝𝑝1 appears to correspond to unfolding of the CH2 

domain for all the formulations, which was likely relevant to the dominant aggregation 

pathway because the correlation with  𝑇𝑚,𝑎𝑝𝑝2 − 𝑇𝑖𝑛𝑐 was significantly worse than that 

for 𝑇𝑚,𝑎𝑝𝑝1 − 𝑇𝑖𝑛𝑐 (|R| ~ 0.7 for MAb 5 and |R| ~ 0.0 for MAb 6; see Figure 5.14). 

Many DSC thermograms for MAb 3 and MAb 4 contained sharp exotherms or 
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convoluted peaks that were less straightforward to interpret, although the 𝑇𝑚,𝑎𝑝𝑝1 for 

the pH 5 high IS condition also appeared to correspond to the CH2 domain for both 

MAbs. It should be noted that the “true” first midpoint unfolding temperature in a 

thermodynamic sense may be somewhat higher than what is reported here for 

conditions where irreversible aggregation and precipitation occurred simultaneously 

with the first unfolding transition.43 In practice, that limitation could be partially 

overcome by the use of a capillary DSC instrument rather than the instrument used in 

this work.265 The DSC measurements in this work also do not account for any 

potential 𝑐2 dependence in conformational stability, which is challenging to probe 

experimentally but has been theorized to have an impact on the Gibbs free energy of 

unfolding and has been shown experimentally to impact the structure or stability of the 

folded state.43,95–98 
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Figure 5.14: Aggregation rates (𝑘𝑜𝑏𝑠 values) at accelerated conditions for MAb 3 (A), 

MAb 4 (B), MAb 5 (C) and MAb 6 (D) plotted against the difference 

between the 𝑇𝑖𝑛𝑐 (45 °C or 50 °C, see Table 5.2) and the second midpoint 

unfolding temperature (𝑇𝑚,𝑎𝑝𝑝2). Rates at 𝑐2 values of 10, 35, and 130 

mg/mL are shown as red squares, orange circles, and blue triangles, 

respectively. Error bars are 95% confidence intervals. 

A parallel dataset (similar pH, IS, and 𝑐2 values) of aggregation rates only at 

50 °C were reported for a different MAb in prior work (referred to as MAb 1, the same 

MAb as in Chapters 2 and 4).43,48–50,179 Additional studies at 30 °C or refrigerated 

conditions for MAb 1 were not performed due to material constraints. MAb 1 had a pI 

of 8.6, and the relative high-concentration aggregation rates between pH 5 and pH 6.5 

conditions were in qualitative agreement with the results with respect to |pH-pI| in 



 183 

Figure 5.9.48 Aggregation rates for MAb 1, reproduced in Figure 5.15, were in many 

cases orders of magnitude larger than those for the four MAbs in this work. MAb 1, 

compared to the MAbs studied in this work, had less spread in 𝑇𝑚,𝑎𝑝𝑝1 − 𝑇𝑖𝑛𝑐 

(approximately 4 °C), but the analogous plot to Figure 5.11 for MAb 1 (Figure 5.16) 

suggests a similar relationship between conformational stability (i.e., 𝑇𝑚,𝑎𝑝𝑝1 − 𝑇𝑖𝑛𝑐) 

and aggregation rate at a given 𝑐2 (|R| > 0.80).  

 

Figure 5.15: Observed aggregation rate coefficient (𝑘𝑜𝑏𝑠) values as a function of MAb 

concentration (𝑐2) at 50 °C for MAb 1, with the corresponding increase 

in aggregate fraction (𝑎) per year on the right y-axis. Symbols 

correspond to Table 5.1, with two other solution conditions Lines 

connecting the data points are guides to the eye and error bars are 95% 

confidence intervals. Adapted from Ghosh et al.43 
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Figure 5.16: Aggregation rates at accelerated temperature conditions for MAb 1 

plotted against the difference between the 𝑇𝑖𝑛𝑐 (50 °C) and the first 

midpoint unfolding temperature (𝑇𝑚,𝑎𝑝𝑝1). Dashed lines are linear fits for 

a given MAb concentration and error bars are 95% confidence intervals. 

Note that the x-axis is narrowed compared to Figure 5.11 in the main 

text. Data was adapted from Ghosh et al.43 

SLS and DLS measurements of net self-interactions (i.e., values of 𝐵22 and 

𝐺22 from SLS, and values of 𝑘𝐷 and 𝐷𝑐 from DLS, shown in Chapter 4) showed that 

for all conditions except MAb 4 at pH 6.5 (which had the lowest |pH-pI| at 1.0), 

electrostatic interactions were net repulsive, and typically displayed “simple colloidal” 

behavior where the strength of electrostatic repulsions were reduced at high IS due to 

Debye screening. These results were not surprising due to the expected high net 

valence for the |pH-pI| conditions in this chapter.179,272 The mild impact of IS on 130 

mg/mL aggregation rates at 30 °C and refrigerated conditions could be explained by 

the crowded environment at high 𝑐2 where proteins are forced to be fairly close to 
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each other and electrostatic repulsions are therefore not as successful at keeping 

proteins apart and inhibiting aggregation. 

In prior work focused on MAb 1, a semi-quantitative correlation between the 

change in aggregation rate at 50 °C and reduction in net repulsive electrostatic self-

interactions due to increased IS was reported.43 The net self-interactions were 

quantified by the 𝑐2-dependent quantity 𝐺22 via SLS. The semi-quantitative 

correlation reported in prior work was compared to the results in this work at 

accelerated, 30 °C, and refrigerated conditions (shown in Figure 5.17). The correlation 

did not apply to the MAbs in this work at any of the 𝑇𝑖𝑛𝑐  conditions either broadly or 

for each MAb individually. However, the relationship was qualitatively consistent at 

accelerated conditions, where high IS formulations typically had faster aggregation 

rates than their low IS counterparts (see also Figure 5.5B). 
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Figure 5.17: Comparison of the change in 𝐺22 and the change in the aggregation rate 

(𝑘𝑜𝑏𝑠 values) at (A) accelerated, (B) 30 °C, and (C) refrigerated 

conditions due to addition of 100 mM NaCl (referred to as high IS in this 

chapter). Data for MAb 3, MAb 4, MAb 5, and MAb 6 are shown as light 

blue squares, green circles, purple triangles, and yellow diamonds, 

respectively. pH 5 conditions are filled symbols, and pH 6.5 conditions 

are open symbols. Data for MAb 1 (gray pentagons, panel A only) at 50 

°C are reproduced from Ghosh et al.43 

Several other quantities that could be used to represent high-concentration net 

self-interactions were considered in this analysis and for use in the ML models 

described in the following section. Simultaneous DLS measurement of the 130 mg/mL 

samples yielded the collective diffusion coefficient (𝐷𝑐), which is analogous to 𝐺22 

but also includes contributions from hydrodynamic interactions.221,278 Low-
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concentration SLS and DLS measurements were used to calculate 𝐵22
∗  and 𝑘𝐷, 

respectively. Those quantities are more experimentally accessible, but only describe 

two-body net self-interactions which do not include self-interactions specific to high-

concentration systems such as increased steric repulsions or multibody interactions. 

Because the impact of self-interactions on the aggregation rates was hypothesized to 

be due to electrostatic repulsions, the difference between the 𝐵22/𝐵22,𝑆𝑇 (referred to 

hereafter as 𝐵22
∗ ) value at a given formulation and the 𝐵22

∗  value at > 300 mM IS 

(referred to as 𝐵22,𝑁𝐸
∗ ) was also considered (referred to as 𝐵22

∗ ). At > 300 mM IS 

conditions, electrostatic interactions were effectively fully screened as the value of 𝐵22
∗  

was not dependent on pH or IS. The net valence (calculated via the Henderson–

Hasselbalch equation with nominal pKa values or pKa values calculated by the 

PROPKA algorithm186) was multiplied by the Debye length (𝐷𝐸) to also represent 

screened electrostatic repulsions, similar to 𝐵22
∗ . All of the aforementioned quantities 

were highly correlated with one another, as shown in the correlation matrix in Figure 

5.18. For any pair of quantities in Figure 5.18, the magnitude of the correlation 

coefficient (|R|) was at least 0.80. 𝐺22 was expected to be inversely correlated as 𝐵22 is 

calculated via −
1

2
𝑙𝑖𝑚
𝑐2→0

𝐺22. These results suggest that for a given 𝑐2, explicit 

measurements of net self-interactions (i.e., 𝐺22 or 𝐷𝑐 values) can be semi-

quantitatively estimated by low-𝑐2 measurements or even theoretical calculations for 

at least the range net self-interactions in this chapter (i.e., strong net repulsions to 

weak net attractions). Chapter 4 showed that molecular simulations could also be used 

for this task with quantitative accuracy in many cases, typically parameterized by 

measurements of 𝐵22
∗ .48,50 
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Figure 5.18: Correlation coefficients (R values) for quantities that were considered to 

represent net self-interactions at 130 mg/mL. 𝐷𝑐 and 𝐺22 were measured 

at 130 mg/mL and all others listed on the axes were not 𝑐2 dependent. 

The measurements of conformational stability and self-interactions in this 

chapter were consistent with MAbs and formulations that would not be expected to be 

particularly problematic with respect to aggregation or other related physical 

instabilities such as low solubility or liquid-liquid phase separation.16,109 Midpoint 

unfolding temperatures from DSC were fairly high, and net self-interactions ranged 

from strong repulsions to weak attractions, which is consistent with prior reports of 

approved MAb products.54,279 Still, many of these formulations had significant 

aggregation rates at high-concentration, even at refrigerated conditions. The dataset in 

this chapter is thus best interpreted in the context of optimizing formulation conditions 

for protein candidates that have successfully passed through early-stage screening. The 

dataset here is likely not representative of the broader range of MAbs and formulations 
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that are tested at early stages of candidate selection where there are typically more 

poorly behaved conditions. 

5.3.4 ML models for feature selection and prediction of high-concentration 

aggregation rates 

The dataset in this chapter was designed to systematically map the impact of 

formulation conditions and incubation temperatures (𝑇𝑖𝑛𝑐), within typical scope of 

commercial products and industrial stability studies.3,91,252,262 The impacts of those 

conditions on phenomena relevant to aggregation (e.g., self-interactions and 

conformational stability) were quantified by several theoretical or experimental 

methods but as evidenced with respect to net self-interactions in Figure 5.18, there 

were many measures that were highly collinear. To reduce the dimensionality of the 

dataset and avoid overfitting in the statistical models outlined below, it was necessary 

to use a systematic approach to reduce the initial large feature set to a smaller set that 

were not highly correlated and represented distinct properties or behaviors. This 

procedure is described in detail in Appendix D.1. The final feature set, shown in Table 

5.5, included features that describe the solution conditions, net self-interactions, 

conformational stability, and results from stability studies at higher 𝑇𝑖𝑛𝑐 values or 

lower 𝑐2 values. 
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Table 5.5: Feature coefficients and model performance for elastic net regression 

models of 130 mg/mL aggregation rates 

Featureα 
Refrigerated 

(linear) 

Refrigerated 

(logistic) 

30 °C 

(linear) 

Accelerated 

(linear) 

|pH – pI| 
-0.111 ± 0.007 

(-0.188 ± 0.008) 

0 

(-0.773 ± 0.107) 

-0.171 ± 0.016 

(-0.190 ± 0.017) 

0.106 ± 0.014 

(0) 

ln(IS) 
0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

𝐵22
∗  

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

𝐵22,𝑁𝐸
∗  

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

𝑇𝑚,𝑎𝑝𝑝1
− 𝑇𝑖𝑛𝑐  

0 

(0) 

0 

(0.753 ± 0.089) 

0 

(0) 

0 

(-0.222 ± 0.013) 

y-intercept 
-4.59 

(-4.58) 

0.442 

(0.466) 

-4.00 

(-4.00) 

-2.59 

(-2.60) 

Features derived from other stability studies 

𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥 0.110 ± 0.011 1.97 ± 0.20 N/A N/A 

𝑘𝑜𝑏𝑠,10 N/A N/A 0.095 ± 0.020 N/A 

𝑘𝑜𝑏𝑠,𝑎𝑐𝑐 N/A N/A 0 N/A 

𝑘𝑜𝑏𝑠,𝑐2 𝑒𝑥 N/A N/A N/A 0.521 ± 0.021 

Model performance 

R 
0.61 

(0.52) 

0.66 

(0.58) 

0.73 

(0.56) 

0.93 

(0.49) 

Errorγ 
0.213 ± 0.004 

(0.237 ± 0.003) 

3.58 ± 0.23 

(4.36 ± 0.21) 

0.167 ± 0.005 

(0.208 ± 0.007) 

0.155 ± 0.005 

(0.418 ± 0.006) 

Null error 0.308 5.91 0.284 0.516 

α Values in parenthesis are for models without features derived from other stability 

studies and uncertainties are 95% confidence intervals of the coefficient values.  
 Correlation coefficient between the predicted and measured aggregation rates 
γ Error was MAE for linear models and deviance for logistic models  
 Null error is the intercept-only error, where all coefficients besides the constant term 

are set to 0 and all predicted 𝑘𝑜𝑏𝑠 values are the same 
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The quantity ln(IS) captures the Debye screening effect and was linearized via 

the natural log because IS has an exponential relationship with Debye length.29 |pH-pI| 

essentially captures differences in the net valence at a given pH (see also Figure 5.8). 

𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 is a surrogate for changes in the conformational stability at a given 𝑇𝑖𝑛𝑐 , 

pH, and IS (see also Figure 5.11). At 30 °C and refrigerated conditions, 𝑇𝑖𝑛𝑐 is 

invariant, so 𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 is the same as 𝑇𝑚,𝑎𝑝𝑝1 because the data were standardized 

for this analysis. 𝐵22,𝑁𝐸
∗  was measured at > 300 mM IS where electrostatic interactions 

were largely screened and describes net non-electrostatic self-interactions, such as 

those from hydrophobic interactions and hydrogen bonding. 𝐵22
∗ , the difference 

between 𝐵22,𝑁𝐸
∗  and 𝐵22

∗  at a given IS, quantifies the electrostatic contribution to 𝐵22
∗ . 

The correlation coefficient for each of those features with 130 mg/mL aggregation 

rates as a function of 𝑇𝑖𝑛𝑐 is shown in Figure 5.19. The results in Figure 5.19 reiterate 

that for this dataset, the phenomena relevant to aggregation can change in their relative 

importance and directional impact (i.e., promoting or inhibiting aggregation) 

depending on the choice of incubation temperature. The features themselves are 

somewhat correlated, however (see Appendix D.1.7), and more sophisticated analysis 

(i.e., the ML models developed below) was required to deconvolute the variance in 

aggregation rates that was captured by each feature. 
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Figure 5.19: Correlation coefficients (R values) between input features and 130 

mg/mL aggregation rates (𝑘𝑜𝑏𝑠 values) at accelerated (blue), 30 °C 

(orange), and refrigerated (red) conditions. 𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 is shortened to 

𝑇𝑚,𝑎𝑝𝑝1 for readability. 

A diagram of the ML statistical framework described below is shown in Figure 

5.20. The gray boxes represent the full set of inputs to the model that broadly fall into 

two categories: information intrinsic to a given MAb and stability study, and results 

from experimental measurements. The green boxes are inputs into the statistical 

model. The green box labeled “Feature screening” refers to the process described in 

Appendix D.1 wherein the large set of input features were filtered to a subset that 

describe distinct phenomena and are not highly collinear. The other green box, labeled 

“𝑘𝑜𝑏𝑠 database” is the measured aggregation rates at the condition(s) of interest that 

are used as training data. The purple boxes and arrows are all part of the ML algorithm 

that is described below, and the light blue box is the output: a numerical model of the 

most important or relevant features and their relative weights that can be applied to 
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predict aggregation rates for each of the conditions in the training data and perhaps for 

therapeutic proteins outside the dataset. 

 

Figure 5.20: Statistical framework applied in this section. Green boxes are the inputs 

and the light blue box is the output. 

ENR models of 130 mg/mL aggregation rates for a given 𝑇𝑖𝑛𝑐 value were built 

with the features shown in Table 5.5 (y-intercepts are included for completeness). 

ENR was used to build linear combination models (i.e., 𝑙𝑜𝑔10(𝑘𝑜𝑏𝑠) =  
0
+ 

1
𝑥1 +


2
𝑥2 +⋯ ), where 𝑥𝑖 is a given feature in Table 5.5. For refrigerated conditions, 

logistic regression models were also considered, where the aggregation rates were 

transformed into binary data via the threshold 𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] > -4.56 (1% 

aggregation per year). Logistic models predict the log-odds (logit) of the probability of 

the binary data being true (i.e., 𝑃(𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)]  >  −4.56 ) = (1 +

exp [−(
0
+ 

1
𝑥1 + 

2
𝑥2 +⋯)])

−1
 ). The logistic models explicitly consider the 

aggregation rates that were below the measurement threshold and are perhaps better 

suited in cases like the dataset in this chapter where many of the measured rates had 
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relatively significant uncertainties. Feature coefficients from logistic models vary in 

their magnitudes from the linear models and should not be directly compared. A few 

elements were added to the ENR models to improve their ability to be applied not only 

to predict aggregation rates, but also to deconvolute the impacts of each feature and 

more rigorously identify which features were statistically significant. The models were 

iteratively generated with RFE to remove the least important features such that the 

final models (shown in Table 5.5) only contained features that reduced the error of the 

predicted 𝑘𝑜𝑏𝑠 values in a statistically significant manner (p < 0.05). LOPO CV248 was 

used so that the models explicitly considered MAb identity and would be more robust 

for predictions of aggregation rates of MAbs outside of this dataset. MC sampling was 

used for uncertainty estimation to account for the significant uncertainties in some of 

the 𝑘𝑜𝑏𝑠 values. Feature coefficients and model error values had uncertainties due to 

MC sampling, which were useful to reduce overfitting and improve how robust the 

feature selection procedure was. 

ENR models with and without features derived from stability studies at other 

conditions (i.e., higher 𝑇𝑖𝑛𝑐 or lower 𝑐2 values) were considered. For accelerated 

conditions, the predicted aggregation rate via extrapolation from 10 and 35 mg/mL 

studies was used to capture differences in the dependence of 𝑘𝑜𝑏𝑠 on 𝑐2 of the 

different formulations (R = 0.95; referred to as 𝑘𝑜𝑏𝑠,𝑐2 𝑒𝑥). For 30 °C conditions, the 

aggregation rate at 10 mg/mL (R = 0.41; referred to as 𝑘𝑜𝑏𝑠,10), and the aggregation 

rate at accelerated conditions (R = 0.12; referred to as 𝑘𝑜𝑏𝑠,𝑎𝑐𝑐) were both considered. 

The aggregation rates at accelerated conditions were incongruous because of the two 

different 𝑇𝑖𝑛𝑐 conditions chosen (see Table 5.2), so the feature was adjusted by 

extrapolating the 𝑘𝑜𝑏𝑠 values at 45 °C to 50 °C via Arrhenius extrapolation with the 
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𝑘𝑜𝑏𝑠 values at 30 °C (see Figure D.1.5.2). For refrigerated conditions, the Arrhenius 

extrapolated rate from 30 °C and accelerated conditions (see also Figure 5.6) was used 

as an input (R = 0.70; referred to as 𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥). A review of the highly correlated 

features from stability studies at other conditions that were also considered is shown in 

Appendix D.1. Predicted 𝑘𝑜𝑏𝑠 values where features derived from stability studies at 

other conditions were considered are shown in Figure 5.21, and the analogous 

predictions without features from other stability studies are shown in Figure 5.22. 

Feature coefficients for each of the models are shown in Table 5.5. Because the 

features were standardized for ENR, the coefficients are directly comparable (with the 

exception of the logistic ENR models) where a larger magnitude indicates more 

significant relationship. 
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Figure 5.21: ENR model predictions for 130 mg/mL aggregation rates for models with 

feature(s) derived from stability studies at other conditions at: (A) 

accelerated conditions, (B) 30 °C, and (C and D) refrigerated conditions. 

Panels A, B, and C are parity plots of measured aggregation rates (x-axis) 

and aggregation rates predicted by a linear ENR model (y-axis). Panel D 

shows predicted aggregation rates by the logistic ENR model with 

(𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] > -4.56 as the boundary criterion, where observed 

aggregation rates are shown as filled black squares. The legend is the 

same for all panels where symbols for each formulation correspond to 

Table 5.1 and error bars are 95% confidence intervals. 
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Figure 5.22: ENR model predictions for 130 mg/mL aggregation rates for models 

without feature(s) derived from stability studies at other conditions at: 

(A) accelerated conditions, (B) 30 °C, and (C and D) refrigerated 

conditions. Panels A, B, and C are parity plots of measured aggregation 

rates (x-axis) and aggregation rates predicted by a linear ENR model (y-

axis). Panel D shows predicted aggregation rates by the logistic ENR 

model with (𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] > -4.56 as the boundary criterion, 

where observed aggregation rates are shown as filled black squares. The 

legend is the same for all panels where symbols for each formulation 

correspond to Table 5.1 and error bars are 95% confidence intervals. 

The ENR model for accelerated incubation temperatures selected 𝑘𝑜𝑏𝑠,𝑐2 𝑒𝑥 as 

well as |pH-pI|. 𝑘𝑜𝑏𝑠,𝑐2 𝑒𝑥 was expected to be selected due to the high correlation of R 

= 0.95. A model with only 𝑘𝑜𝑏𝑠,𝑐2 𝑒𝑥 had a 65% reduction from the null error (R = 
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0.90), which mildly improved to 69% when |pH-pI| was included (R = 0.93). When 

𝑘𝑜𝑏𝑠,𝑐2 𝑒𝑥 was excluded, the model selected only 𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐, but with only a ~20% 

reduction from the null error (R = 0.49). 𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 was only mildly useful as a 

quantitative predictor of aggregation rates when considering multiple MAbs, but as 

noted previously it was useful in understanding the differences in aggregation rates 

between formulations for a specific MAb and 𝑐2, which suggests that there were other 

MAb-specific traits not captured by the features considered here that impacted the 

aggregation rates. 

Similarly, the linear models for 30 °C and refrigerated conditions were 

improved by results from other stability studies (𝑘𝑜𝑏𝑠,10 and 𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥, respectively), 

and |pH-pI| was the other selected feature that helped to account for additional 

variance in the measured aggregation rates. When the features derived from other 

stability studies were excluded, |pH-pI| was the only selected feature and the 

coefficient increased in magnitude (i.e., it was more strongly weighted). The linear 

model for refrigerated aggregation rates had a 31% reduction from the null error (R = 

0.61) with 𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥 and |pH-pI|, which dropped to 23% (R = 0.52) with only |pH-pI|. 

The model for 30 °C aggregation rates had a 41% reduction from the null error (R = 

0.73) with 𝑘𝑜𝑏𝑠,10 and |pH-pI|, which dropped to 27% (R = 0.56) with only |pH-pI|. 

The results from accelerated conditions were not at all useful for predicting 

aggregation rates at 30 °C as the ML models did not select the 𝑘𝑜𝑏𝑠,𝑎𝑐𝑐 feature, and the 

correlation with the 𝑘𝑜𝑏𝑠 at 30 °C was weak (R = 0.12). However, the 10 mg/mL 

aggregation rate at 30 °C (𝑘𝑜𝑏𝑠,10; R = 0.41) was selected by the ML model, despite 

changes in intermolecular interactions due to greatly reduced crowding, and the 
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significant number of conditions where the 𝑘𝑜𝑏𝑠,10 value was below the measurement 

floor (6 out of 16).   

