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ABSTRACT

This dissertation addresses a fixed-time interval decision making problem from

an optimal control perspective, in the context of deciding the radioactive nature of a

single target in transit using multiple mobile sensors. The mobility of sensors facilitates

detecting extreme weak sources that may otherwise slip through stationary radiation

sensor networks. However challenging problems also arise in terms of searching for the

optimal way to utilize such mobility.

Based on existing work, the decision on target’s radioactive nature is made

through a Likelihood Ratio Test (LRT), whose probability of making mistakes are

upper bounded by analytic expressions related to both LRT thresholds and trajecto-

ries of mobile sensors. This dissertation proposes a threshold selection process for the

LRT based on the constraint on its false alarm rate and solves for the optimal sen-

sor trajectories that would minimize the upper bounds on the probability of missing

detection.

Under simplifying assumptions on the motion and geometry of the source, the

sensors, and the surrounding environment, the optimal control problem admits an

intuitive, analytic closed-form solution. The intuition derived from this analytic so-

lution supports the development of a motion control law that steers (suboptimally)

the sensors to a given neighborhood of the suspected source, while navigating among

stationary obstacles in their environment. This motion controller closes the loop at the

acceleration level of a heterogeneous collection of sensor platforms.

This dissertation detailed a robot control system developed for conducting the

radiation detection experiment using physical platforms, which is capable of controlling

multiple robots simultaneously. Experimental studies with these robots corroborate the

xii



theoretical convergence results of the proposed navigation controller. The detection of

weak radioactive source (Vaseline beads) is achieved with these sensor platforms.

The limitation of this work is that it relies on some strong localization assump-

tions as the optimal strategy requires the position feedback of both the robots and the

target, which might be difficult to obtain in some scenarios. One extension discussed in

this dissertation is to study the possibility of achieving convergence to signal extremum

without global localization in cluttered environment. In this dissertation, the unavoid-

able collisions resulted from the lack of localization is modeled as a Markov process

and the effect of these collisions on the probability of the robot successfully converging

to the signal extremum is studied. Future studies on the reachability problem of the

underlying stochastic hybrid system could lead to better usage of the multiple sensor

platforms to survey uncertain areas.
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Chapter 1

INTRODUCTION

1.1 Motivation

As the capabilities of robots grow, automated sensor deployment in hazardous

environments becomes more realistic. For example, using robots for search and rescue

tasks is an increasingly more practical choice in recent disaster response scenarios:

quadrotors were used in searching survivors after the calamitous Sichuan earthquake of

2008; unmanned ground vehicles were there to measure radiation levels after Fukushima

nuclear accident of 2011; robotic submarines also contributed to the search for MH370

in 2014. With the rapid development of robotics technology, autonomous robots that

can carry out search and rescue missions are around the horizon and attract a lot of

research interest.

1.2 Objective

This dissertation aims at studying the potential of using robots to detect the

presence of weak radioactive sources in transit and assess the environmental impact

of accidental or malicious release of radiological agents, by exploiting the mobility of

radiation sensors when mounted on robots. Detecting radioactive sources is relevant

and timely due to the increasing risk of nuclear material proliferation [2,9] and the need

for inspecting vehicles and humans safely without hindering traffic and commerce.

Before mathematically defining and addressing such problems in subsequent

chapters, let us walk through the available approaches to detecting radioactive sources,

which shall narrow down our scope to the parts that still present challenges.
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1.3 Background on Radioactive Material Detection

To detect radioactive sources in transit from a distance, one potential method

that complements existing monitoring systems [13] is the deployment of a large network

of spatially distributed detectors. Geiger counters appear to be among the few real-

istic choices for constructing autonomous, meso-scale mobile radiation measurement

networks; larger and more sophisticated sensors (providing spectroscopy information),

are prohibitively expensive to be deployed on a large scale [66], and either too heavy

or