By inspection of Figure 5.3, it is clear that the aggregation rates for a given 

MAb at refrigerated conditions were primarily distinguished by the pH of the 

formulation. Both the linear and logistic models selected 𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥 as an important 

feature, which also clearly separated the formulations by pH (see Figure 5.6). This was 

likely incidental; conformational stability clearly mediated aggregation rates at 

accelerated conditions, which resulted in faster aggregation rates for pH 5 conditions, 

but results were generally more mixed at 30 °C. That lead to a reversal in the relative 

formulation rankings for 𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥. Without 𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥, both models selected |pH-pI| 

(as discussed above), but the logistic model also selected 𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐. This was 

likely also incidental as 𝑇𝑚,𝑎𝑝𝑝1 values from DSC were also separated by pH. Also, 

the positive coefficient would suggest that formulations with higher conformational 

stability would have faster aggregation rates, counter to fundamental intuition. Neither 

the linear or logistic model selected aggregation rates from 30 °C stability studies 

when they were used in replacement of 𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥. Aggregation rates from accelerated 

stability studies were selected when used in replacement of 𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥, but with larger 

model error and feature coefficients that would suggest that conditions with faster 

aggregation rates at accelerated conditions would have slower aggregation rates at 

refrigerated conditions. 

No model, regardless of 𝑇𝑖𝑛𝑐, selected ln(IS), 𝐵22
∗ , or 𝐵22,𝑁𝐸

∗  as an important 

feature. The impact of Debye screening on conformational stability and self-

interactions was captured by other features, and features derived from stability studies 

at other conditions also implicitly considered IS. 𝐵22
∗  differs from |pH-pI| in its 
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consideration of screened electrostatics, but is also fairly correlated with |pH-pI| (R = 

0.57) and even more so when considering only low IS formulations (R = 0.85). As 

mentioned previously, the mild impact of IS on high-concentration aggregation rates 

might suggest that long-ranged electrostatic interactions were less important than 

shorter-ranged interactions between specific residues. 𝐵22,𝑁𝐸
∗  happened to also be 

fairly correlated with |pH-pI| (R=0.60) but was quite sparse given only 4 datapoints. It 

is therefore unclear from this chapter whether net self-interactions due to short-ranged 

attractions can be a useful predictor of high-concentration aggregation rates.  

As it was observed that aggregation rates were non-Arrhenius with respect to 

𝑇𝑖𝑛𝑐 (see Figure 5.6), and the influence of relevant phenomena were different at 

different 𝑇𝑖𝑛𝑐 values (see Figure 5.19), a “unified” model with aggregation rates at all 

𝑇𝑖𝑛𝑐 conditions was not considered. Similarly, models with 𝑐2 from 10 to 130 mg/mL 

were not created as it was observed that the 𝑐2 dependence of aggregation rates was 

not the same between different formulations.  

5.3.5 Subvisible particle formation 

Subvisible particle formation was also monitored with BMI for the high-

concentration stability studies. Results for MAb 3 at the pH 5 low IS condition were 

excluded because the instrument was not available when those studies began, so only 

partial, inconclusive results were available. The protein mass incorporated into 

subvisible particles is relatively small (e.g., tenths or hundredths of a percent of the 

total protein mass) and is challenging to ascertain without ambiguity in how particle 

counts or areas are interpreted.134 Instead, the results were quantified by binary 

categories based on whether the formulation was prone to the formation of subvisible 

particles, including a threshold based on regulatory standards, on the basis of particle 
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area normalized by the initial 𝑐2 (see section 5.2.1 for further detail). The binary 

results are shown in Table 5.6.  

Table 5.6: Results from BMI measurements of subvisible particle formation  

MAb Formulation Accelerated 30 °C Refrigerated 

MAb 3 

pH 5 low IS ND ND ND 

pH 5 high IS + - - 

pH 6.5 low IS + + - 

pH 6.5 high IS + + - 

MAb 4 

pH 5 low IS - - - 

pH 5 high IS - + + 

pH 6.5 low IS + + - 

pH 6.5 high IS + + - 

MAb 5 

pH 5 low IS + - - 

pH 5 high IS + + + 

pH 6.5 low IS + + + 

pH 6.5 high IS + - - 

MAb 6 

pH 5 low IS - - - 

pH 5 high IS + + + 

pH 6.5 low IS - - - 

pH 6.5 high IS - + - 

 Formulations that were prone to subvisible particle formation are shown in purple 

and with + symbols, and those that were not prone to subvisible particle formation are 

shown in green and with - symbols.  
 Results for MAb 3 at pH 5 low IS is shown as “ND” because only partial BMI data 

were collected. 

 

 

Out of the 15 formulations at 130 mg/mL, 10, 9, and 4 were prone to forming 

subvisible particles at accelerated, 30 °C, and refrigerated conditions, respectively. In 
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part, this was convoluted by the different aggregation rates (and resultant aggregate 

fractions) of these conditions as the formation of HMW aggregates is a necessary 

precursor to the formation of subvisible particles that are orders of magnitude larger in 

terms of mass.257 Logistic regression models per 𝑇𝑖𝑛𝑐 were developed with the features 

in Table 5.5, excluding features derived from other stability studies. The logistic 

models also considered the aggregation rate (𝑘𝑜𝑏𝑠 value) at that formulation, a binary 

category of whether SEC showed the formation of HMW aggregates (see Table 5.3), 

and the binary subvisible particle formation results from studies at higher 𝑇𝑖𝑛𝑐, where 

applicable. Predictions and feature coefficients from those logistic models are shown 

in Figure 5.23 and Table 5.7, respectively. 
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Figure 5.23: Logistic models for 130 mg/mL subvisible particle formation for the 

following conditions: (A) accelerated, (B) 30 °C, (C) 30 °C, low IS only, 

(D) 30 °C, high IS only, and (E) refrigerated. The black squares are the 

experimental results (see Table 5.6 above) and symbols for predicted 

values correspond to Table 5.1. 
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Table 5.7: Feature coefficients and model performance for elastic net logistic 

regression models of 130 mg/mL subvisible particle formation 

Coefficient Refrigerated 30 °C 
30 °C 

(low IS) 

30 °C 

(high IS) 
Accelerated 

y-intercept 0.205 0.550 0.000 0.760 0.679 

|pH – pI| 0.569 0 0 0 0 

ln(IS) 0 0 0 0 0 

𝐵22
∗  0 -1.73 -22.9 0 0 

𝐵22,𝑁𝐸
∗

 0 0 0 0 0 

𝑇𝑚,𝑎𝑝𝑝1 − 𝑇𝑖𝑛𝑐  -0.703 0 0 0 0 

𝑘𝑜𝑏𝑠 0 0 0 0 0 

HMW agg N/A 0 0 0 0 

Subvis. (acc.) 0 0 0 0 N/A 

Subvis. (30 °C) 1.04 N/A N/A N/A N/A 

Model performance 

Rα 0.66 0.46 1.00 N/A N/A 

Error 

(deviance) 
3.46 3.52 0.29 2.79 6.30 

Null error 4.77 5.21 2.99 2.79 6.30 
α Correlation coefficient between the predicted and measured aggregation rates 
 Null error is the intercept-only error, where all coefficients besides the constant term 

are set to 0 and all predicted values are the same 

 

 

At accelerated conditions, MAb 5 and to some extent MAb 3 were more prone 

to subvisible particle formation than MAb 4 and MAb 6. pH 6.5 formulations of MAb 

3 also displayed complex behavior at accelerated conditions where subvisible particles 

that were present initially (likely created during sample preparation) dissociated and 

then new subvisible particles formed at later timepoints (see Figure 5.24). The logistic 

model did not select any of the features for accelerated conditions, so MAb identity 
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appeared to play the most important role. At 30 °C conditions, the only feature 

selected by the logistic model was 𝐵22
∗ . By splitting the dataset by IS, it was clear 

that this result was specific to low IS formulations, and subvisible particle formation 

was inhibited by conditions with strong electrostatic repulsions. The three conditions 

with 𝐵22
∗  < 0.7 were all prone to subvisible particle formation, while the four 

conditions with 𝐵22
∗  > 1.1 were all not prone to subvisible particle formation. At high 

IS, 6 out of 8 formulations were prone to subvisible particle formation, with no clear 

relationship to any features besides IS (i.e., the logistic model did not select any 

features). These results are consistent with other reports where electrostatic repulsions 

were found to inhibit the formation of subvisible or insoluble particles.57,243,275,280 

Subvisible particle formation at refrigerated conditions was fairly correlated with 30 

°C conditions (R = 0.49), and the logistic model returned that as the most important 

feature, followed by 𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 and |pH-pI|. With only 4 out of 15 formulations 

displaying subvisible particle formation, and relatively slow aggregation rates, there is 

significant uncertainty that precludes deeper analysis or interpretation of those results. 
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Figure 5.24: Subvisible particle areas for 130 mg/mL, pH 6.5 MAb 3 formulations at 

accelerated (45 °C) conditions. The low and high IS conditions are 

shown as filled and open green triangles, respectively (to match Table 

5.1). Solid and dashed lines connecting the data points correspond to low 

and high IS, respectively, and are guides to the eye. 

5.3.6 Outlook and industrial applications 

The relative rankings of aggregation rates by MAb or by formulation were 

systematically inconsistent between accelerated and refrigerated conditions, which 

contributes to a growing body of knowledge that the industrial practice of using 

stability studies at elevated temperature conditions to extrapolate to refrigerated 

conditions can be inaccurate or misleading, at least for MAb products.129,145,263 The 

MAb aggregation rates were non-Arrhenius at 130 mg/mL in all cases, indicating that 

there was likely a change in the dominant aggregation mechanism as a function of 𝑇𝑖𝑛𝑐 

or an intrinsically non-Arrhenius dominant aggregation mechanism.263 Despite that, 

aggregation rates at refrigerated conditions that were predicted via Arrhenius 
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extrapolation from the accelerated and 30 °C conditions were somewhat correlated 

with the measured aggregation rates at refrigerated conditions (R = 0.67; see Figure 

5.6). This result is consistent with some other reports214,243, but it is unlikely that 

Arrhenius extrapolation was truly phenomenologically relevant or quantitatively 

useful given that the predicted rates were several orders of magnitude smaller than the 

measured rates. 

Conformational stability was a primary factor in mediating aggregation rates at 

accelerated conditions, despite performing those studies well below the 𝑇𝑚,𝑎𝑝𝑝1 values 

(𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 > 10 °C) as measured by DSC. At 30 °C and refrigerated conditions, 

𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 was not found to be related to high-concentration aggregation rates. 

Instead, the ML models showed that the net valence was the most informative feature 

for predicting aggregation rates or explaining the variance in aggregation rates 

between different solution conditions at refrigerated storage conditions. For 

refrigerated storage conditions, it was always better to choose a formulation with a pH 

further from the pI (pH 5 for the four MAbs in this work). It was also notable that at 

high-concentration, ionic strength had a limited impact on aggregation rates, which 

suggested that the Debye screening effect had a diminished influence when proteins 

were more crowded and intermolecular distances were necessarily smaller. Also, the 

impact of charged residues from the proteins in solution on the total solution ionic 

strength was not considered. 

It is important to note that any statistical model is limited by its training 

dataset, which in this case consisted of MAbs that were not particularly problematic 

and likely would not be screened out during high-throughput screening activities (e.g., 

measurements of conformational stability and self-interactions) in early-stage 
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development. In part, this chapter provides guidance for the development of more 

robust ML models with expanded datasets that may not be publicly available but exist 

within companies that have performed numerous stability studies across a large 

number of candidates and formulations. ENR was selected over other statistical and/or 

ML methods that were also considered (e.g., neural networks, support vector 

machines, principal component analysis (PCA), and partial least squares (PLS) 

regression) because the ENR results were directly interpretable in terms of most 

important features and less likely to create overfit models given the size of this dataset. 

For a significantly larger dataset, those methods could provide more robust predictions 

with the features presented here. Preliminary analysis with PCA and PLS yielded 

principal components and latent variables that were not insightful or phenomenon-

specific.  

Many molecular modeling and simulation techniques have been developed 

with the goal of predicting protein aggregation, although most methods predict a proxy 

for quantitative aggregation rates (e.g., conformational stability, or identification of 

potentially aggregation prone regions) rather than being directly trained against 

physical stability data at intended storage conditions and representative 

formulations.100,150 Many of these models rely on data from proteins that are quite 

distinct from MAbs, like much smaller peptides or amyloid proteins, and to date it is 

not clear how translatable those models are to MAbs and other related therapeutic 

proteins.100,151 Regardless, it could be worthwhile to incorporate computational 

methods into the ML models developed in this work, especially because they do not 

require physical material and are typically higher throughput than experiments. That 

was out of the scope of this chapter, but has been somewhat successful in other reports 
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for aggregation rates of therapeutic MAbs, although the datasets were typically 

smaller, not at high-concentration, and/or did not consider differences in solution 

conditions.40,99,150,169,233,281 

5.4 Summary and conclusions 

Stability studies for four MAbs (MAb 3, MAb 4, MAb 5, and MAb 6) were 

performed at incubation temperatures (𝑇𝑖𝑛𝑐 values) representative of industrial studies: 

refrigerated (4 C), 30 C, and accelerated (45-50 C) conditions. Studies were 

performed for formulations at every combination of two pH values (5 and 6.5), two 

ionic strengths (10 and ~110 mM), and three MAb concentrations (10, 35, and 130 

mg/mL). Aggregation rates were calculated by analyzing the stability samples with 

size-exclusion chromatography, and subvisible particles were monitored with 

backgrounded membrane imaging. The results were analyzed from the perspective of 

how the formulation conditions impacted fundamental phenomena such as self-

interactions (quantified by static and dynamic light scattering experiments) and 

conformational stability (quantified by differential scanning calorimetry experiments). 

Interpretable machine learning models (i.e., elastic net regression models) were 

developed to rigorously select the features that were relevant to the measured 

aggregation rates, deconvolute the impacts of correlated features, and make 

predictions of high-concentration aggregation rates. 

A key goal of this chapter was to provide insights that would help in predicting 

which proteins or solution conditions would be more stable as a commercial MAb 

product for subcutaneous administration. Those products are formulated at high 

protein concentrations (represented by 130 mg/mL in this work) and often stored at 

refrigerated conditions. Stability studies at higher 𝑇𝑖𝑛𝑐 conditions (30 °C to 50 °C) 
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were misleading with respect to which MAb or solution condition (i.e., pH and ionic 

strength values) was more or less stable, and aggregation rates were unsurprisingly 

non-Arrhenius. Aggregation rates at the accelerated condition (45-50 C) were clearly 

mediated by conformational stability, as the difference between the first midpoint 

unfolding temperature from DSC (𝑇𝑚,𝑎𝑝𝑝1) and the 𝑇𝑖𝑛𝑐 (i.e., 𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐) was 

highly correlated with the aggregation rate for a given MAb and MAb concentration. 

The net valence of the MAb at a given pH, represented by the difference between the 

pH and pI (i.e., |pH-pI|), was reasonably predictive of high-concentration aggregation 

rates at 30 °C and refrigerated conditions. That was theorized to be due to the effect of 

repulsive electrostatic self-interactions, but the ML models found that net valence 

(quantified by |pH-pI|) was a more significant feature than the net strength of 

electrostatic repulsions that were quantified by SLS and DLS. The ML models also 

suggested that long-ranged electrostatic repulsions were relevant in inhibiting 

subvisible particle formation at 30 °C and perhaps refrigerated conditions. 

The dataset of aggregation rates in this chapter is unique in its breadth 

compared to other published studies as it includes multiple MAbs, multiple solution 

conditions, high MAb concentrations and realistic refrigerated storage conditions. 

Measurements of conformational stability and net self-interactions for each MAb were 

consistent with relatively well-behaved MAbs that might not be screened out during 

early-stage development, thus the results in this work should be interpreted with 

respect to optimizing solution conditions for MAbs in later stages of development. 

Also, pharmaceutical companies that develop therapeutic proteins likely have even 

larger datasets that are not publicly available. The ML methods presented in this work 

were developed with that context in mind and included elements to more rigorously 
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estimate uncertainty, identify relevant features, and be specifically suited for 

predicting aggregation rates for a protein outside of the training data. The ML models 

might be improved by the incorporation of molecular modeling and molecular 

simulations, or other experimental methods such as intrinsic fluorescence and circular 

dichroism. 
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CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

This thesis was focused on addressing challenges in industrial drug 

development of therapeutic proteins through the lens of characterizing and predicting 

self-interactions and improving understanding of how self-interactions are related to 

reversible self-association and aggregation. Emphasis was placed on specific practical 

applications such as predicting high-concentration net self-interactions and predicting 

how different solution conditions will impact MAb aggregation rates. Experimental 

datasets were generated for several proteins (four MAbs, two Fc-fusion proteins, and 

the corresponding FP protein) at varying solution conditions that systematically parsed 

fundamental features of commercial protein formulations (i.e., pH, ionic strength, and 

protein concentration). The proteins were provided by industrial collaborators and 

were directly representative of commercial therapeutic protein products. Data from 

prior studies of five other MAbs were also used in assessing and validating the 

molecular simulation methods. Overall, the scope of the studies in this thesis were 

quite broad compared to other self-consistent and publicly-available datasets, and 

therefore the results were more certain in a statistical sense and more robust with 

respect to being potentially applicable to other proteins (especially other MAbs). 

A collection of CG models for molecular simulations were curated in Chapter 

2 that ranged from domain-level models (e.g., DODECA), to relatively high-resolution 

models (e.g., 1bAA). Guidance for application-specific model selection was provided 

Chapter 6 
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based on detailed analyses of the tradeoffs between computational burden and 

structural resolution and/or predictive accuracy. A dataset from prior work of net self-

interactions (i.e., 𝐵22 values) for five MAbs at many different solution conditions 

(with respect to pH and ionic strength) were used as an illustrative example for 

quantitative comparisons. The dataset of net self-interactions ranged from “simple-

colloidal” electrostatic repulsions to strong net attractions driven by electrostatic 

interactions between particular amino acids. Domain-level models can be applied in a 

high-throughput manner and are tractable at high-concentrations but lack the structural 

resolution to model interactions between specific amino acids such those that can 

facilitate strong electrostatic attractions. Higher-resolution models sacrificed 

computational efficiency by orders of magnitude but were significantly more accurate 

in their structural resolutions and representation of attractive electrostatic self-

interactions. The improved resolution of steric and electrostatic behavior for high-

resolution models would be appealing for use in high-concentration simulations, but 

models like 1bAA were not tractable at those concentrations to run at a practical 

throughput. The 1bC/D model was introduced which retained amino acid resolution of 

the charged sites in the protein, while greatly reducing the total number of interaction 

sites or beads in the model by “lumping” the noncharged amino acids into domain 

beads akin to the DODECA domain-level model. The 1bC/D model was able to 

capture the range of net self-interactions with equal or improved accuracy compared to 

the 1bAA model, with computational burdens that were 25-50 times lower. Some of 

these models were used in the two subsequent chapters: 1bAA in Chapter 3 for low-

concentration simulations of two Fc-fusion proteins and their FP protein, and both 
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DODECA and 1bC/D in Chapter 4 for low- to high-concentration simulations for six 

MAbs. 

SLS and DLS experiments and 1bAA molecular simulations were applied to 

investigate and model attractive electrostatic self-interactions and their potential 

relationship with reversible self-association for two Fc-fusion proteins (monovalent 

and bivalent) and the corresponding FP protein in Chapter 3. At pH 6.5 conditions, the 

three proteins formed oligomers at low ionic strength conditions that fully or partially 

reversed when the ionic strength in the solution was increased. For the monovalent Fc-

fusion and FP protein, that reversible self-association appeared to be related to 

attractive electrostatic self-interactions. For the bivalent Fc-fusion, a “baseline” of 

higher molecular weight species at all conditions complicated experimental 

quantification of net self-interactions, but 1bAA simulations were used to qualitatively 

predict that at pH 6.5, electrostatic interactions would also be net attractive. Analysis 

of specific pairwise electrostatic interactions between charged beads in the 1bAA 

simulations suggested that cross-domain electrostatic interactions between the Fc and 

FP domains were responsible for attractive electrostatic self-interactions and thus 

possibly also reversible self-association. Fc-fusion proteins can be particularly 

challenging to develop as they can be prone to many challenging biophysical 

behaviors which can be difficult to predict as well as time- and material-intensive to 

screen for experimentally. Computational methods such as those presented in Chapter 

3 showed substantial potential for screening Fc-fusion drug candidates and designing 

charge variants that can mitigate poor behaviors like reversible self-association. 

Typically, the preferred administration route for commercial protein 

therapeutics is via subcutaneous injection, which requires relatively small volumes (< 
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~2 mL). To achieve the needed dosage in a single injection, liquid solutions with 

relatively high protein concentrations (i.e., on the order of 100 mg/mL) are needed. 

Chapters 4 and 5 focused on problematic behaviors at high-concentrations, how they 

are related to low-concentration behaviors, efforts to better understand the underlying 

phenomena, and predictions of net self-interactions and aggregation rates at high-

concentration conditions. In Chapter 4, experimental measurements of net self-

interactions (primarily via SLS) from low- to high-concentration for six MAbs as a 

function of pH and ionic strength were used as a test case where similar to Chapter 2, 

the net self-interactions spanned from strong repulsions to strong attractions. The 

variance in net self-interactions was primarily electrostatically driven via differences 

in the surface distribution of charged residues due to the unique amino acid sequences 

of the six MAbs and changes in pH and ionic strength. In Chapter 5, that dataset was 

expanded for four of the MAbs to include measurements of conformational stability 

via DSC and short- to long-term stability studies to quantify aggregation rates as a 

function of pH, ionic strength, protein concentration, and incubation temperature. The 

dataset of aggregation rates was unique in its size and scope compared to other 

published works. 

A previously developed method for combining low-concentration experimental 

SLS measurements and low- to high-concentration CG molecular simulations to 

predict high-concentration net self-interactions was improved in Chapter 4 by the 

implementation of the hybrid 1bC/D model that was introduced in Chapter 2. The 

high-concentration predictions were compared between the 1bC/D model and the 

DODECA model, and the results showed that while the DODECA model consistently 

gave poor predictions for systems with net attractive electrostatic self-interactions, the 
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1bC/D model was able to properly capture net attractive electrostatic interactions. 

However, the 1bC/D model sometimes struggled to quantitatively capture net 

repulsive electrostatic interactions at pH 6.5 conditions. Those deficiencies were 

addressed by considering two alternative methods of representing of charge states of 

ionizable residues in the simulations. Like Chapter 3, specific electrostatic interactions 

between charged residues were analyzed and problematic amino acids were identified 

for a MAb with strongly attractive electrostatic self-interactions and a propensity for 

phase separation.  

The stability study conditions in Chapter 5 were intended to mimic commercial 

MAb products (i.e., in terms of protein concentration and formulation components) 

and stability studies that are commonly performed in an industrial setting (i.e., in 

terms of incubation temperatures). The MAbs in this chapter were relatively “well-

behaved” by industrial standards, at least with respect to the experimental 

measurements of net self-interactions and conformational stability. Thus, the results 

are perhaps best interpreted in the context of formulation development where a given 

MAb candidate was not disqualified by early-stage high-throughput screening 

measurements. Short- to medium-term stability studies are performed at “accelerated” 

temperatures to screen drug candidates and formulations and were represented by 

studies at incubation temperatures of 30-50 °C. Long-term stability studies are used to 

demonstrate adequate shelf life at the intended storage condition and were represented 

by studies at refrigerated conditions (4 °C). The most important goal of these studies 

was to relate measurements of net self-interactions, conformational stability, and 

aggregation rates at accelerated conditions to high-concentration (i.e., 130 mg/ml) 

aggregation rates at refrigerated storage conditions. The results from those studies 
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were first analyzed in terms of straightforward statistical relationships between the 

high-concentration aggregation rates and measured properties such as 𝑇𝑚,𝑎𝑝𝑝1 from 

DSC and 𝐵22 from SLS. Conformational stability mediated aggregation rates at the 

highest incubation temperatures (i.e., 45 °C and 50 °C) for a given MAb but was not 

very predictive of aggregation rates when data for all four MAbs were combined, 

indicating that there were other MAb-specific features that impacted the aggregation 

rates. At 30 °C and refrigerated conditions, conformational stability was not 

particularly correlated with aggregation rates. However, there was a clear trend with 

the net valence at a particular pH, which was proposed to be due to repulsive 

electrostatic self-interactions that inhibited aggregation. It was notable that at high-

concentration, ionic strength had a limited impact on aggregation rates, which 

suggested that the Debye screening effect had a diminished influence when proteins 

were more crowded and intermolecular distances were necessarily smaller.  

The relative rankings of aggregation rates by MAb or by formulation were 

systematically inconsistent between accelerated and refrigerated conditions, which 

contributes to a growing body of knowledge that the industrial practice of using 

stability studies at elevated temperature conditions to extrapolate to refrigerated 

conditions can be inaccurate or misleading.129,145,263 Interpretable ML methods were 

developed in part to provide a platform for more robust predictions of aggregation 

rates that focused on deconvoluting related features and considered uncertainty in the 

measured and predicted aggregation rates. The models were also used to evaluate 

when studies at more accessible conditions (i.e., lower concentration or higher 

incubation temperature) could be useful to predict the high-concentration aggregation 

rates. The models were useful in hypothesis testing (e.g., is conformational stability 
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related to aggregation rates at refrigerated conditions?), and clearly suggested that net 

valence was the most significant predictor of aggregation rates at realistic storage 

conditions. Although the dataset of aggregation rates in Chapter 5 was large compared 

to other similar published datasets, it is certainly much smaller than the data that has 

been collected at pharmaceutical companies over the last few decades, so the ML 

methods could be of particular utility when trained on those much larger datasets. In 

the context of the dataset in Chapter 5, the ML models were most useful to parse the 

contributions of fundamental phenomena on aggregation rates with higher statistical 

certainty.  

6.2 Future work 

6.2.1 Characterization of oligomers and aggregates 

The methods used in this thesis to characterize reversible oligomers and 

aggregates were constrained by several practical considerations such as instrument 

availability and whether the technique might perturb the aggregates or reversible 

oligomers. Also, relatively high throughput methods were needed for characterization 

of aggregates formed during stability studies to maximize the number of conditions 

that could be tested. More detailed insights into structure and size were compromised 

in favor of more precise quantification in terms of aggregate mass concentration that 

could be performed at higher throughput. The experimental methods described below 

could be used as orthogonal measures or to investigate other relevant phenomena. 

It was key that the reversible self-association be characterized in situ as it is 

inherently transient and was highly dependent on the solution conditions. SLS and 

DLS were used in Chapter 3, which satisfy that requirement but are at best semi-
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quantitative techniques for characterizing reversible oligomers. SLS was used to 

calculate the apparent molecular weight of the solution (𝑀𝑤,𝑎𝑝𝑝), which is a single 

value that quantifies the weight average of all scattering species in solution which 

could arise from many different molecular weight distributions. DLS correlograms 

were a convolution of autocorrelation functions from a likely broad and “continuous” 

distribution of oligomers (i.e., monomers, dimers, trimers, tetramers, etc.). The 

correlograms qualitatively described the size distribution of oligomers and were useful 

for qualitative comparisons between proteins and formulations. However, the exact 

size distribution of oligomers was difficult or impossible to reliably deconvolute in 

this context, even with advanced analysis techniques like the regularization method. 

Nondestructive techniques that can separate species by size such as sedimentation 

velocity AUC or field flow fractionation (FFF) could provide more quantitative results 

if the timescale of reversible oligomerization is slow enough to isolate the oligomers. 

Preliminary AUC measurements had a similar limitation to DLS where the exact size 

of oligomers was challenging to ascertain. 

It would be of interest to understand the mechanism of the reversible self-

association in more detail, especially which region(s) are active in reversible self-

association and how strong the association is. Binding affinity measurements via 

isothermal titration calorimetry and surface plasmon resonance were applied by 

Mieczkowski et al. to quantify the strength of reversible self-association for a MAb.224 

Protein-protein docking simulations and homology modeling were also used in that 

work to identify sites where point mutations could reduce self-association affinity.224 

The molecular simulations in Chapter 3 suggested that reversible self-association 

proceeded through cross-domain FP-Fc interactions, which could be corroborated by 
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SLS, DLS, or binding affinity measurements using the “unfused” proteins (e.g., 

measurements where Fc and FP concentrations are varied and compared to 

measurements of the Fc and FP on their own). Another promising methodology was 

described in Dobson et al. where the residues relevant to self-association of a MAb 

were mapped via hydrogen/deuterium exchange and cross-linking mass spectroscopy 

and that information was used to rationally design point mutations.111 

The MAb aggregates that were generated from stability studies had many of 

the same characterization limitations. SEC could clearly separate LMW fragments and 

dimers, but higher molecular weight aggregates (i.e., trimers, tetramers, and so on) had 

overlapping leaks and their concentrations could not be deconvoluted. The stability 

samples were also diluted in mobile phase (which was significantly different in 

composition compared to the MAb formulations) when injected into the HPLC and 

could have interacted with the SEC column, both of which could have perturbed the 

aggregates. Many of the stability samples were also measured with SLS and DLS, but 

those measurements had the same limitations as outlined above and in general were 

uncertain due to a number of factors including: 1) relatively low concentrations of 

aggregates that did not contribute significantly to the scattering intensity, 2) the 

presence of large aggregates that would intermittently interact with the laser and 

drastically increase the scattering intensity, 3) insoluble particles that could not be 

analyzed with SLS or DLS, and 4) the presence of fragments which would decrease 

the scattering signal. Analyzing the eluate from the outlet of the SEC column with an 

in-line MALS detector (termed SEC-MALS) is commonly used and might have been 

beneficial to better understand the size distribution of higher molecular weight 

aggregates that were not disrupted by SEC. Some aggregates also undergo significant 
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conformational changes, which could be probed by many spectroscopic techniques.282 

Preliminary measurements of higher order structure via intrinsic fluorescence and 

circular dichroism did not reveal significant changes in secondary or tertiary structure 

for a given MAb as a function of pH, ionic strength, or extent of aggregation. 

Sedimentation velocity AUC and FFF might also be more informative in 

deconvoluting the size distribution of aggregates larger than dimers and would avoid 

any column or mobile phase interactions. 

6.2.2 Advanced algorithms for high-concentration molecular simulations 

The high-concentration molecular simulations in Chapter 4 were made 

tractable for the 1bC/D model by using straightforward GCMC, rather than GCMC 

with the TMMC algorithm. TMMC provides a continuous prediction of net self-

interactions as a function of concentration by applying histogram reweighting 

techniques and the biased sampling can be useful to push the system to different 

configurations thus increasing acceptance rates. Sampling with GCMC was sometimes 

inefficient because acceptance rates were quite low in particularly attractive systems 

(i.e., the simulation would get stuck in potential energy “wells”). Higher concentration 

simulations were also inherently prone to low acceptance rates due to the tight 

intermolecular distances between molecules. The computational efficiency of the 

simulations could be improved if optimized sampling methods were applied such as 

configurational-bias, domain decomposition, or aggregation-volume bias.283–285 

Configurational bias is particularly promising as it has been successfully implemented 

previously in similar simulations for proteins.207,285,286  

The high-concentration simulations in Chapter 4 that could accurately 

reproduce net self-interactions for a broad range of conditions contained a 
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considerable amount of potentially useful information about high-concentration MAb 

solutions that were not analyzed in detail in this thesis. The spatial arrangements and 

specific interactions between amino acids (particularly the charged sites) could be 

investigated to further understand the solution microstructure. Preliminary work to 

begin to collect and analyze this information suggested that unique spatial correlations 

between specific pairs of MAb domains were present and dependent on the MAb and 

formulation (i.e., pH, ionic strength, and MAb concentration). Examples of this 

finding in the form of domain-domain radial distribution functions (also known as g(r) 

functions) are shown in Figure 6.1 for 130 mg/mL simulations of MAb 4 with the 

1bC/D model (static charge states with nominal pKa values) at each of the 

formulations that were studied in Chapters 4 and 5 (see Table 4.1 and Table 5.1). The 

radial distribution functions for each pair of domains (e.g., VH and CH2) are overlayed 

and Figure 6.1 shows that not only are specific pairs of domains more likely to be 

close to one another, but that is mediated by electrostatic interactions as the results 

changed as a function of pH and ionic strength. 
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Figure 6.1: Domain-domain radial distribution functions between 1bC/D domain 

beads in 130 mg/mL simulations of MAb 4 at the following formulations: 

(A) pH 5 low ionic strength, (B) pH 5 high ionic strength, (C) pH 6.5 low 

ionic strength, and (D) pH 6.5 high ionic strength. pH 5 results are shown 

in purple and pH 6.5 results are shown in green to match the color 

scheme in Chapter 5. 

Other reports have used CG models similar to the DODECA model to predict 

and model high-concentration solution viscosities for therapeutic proteins (particularly 

MAbs), often when coupled with SAXS experiments.34,287,288 The simulations in this 

thesis are also well-suited for that application especially with respect to the 

electrostatic contributions to viscosity. The formation of “clusters”, or persistent 

groups of proteins that are spatially proximate but have not formed oligomers, has 
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been putatively related to poor biophysical behaviors (especially elevated viscosity) 

and could be explored further by applying one of the many previously developed 

algorithms for tracking clustering with the high-concentration molecular simulations 

from Chapter 4.71,77,155,194 Preliminary work in this area yielded quantities that were all 

highly correlated with net self-interactions, which is perhaps unsurprising given the 

many previously reported correlations between self-interactions and elevated 

viscosity.54,121,289 The high-concentration MAb solutions in this thesis did not have 

particularly elevated solution viscosities, except for MAb 2 at the pH 6.5 low ionic 

strength formulation at concentrations that were also prone to phase separation. A 

dataset with other proteins would be necessary to better assess whether the simulations 

could be more insightful in predicting viscosity than e.g., 𝑘𝐷 values from DLS. 

Because the high-concentration simulations are MC and not MD, they could 

also be used to probe phenomena that occur on longer timescales than what has been 

typically accessible with MD simulations, such as specific steps in the mechanisms of 

reversible self-association and/or aggregation (e.g., reversible dimerization). Results 

from those simulations could be incorporated into phenomenological models of 

aggregation to enable more robust predictions of aggregation rates. An ambitious 

target would be to combine the phenomenological models with information from the 

simulations to identify what step was rate limiting and the regions in the protein that 

were responsible. The reactive MC algorithm is a promising method for probing 

associations between proteins as it specifically samples the phase space of a given 

reaction.290,291 Reactive MC and MD simulations have been applied to proteins in 

other areas such as bond scission reactions, calculating pKa values of ionizable 

residues, and conformational stability.66,292,293 
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6.2.3 Experimental and simulation methods to screen excipients 

Another improvement to the simulations used in this thesis could be to 

explicitly represent cosolutes. Currently, cosolutes play at most an implicit role in the 

simulations if they are charged and thus impact the Debye screening length, which 

does not at all account for the identity of the cosolute species except for its net 

valence. Although uncharged cosolutes can impact the solution permittivity which will 

change the Bjerrum length variable, that will only serve to mildly shift the optimal 

value of the 𝜓 parameter as the two are multiplied together in the electrostatic 

interaction potential (see Equation 2.4). If explicitly represented in the simulations, 

preferential interactions could be modeled for a broad range of excipients commonly 

used in commercial formulations (e.g., salts, sugars, surfactants, buffers, and amino 

acids) or less established “next-generation” excipients such as ionic liquids and 

glycopolymers.294 For more structurally complex molecules such as surfactants, 

including flexibility in both those molecules and/or the proteins in the simulation 

might be necessary. Explicit representation of preferential accumulation of ions on the 

protein surface (e.g., that form a Stern layer) is of particular interest and relevance as it 

mediates electrostatic interactions and can play an important role in packing and 

diffusion.222 The simulations could be validated with experimental data such 

measurements of net self-interactions or partial molar volumes as a function of 

cosolute concentration and/or protein concentration. In the context of the results in 

Chapters 3 and 5, these methods could be used to screen cosolutes that could impact 

reversible self-association and/or aggregation. There are some reports similar to what 

is suggested here in terms of explicit representation of cosolutes in simulations, but 

direct practical applications are still limited and the simulation methods used in this 
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thesis could be well-suited to address this topic, especially at high protein 

concentrations.81,204,206,247,295–297 
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SUPPORTING INFORMATION FOR CHAPTER 2 

 

Figure A.1: Experimental 𝐵22 𝐵22,𝑆𝑇⁄  values from static light scattering for MAb 1 

(A), MAb 2 (B), MAb A (C), MAb B (D) and MAb C (E).42,49,50 Values 

in panel (E) are designated as −𝐺22 2𝐵22,𝑆𝑇⁄  instead of 𝐵22 𝐵22,𝑆𝑇⁄  

because some values are so large that they indicate multi-body 

interactions at the experimental protein concentrations, rather than two-

body interactions that are captured by 𝐵22.191 

Appendix A 
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Figure A.2: Left: The number of atoms in MAb B that have SASA above a given 

cutoff value. 50.3% of the atoms have SASA > 0.2 Å2. Right: Percent 

deviation of all-atom steric-only simulations of the second virial 

coefficient as a function of SASA. Percent deviation was defined as 

100 ∗
𝐵22,𝑆𝑇
𝑎𝑙𝑙−𝑎𝑡𝑜𝑚−𝐵22,𝑆𝑇

𝑐𝑢𝑡𝑜𝑓𝑓

𝐵22,𝑆𝑇
𝑎𝑙𝑙−𝑎𝑡𝑜𝑚 . 

Table A.1: Valence values for HEXA beads for all conditions. The HEXA domains 

are Fv (VL + VH), C1 (CL + CH1), C2 (CH2 + CH2) and C3 (CH3 + CH3), 

where there are two domains for both Fv and C1.49,50 

MAb (pH) C3 C2 C1 FV Total 

MAb 1 (5) 5.56 10.14 9.21 2.61 39.3 

MAb 1 (6.5) -0.40 3.64 5.08 0.31 14.0 

MAb 2 (5) 5.78 2.30 4.21 5.40 27.3 

MAb 2 (6.5) -0.38 -2.88 0.08 4.04 5.0 

MAb A (5) 1.56 15.5 8.01 10.2 53.5 

MAb A (8) -5.95 8.03 2.03 6.88 19.9 

MAb B (5) -2.23 6.29 7.09 1.68 21.6 

MAb B (8) -9.95 0.01 2.02 -2.12 -10.1 

MAb C (5) 1.56 15.5 9.90 0.82 38.5 

MAb C (8) -5.95 8.03 4.03 -2.13 5.9 
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Table A.2: Valence values for DODECA beads for all conditions. The last column 

denotes the total net charge of the MAb at the given pH value.49,50 

MAb (pH) VH CH1 CH2 CH3 VL CL Total 

MAb 1 (5) 1.89 6.27 5.07 2.78 0.72 2.94 39.3 

MAb 1 (6.5) 0.29 4.53 1.82 -0.20 0.02 0.55 14.0 

MAb 2 (5) 2.79 2.27 1.15 2.89 2.61 1.94 27.3 

MAb 2 (6.5) 2.02 0.53 -1.44 -0.19 2.02 -0.45 5.0 

MAb A (5) 3.79 7.18 7.75 0.78 6.42 0.83 53.5 

MAb A (8) 1.94 4.02 4.01 -2.98 4.94 -1.99 19.9 

MAb B (5) -0.84 5.37 3.15 -1.11 2.53 1.72 21.6 

MAb B (8) -3.06 3.01 0.01 -4.97 0.94 -0.99 -10.1 

MAb C (5) 0.25 8.18 7.75 0.78 0.57 1.72 38.5 

MAb C (8) -1.07 5.02 4.01 -2.98 -1.06 -0.99 5.87 

 

 

Table A.3: Relative hydrophobicity values (𝑖 , dimensionless) and bead diameters 

(𝑖, angstroms) for the 1bAA model, where 𝑖 denotes the chemical 

identity of the amino acid. Reproduced from Blanco et al.71 

residue 𝒊 (Å) 𝒊 residue 𝒊 (Å) 𝒊 

Lys 7.03 0.00 His 6.29 0.25 

Glu 6.40 0.05 Ala 5.02 0.26 

Asp 5.83 0.06 Tyr 7.11 0.49 

Asn 5.95 0.10 Cys 4.92 0.54 

Ser 5.28 0.11 Trp 6.70 0.64 

Arg 7.32 0.13 Val 6.05 0.65 

Gln 6.35 0.13 Met 6.32 0.67 

Pro 5.62 0.14 Ile 6.36 0.84 

Thr 5.81 0.16 Phe 6.95 0.91 

Gly 4.31 0.17 Leu 6.55 1.00 
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Table A.4: Residue indices for each domain in the DODECA and 1bC/D models. 

Indices start at the N-terminal amino acid for the heavy or light 

chain.69,298 

Domain Residue Index 

MAb 1 & 2 VL 1-107 

MAb 1 & 2 CL 108-214 

MAb 1 & 2 VH 1-118 

MAb 1 & 2 CH1 119-234 

MAb 1 & 2 CH2 244-357 

MAb 1 & 2 CH3 358-474 

MAb A & C VL 1-111 

MAb A & C CL 112-216 

MAb A & C VH 1-121 

MAb A & C CH1 122-232 

MAb A & C CH2 233-344 

MAb A & C CH3 345-447 

MAb B VL 1-113 

MAb B CL 114-217 

MAb B VH 1-120 

MAb B CH1 121-230 

MAb B CH2 231-340 

MAb B CH3 341-444 
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Figure A.3: Geometric features for the HEXA and DODECA models. Reproduced 

from Calero-Rubio et al.50 

 

Table A.5: Charged site diameters (𝑐,𝑖, angstroms) for charged sites in a given 

amino acid for the 1bC/D model, where 𝑖 denotes the chemical identity of 

the amino acid.183 For data shown in the main text, 𝛥𝐻 was 3 Å (e.g., the 

final bead diameter for the charged oxygen site in Glu was 6.8 Å for 

𝑐,𝑖 + 𝛥𝐻). 

Amino Acid 𝒄,𝒊 (Å) 

Lys 3.7 

Arg 3.4 

His 3.4 

Glu 3.8 

Asp 3.8 
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Figure A.4: DODECA (left) and HEXA (right) surface response of ARD as a 

function of 𝑆𝑅 and 𝜓 for MAb 1 at pH 5 as an example. Because HEXA 

and DODECA are much more computationally efficient, a global 

optimization was performed for both 𝜀𝑆𝑅 and 𝜓 which takes into account 

the contribution from short-ranged non-electrostatic interactions at 

intermediate TIS as well (e.g., 100 mM). For monotonic profiles of 

𝐵22 𝐵22,𝑆𝑇⁄  vs. TIS, the difference in the resulting 𝜀𝑆𝑅 values between the 

two procedures was negligible. 

 

Table A.6: Domain bead diameters (𝑖, nm) for the HEXA and DODECA models 

(independent of MAb identity) and the 1bC/D model for each MAb.28,50 

Model 𝒊 (nm) 

HEXA 4.4 

DODECA 3.5 

MAb 1 1bC/D 3.1 

MAb 2 1bC/D 3.35 

MAb A 1bC/D 2.7 

MAb B 1bC/D 2.9 

MAb C 1bC/D 3.1 
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Figure A.5: 𝐵22,𝑆𝑇 as a function of the domain bead diameter for MAb 1 (black), 2 

(indigo), A (green), B (yellow) and C (purple) for the 1bC/D model. 

Circles on each curve show the bead diameter that results in the correct 

value of 𝐵22,𝑆𝑇. The curves for MAb 1 and MAb 2 overlap due to domain 

beads covering more charged sites as bead diameter is increased. The 

effect of charged beads and non-planar structure of domain beads can 

also be seen in the lower value of bead diameter for all MAbs compared 

to 3.5 nm for DODECA. 



 261 

 

Figure A.6: 𝐵22 𝐵22,𝑆𝑇⁄  as a function of 𝜀𝑆𝑅, where electrostatic interactions are 

ignored (i.e., 𝜓 = 0) for (left) HEXA (red) and DODECA (blue), and 

(right) 1bC/D for MAbs 1 (solid black), 2 (dashed indigo), A (dotted 

green), B (dash-dotted yellow), and C (dash-dot-dotted purple). 
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Figure A.7: Left: Experimental 𝐵22 𝐵22,𝑆𝑇⁄  measurements (black) and simulated 

predictions with 𝜓 that minimized ARD for HEXA (indigo), DODECA 

(green), 1bC/D (yellow) and 1bAA (purple). Right: ARD for HEXA, 

DODECA, 1bC/D and 1bAA as a function of 𝜓. The qualitative 

experimental self-interaction behavior (i.e., Case i, ii or iii) is listed in the 

headers of each panel. 
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Figure A.8: ARD as a function of 𝜓 for different values of 𝛥𝐻 for the 1bC/D model, 

with 𝛥𝐻 values: 0 Å (black), 0.75 Å (indigo), 1.5 Å (green), 2.25 Å 

(yellow), and 3 Å (purple). The qualitative experimental self-interaction 

behavior (i.e., Case i, ii or iii) is listed in the headers of each panel. 
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SUPPORTING INFORMATION FOR CHAPTER 3 

 

Figure B.1: Excess Rayleigh ratio (𝑅90
𝑒𝑥 𝐾⁄ ) as a function of protein concentration (𝑐2) 

for the FP protein at pH 5 (A) and pH 6.5 (B) and the monovalent Fc-

fusion at pH 5 (C) and pH 6.5 (D). The curves are fits to Equation 3.1 

used to calculate 𝑀𝑤,𝑎𝑝𝑝. 

Appendix B 
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Figure B.2: DLS results for the FP protein. Collective diffusion coefficient, 𝐷𝐶  at pH 

5 (A) and pH 6.5 (B), and polydispersity index at pH 5 (C) and pH 6.5 

(D) as a function of protein concentration (𝑐2). 
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Figure B.3: DLS results for the monovalent Fc-fusion protein. Collective diffusion 

coefficient, 𝐷𝐶  at pH 5 (A) and pH 6.5 (B), and polydispersity index at 

pH 5 (C) and pH 6.5 (D) as a function of protein concentration (𝑐2). 
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Figure B.4: Polydispersity as a function of protein concentration (𝑐2) for the bivalent 

Fc-fusion protein at pH 5 buffer-only (solid black squares), pH 5 + 300 

mM NaCl (open black squares), pH 6.5 buffer-only (solid gray circles), 

and pH 6.5 + 300 mM NaCl (open gray circles). 

 

Figure B.5: RMSD as a function of 𝜓 for the FP protein (A) and the monovalent Fc-

fusion (B) at pH 5 (indigo) and pH 6.5 (green). 
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Figure B.6: Simulated contour plots of 𝐵22/𝐵22,𝑆𝑇 as a function of 𝜓 and ionic 

strength for the FP protein at pH 5 (A) and pH 6.5 (B), and the 

monovalent Fc-fusion at pH 5 (C) and pH 6.5 (D). 
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To address the potential utility of the 1bAA simulations to predict point 

mutations of charged amino acids that could disrupt the pattern of electrostatic 

attractions present in Fc-FP cross-domain interactions (Figure 3.10B and Figure 3.10C 

in Chapter 3), preliminary trials of computational charge swap mutations were 

performed for the monovalent Fc-fusion and bivalent Fc-fusion. Charge swap 

mutations were performed independently for each amino acid that participated in the 

strongest attractive electrostatic pairwise interaction (most negative ̃
𝑖𝑗

 value in Figure 

3.10B or Figure 3.10C). A positively charged amino acid was replaced with Asp, and 

a negatively charged amino acid was replaced with Arg. For both Fc-fusion proteins, 

the amino acid that was swapped from positive to negative charge was located in the 

Fc domain, and the amino acid that was swapped from negative to positive charge was 

located in the fusion partner domain. For amino acids in the Fc domain, or the fusion 

partner domain in the bivalent Fc-fusion, both identical residues were swapped 

simultaneously. The same analysis as what was performed for the wild-type proteins 

in the main text (Figure 3.10) was performed for each charge swap mutant and results 

are shown in Figure B.7. 

 In summary, performing a charge swap mutation for the amino acids that 

participated in the strongest attractive electrostatic pairwise interaction reduced 

electrostatic attractions in some cases (i.e., less negative value of 𝐵22/𝐵22,𝑆𝑇), and 

dramatically increased FP-FP electrostatic attractions in another (the FP negative-to-

positive swap for the monovalent Fc-fusion) such that the value of 𝐵22/𝐵22,𝑆𝑇 was 

much more negative. As there was no straightforward criterion for identifying point 

mutations to reduce electrostatic attractions for the Fc-fusion proteins in this work, it 

B.1 Preliminary computational charge swap mutations 
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is instead recommended to screen all possible charge swap or charge-to-neutral 

mutations, similar to recent work by Shahfar et al.44 In that work, several MAb charge 

variants that were predicted to strongly reduce electrostatic attractions via similar 

molecular simulation methods were confirmed via experimental SLS and DLS 

measurements. 
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Figure B.7: A) Simulated 𝐵22/𝐵22,𝑆𝑇 from 1bAA simulations of the wild-type protein 

(gray), the Fc positive-to-negative charge swap variant (indigo), and the 

fusion partner negative-to-positive charge swap variant (green) for the 

monovalent Fc-fusion and bivalent Fc-fusion.  

B-E) Corresponding Mayer-weighted average pairwise electrostatic 

energy (̃
𝑖𝑗

) heatmaps for the monovalent Fc-fusion (B: Fc swap, D: 

fusion partner swap) and bivalent Fc-fusion (C: Fc swap, E: fusion 

partners swap). The heatmaps are ordered based on the structural 

domains with fusion partner protein abbreviated as FP. 
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SUPPORTING INFORMATION FOR CHAPTER 4 

Table C.1: Valence values for DODECA models.  

MAb (pH) VH CH1 CH2 CH3 VL CL 
Net 

valence 

MAb 1 (5) 2.88 6.19 3.05 4.78 1.71 1.94 41.1 

MAb 1 (6.5) 1.29 4.53 -0.92 1.81 1.02 -0.45 14.5 

MAb 2 (5) 3.79 3.44 2.04 0.99 3.61 0.94 29.6 

MAb 2 (6.5) 3.02 1.54 -0.44 -2.19 3.02 -1.45 7.0 

MAb 3 (5) 2.04 5.26 4.98 3.78 2.61 0.94 39.2 

MAb 3 (6.5) 1.03 3.53 1.07 0.81 2.02 -1.45 14.0 

MAb 4 (5) 4.75 5.37 1.15 1.89 2.75 0.94 33.7 

MAb 4 (6.5) 3.28 3.53 -1.44 -1.19 2.02 -1.45 9.5 

MAb 5 (5) 0.86 7.18 3.06 3.78 2.75 0.94 37.1 

MAb 5 (6.5) 0.03 4.79 -0.18 0.81 2.02 -1.45 12.0 

MAb 6 (5) 5.70 6.19 3.05 4.78 2.61 0.94 46.6 

MAb 6 (6.5) 4.28 4.53 -0.92 1.81 2.02 -1.45 20.5 
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Figure C.1: 𝐺22 as a function of 𝑐2 for MAb 1 (a), MAb 2 (b), MAb 3 (c), MAb 4 (d), 

MAb 5 (e), and MAb 6 (f) for the formulations shown in Table 4.1: pH 5 

at low ionic strength (filled black squares), pH 5 at intermediate ionic 

strength (open black squares), pH 6.5 at low ionic strength (filled gray 

circles), and pH 6.5 at intermediate ionic strength (open gray circles).49,50 

The y-axis scale for MAb 2 (panel b) is extended to fit all of the data. 
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Figure C.2: RMSD as a function of 𝜓 from MSOS simulations of 𝐵22/𝐵22,𝑆𝑇 at pH 5 

for MAb 1 (a), MAb 2 (b), MAb 3 (c), MAb 4 (d), MAb 5 (e), and MAb 

6 (e). DODECA results are green lines, and 1bC/D results are indigo 

lines.  
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Figure C.3: RMSD as a function of 𝜓 from MSOS simulations of 𝐵22/𝐵22,𝑆𝑇 at pH 

6.5 for MAb 1 (a), MAb 2 (b), MAb 3 (c), MAb 4 (d), MAb 5 (e), and 

MAb 6 (e). DODECA results are green lines, and 1bC/D results are 

indigo lines. The y-axis scale for MAb 2 (panel b) is extended to fit all of 

the data. 
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Figure C.4: RMSD as a function of 𝜓 from MSOS simulations of 𝐵22/𝐵22,𝑆𝑇 at pH 

6.5 for MAb 1 (a), MAb 2 (b), MAb 3 (c), MAb 4 (d), MAb 5 (e), and 

MAb 6 (e). Static nominal results are blue lines, static PROPKA results 

are orange lines, and fluctuating nominal results are red lines. The y-axis 

scale for MAb 2 (panel b) is extended to fit all of the data. 
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Figure C.5: High-𝑐2 predictions of 𝑆𝑞=0 as a function of MAb concentration (𝑐2) at 

pH 6.5 for MAb 4 with the fluctuating nominal charge representation 

method. Low ionic strength results (reproduced from Figure 4.14) are 

shown as open red diamonds with dash-dotted lines and intermediate 

ionic strength results are shown as filled black diamonds with dashed 

lines. Lines connecting the predictions are guides to the eye and match 

the formatting from Figure 4.14. Error bars correspond to uncertainty of 

the 𝜓 parameter (see Table 4.3). The purple dash-dotted line is a steric-

only equation of state.50 
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SUPPORTING INFORMATION FOR CHAPTER 5 

Table D.1 Aggregation rate calculation case by formulation 

MAb Form. 

Accelerated 30 °C Refrigerated 

10 

mg/mL 

35 

mg/mL 

130 

mg/mL 

10 

mg/mL 

35 

mg/mL 

130 

mg/mL 

10 

mg/mL 

35 

mg/mL 

130 

mg/mL 

MAb 

3 

pH 5 low IS 2 2 1 2 2 2 N/A N/A N/A 

pH 5 high IS 2 1 1 2 2 2 N/A N/A N/A 

pH 6.5 low IS 2 2 2 2 2 2 N/A N/A 2 

pH 6.5 high 

IS 
2 2 2 2 2 2 N/A N/A 2 

MAb 

4 

pH 5 low IS 1 1 1 2 2 1 N/A N/A 2 

pH 5 high IS 1 1 1 2 1 1 N/A N/A 2 

pH 6.5 low IS 1 1 1 2 2 1 N/A N/A 1 

pH 6.5 high 

IS 
1 1 1 2 2 1 N/A N/A 1 

MAb 

5 

pH 5 low IS 2 2 2 N/A N/A 2 N/A N/A  

pH 5 high IS 2 2 2 2 2 2 N/A N/A  

pH 6.5 low IS 2 2 2 N/A 2 2 N/A N/A 1 

pH 6.5 high 

IS 
2 2 2 N/A 2 2 N/A N/A 1 

MAb 

6 

pH 5 low IS 2 2 2 N/A N/A 2 N/A N/A 2 

pH 5 high IS 2 2 2 2 2 2 N/A N/A 2 

pH 6.5 low IS 2 2 2 N/A 2 2 N/A N/A 2 

pH 6.5 high 

IS 
2 2 2 N/A 2 2 N/A N/A 2 

 Case 1 (via monomer fraction) is shown in green and with the number 1, case 2 (via 

aggregate fraction) is shown in purple and with the number 2, and cases with 

aggregation rates below the measurement noise floor are shown in gray and with 

“N/A”. 
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Figure D.1: Parity plot of 𝑘𝑜𝑏𝑠 calculated by change in monomer concentration (case 

1; x-axis) and change in aggregate peak area (case 2; y-axis). 

Formulations where case 1 was chosen are shown in green, and 

formulations where case 2 was chosen are shown in purple, matching the 

color scheme in Table D.1. The gray shaded region for 

𝑙𝑜𝑔10[𝑘𝑜𝑏𝑠(𝑑𝑎𝑦𝑠
−1)] < -4.86 represents the measurement noise floor. 
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A larger set of features (see Table D.1.1) were filtered to the set that are 

considered in the ML models in Chapter 5. The total solution ionic strength (IS) has an 

exponential relationship with the Debye screening effect29, so the input feature was 

ln(IS).The features were sorted into subgroups based on the phenomenon that they 

describe, and for each subgroup, correlation matrices (R values for each pair of 

features) were calculated with the standardized variables. Features that were highly 

correlated (|R| > 0.7) were condensed based on which feature most directly quantifies 

the relevant phenomenon. For features from stability studies, there was an additional 

stipulation that features could not contain overlapping information (e.g., if an 

Arrhenius extrapolated 𝑘𝑜𝑏𝑠 value was selected, the 𝑘𝑜𝑏𝑠 values used in that 

extrapolation were not used). The correlation matrices and filtered features are shown 

by subgroup below, followed by the final set and related correlation matrices. 

D.1 Feature screening 
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Table D.1.1: Initial set of input features that were considered for ENR models 

Feature Source Phenomenon 

ln(IS) Formulation Debye screening effect 

|pH – pI| Formulation and cIEF Net valence at a given pH 

Net valence  

(nominal pKa values) 

Formulation and 

sequence 
Net valence at a given pH 

Net valence  

(PROPKA pKa values) 

Formulation, 

sequence, and 

computational 

Net valence at a given pH 

Debye length (𝐷𝐸) x  

nominal valence 

Formulation and 

sequence 

Net charge at a given pH 

(i.e., screened electrostatic 

self-interactions) 

Debye length (𝐷𝐸) x  

PROPKA valence 

Formulation, 

sequence, and 

computational 

Net charge at a given pH 

(i.e., screened electrostatic 

self-interactions) 

𝑇𝑚,𝑜𝑛𝑠𝑒𝑡  – 𝑇𝑖𝑛𝑐 DSC Conformational stability 

𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 DSC Conformational stability 

𝑇𝑚,𝑎𝑝𝑝2 – 𝑇𝑖𝑛𝑐 DSC Conformational stability 

𝐵22
∗  SLS 

Net self-interactions  

(2-body) 

𝐵22,𝑁𝐸
∗   SLS 

Non-electrostatic net self-

interactions (2-body) 

𝐵22
∗  

(= 𝐵22
∗ − 𝐵22,𝑁𝐸

∗ )  
SLS 

Electrostatic net self-

interactions (2-body) 

𝐺22 SLS Net self-interactions (at 𝑐2) 

𝑘𝐷 DLS 
Net self-interactions  

(2-body) 

𝐷𝑐 DLS Net self-interactions (at 𝑐2) 
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Features derived from other stability studies  

(accelerated) 

𝑘𝑜𝑏𝑠,10 
(accelerated; 10 mg/mL) 

Accelerated stability 

studies 

Aggregation rate at lower 

𝑐2 

𝑘𝑜𝑏𝑠,35  

(accelerated; 35 mg/mL) 

Accelerated stability 

studies 

Aggregation rate at lower 

𝑐2 

𝑘𝑜𝑏𝑠,𝑐2 𝑒𝑥 

(130 mg/mL; extrapolated 

from 10 and 35 mg/mL) 

Accelerated stability 

studies 

𝑐2 dependence of 

aggregation rate 

Features derived from other stability studies  

(30 °C) 

𝑘𝑜𝑏𝑠,𝑎𝑐𝑐 

(accelerated; 130 mg/mL) 

Accelerated stability 

studies 

Aggregation rate at higher 

𝑇𝑖𝑛𝑐 

𝑘𝑜𝑏𝑠,10 
 (30 °C; 10 mg/mL) 

30 °C stability studies 
Aggregation rate at lower 

𝑐2 

𝑘𝑜𝑏𝑠,35 

(30 °C; 35 mg/mL) 
30 °C stability studies 

Aggregation rate at lower 

𝑐2 

Features derived from other stability studies  

(refrigerated) 

𝑘𝑜𝑏𝑠,𝑎𝑐𝑐 

(accelerated; 130 mg/mL) 

Accelerated stability 

studies 

Aggregation rate at higher 

𝑇𝑖𝑛𝑐 

𝑘𝑜𝑏𝑠,30 °𝐶  
(30 °C; 130 mg/mL) 

30 °C stability studies 
Aggregation rate at higher 

𝑇𝑖𝑛𝑐 

𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥 
(130 mg/mL; Arrhenius 

extrapolated) 

Accelerated and 30 °C 

stability studies 

Aggregation rate based on 

assumed Arrhenius 

behavior 
 Aggregation rates at 45 °C were extrapolated to 50 °C using Arrhenius extrapolation 

with the rate at 30 °C 
 Aggregation rate at refrigerated conditions was estimated by Arrhenius extrapolation 

with aggregation rates at the 30 °C and accelerated 𝑇𝑖𝑛𝑐 conditions  
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Figure D.1.1.1: Correlation coefficients for features in the net valence at a given pH 

subgroup. 

Table D.1.1.1: Features in the net valence at a given pH subgroup and the feature(s) 

that were selected for use in ENR models 

Feature Source 
Selected 

feature(s) 
Justification 

|pH – pI| Formulation and cIEF 

|pH – pI| 

 

Explicit experimental 

measurement; no 

assumptions about 

individual pKa values 

Net valence  

(nominal pKa 

values) 

Formulation and 

sequence 

Net valence  

(PROPKA pKa 

values) 

Formulation, sequence, 

and computational 

 

D.1.1  Net valence at a given pH 
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Figure D.1.2.1: Correlation coefficients for features in the net self-interactions 

subgroup. This figure is largely the same as what is shown in Figure 5.18 

but is included here for completeness. 

Table D.1.2.1: Features in the net self-interactions subgroup and the feature(s) that 

were selected for use in ENR models 

Feature Source 
Selected 

feature(s) 
Justification 

Debye length (𝐷𝐸) x  

nominal valence 

Formulation 

and sequence 

𝐵22,𝑁𝐸
∗  

Describes non-

electrostatic self-

interactions 

 

Not highly correlated 

with the other features 

Debye length (𝐷𝐸) x  

PROPKA valence 

Formulation, 

sequence, and 

computational 

𝐵22
∗  SLS 

𝐵22,𝑁𝐸
∗  SLS 

D.1.2 Net self-interactions 
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𝐵22
∗  

(= 𝐵22
∗ − 𝐵22,𝑁𝐸

∗ ) 
SLS 

𝐵22
∗  

(= 𝐵22
∗ − 𝐵22,𝑁𝐸

∗ ) 

Describes electrostatic 

self-interactions 

 

Directly comparable to  
𝐵22,𝑁𝐸
∗  

𝐺22 SLS 

𝑘𝐷 DLS 

𝐷𝑐 DLS 

 

 

 

Figure D.1.3.1: Correlation coefficients for features in the conformational stability 

subgroup. 

D.1.3 Conformational stability 
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Table D.1.3.1: Features in the conformational stability subgroup and the feature(s) that 

were selected for use in ENR models 

Feature Source 
Selected 

feature(s) 
Justification 

𝑇𝑚,𝑜𝑛𝑠𝑒𝑡 – 𝑇𝑖𝑛𝑐 DSC 

𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 

𝑇𝑚,𝑎𝑝𝑝2 is sparse (some 

formulations only had one 𝑇𝑚,𝑎𝑝𝑝) 

 

𝑇𝑚,𝑜𝑛𝑠𝑒𝑡 is ambiguous based on 

how it is defined 

𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 DSC 

𝑇𝑚,𝑎𝑝𝑝2 – 𝑇𝑖𝑛𝑐 DSC 

 These results are equivalent to if the features were not subtracted by 𝑇𝑖𝑛𝑐 
 

 

 

Figure D.1.4.1: Correlation coefficients for features in the stability studies 

(accelerated) subgroup. 

D.1.4 Features derived from other stability studies (accelerated) 
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Table D.1.4.1: Features in the stability studies (accelerated) subgroup and the 

feature(s) that were selected for use in ENR models 

Feature Selected feature(s) Justification 

𝑘𝑜𝑏𝑠,10 
(accelerated; 10 mg/mL) 

𝑘𝑜𝑏𝑠,𝑐2 𝑒𝑥 

(130 mg/mL; 

extrapolated from 

10 and 35 mg/mL) 

𝑙𝑜𝑔10(𝑘𝑜𝑏𝑠) scales 

differently with 𝑐2 for 

different formulations; the 

other two inputs do not 

account for that 

𝑘𝑜𝑏𝑠,35  

(accelerated; 35 mg/mL) 

𝑘𝑜𝑏𝑠,𝑐2 𝑒𝑥 

(130 mg/mL; extrapolated 

from 10 and 35 mg/mL) 

 

 

 

Figure D.1.5.1: Correlation coefficients for features in the stability studies (30 °C) 

subgroup. 

D.1.5 Features derived from other stability studies (30 °C) 
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Table D.1.5.1: Features in the stability studies (30 °C) subgroup and the feature(s) that 

were selected for use in statistical models 

Feature Selected feature(s) Justification 

𝑘𝑜𝑏𝑠,𝑎𝑐𝑐 

(accelerated; 130 mg/mL) 𝑘𝑜𝑏𝑠,𝑎𝑐𝑐 

(accelerated; 130 mg/mL) The most 

experimentally 

accessible 

𝑘𝑜𝑏𝑠,10 
 (30 °C; 10 mg/mL) 

𝑘𝑜𝑏𝑠,35 

(30 °C; 35 mg/mL) 

𝑘𝑜𝑏𝑠,10 
 (30 °C; 10 mg/mL) 

 Aggregation rates at 45 °C were extrapolated to 50 °C using Arrhenius extrapolation 

with the rate at 30 °C 

 

 

 

Figure D.1.5.2: Comparison of 𝑘𝑜𝑏𝑠 values from 130 mg/mL accelerated studies (x-

axis; either 45 °C or 50 °C), and 𝑘𝑜𝑏𝑠,𝑎𝑐𝑐, where rates at 45 °C were 

converted to estimated rates at 50 °C via Arrhenius extrapolation (y-

axis). The black dashed line is the parity line. 
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Figure D.1.6.1: Correlation coefficients for features in the stability studies 

(refrigerated) subgroup. 

Table D.1.6.1: Features in the stability studies (refrigerated) subgroup and the 

feature(s) that were selected for use in ENR models 

Feature 
Selected 

feature(s) 
Justification 

𝑘𝑜𝑏𝑠,𝑎𝑐𝑐 

(accelerated; 130 mg/mL) 
𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥 

(130 mg/mL; 

Arrhenius 

extrapolated) 

𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥 uses the other two 

features and is more correlated 

with 𝑘𝑜𝑏𝑠 values at refrigerated 

conditions 

 

The other two features were 

tested as well and were not 

selected by the ENR models 

𝑘𝑜𝑏𝑠,30 °𝐶 
(30 °C; 130 mg/mL) 

𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥 
(130 mg/mL; Arrhenius 

extrapolated) 

 Aggregation rates at 45 °C were extrapolated to 50 °C using Arrhenius extrapolation 

with the rate at 30 °C 
 Aggregation rate at refrigerated conditions was estimated by Arrhenius extrapolation 

with aggregation rates at the 30 °C and accelerated 𝑇𝑖𝑛𝑐 conditions 

 

D.1.6 Features derived from other stability studies (refrigerated) 
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Table D.1.7.1: Final set of input features that were considered for statistical modeling 

Feature Source Phenomenon 

ln(IS) Formulation Debye screening 

|pH – pI| 
Formulation and 

cIEF 
Net valence at a given pH 

𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 DSC Conformational stability 

𝐵22
∗  

(= 𝐵22
∗ − 𝐵22,𝑁𝐸

∗ ) 
SLS 

Electrostatic net self-

interactions (2-body) 

𝐵22,𝑁𝐸
∗  SLS 

Non-electrostatic net self-

interactions (2-body) 

Features derived from other stability studies  

(accelerated) 

𝑘𝑜𝑏𝑠,𝑐2 𝑒𝑥 

(130 mg/mL; extrapolated 

from 10 and 35 mg/mL) 

Accelerated stability 

studies 

𝑐2 dependence of 

aggregation rate 

Features derived from other stability studies  

(30 °C) 

𝑘𝑜𝑏𝑠,𝑎𝑐𝑐 

(accelerated; 130 mg/mL) 

Accelerated stability 

studies 

Aggregation rate at higher 

𝑇𝑖𝑛𝑐 

𝑘𝑜𝑏𝑠,10 
 (30 °C; 10 mg/mL) 

30 °C stability 

studies 
Aggregation rate at lower 𝑐2 

Features derived from other stability studies  

(refrigerated) 

𝑘𝑜𝑏𝑠,𝐴𝑟𝑟 𝑒𝑥 
(130 mg/mL; Arrhenius 

extrapolated) 

Accelerated and 30 

°C stability studies 

Aggregation rate based on 

assumed Arrhenius behavior 

 Aggregation rates at 45 °C were extrapolated to 50 °C using Arrhenius extrapolation 

with the rate at 30 °C 
 Aggregation rate at refrigerated conditions was estimated by Arrhenius extrapolation 

with aggregation rates at 30 °C and the accelerated temperature condition 

 

 

D.1.7 Final feature set 
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Figure D.1.7.1: Correlation matrix for input features for models of accelerated 

conditions. The last entry is the 𝑙𝑜𝑔10(𝑘𝑜𝑏𝑠) value for 130 mg/mL 

accelerated conditions. 𝑇𝑚,𝑎𝑝𝑝1 – 𝑇𝑖𝑛𝑐 is shortened to 𝑇𝑚,𝑎𝑝𝑝1 for 

readability. 
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Figure D.1.7.2: Correlation matrix for input features for models of 30 °C conditions. 

The last entry is the 𝑙𝑜𝑔10(𝑘𝑜𝑏𝑠) value for 130 mg/mL 30 °C conditions. 

 

Figure D.1.7.3: Correlation matrix for input features for models of refrigerated 

conditions. The last entry is the 𝑙𝑜𝑔10(𝑘𝑜𝑏𝑠) value for 130 mg/mL 

refrigerated conditions. 
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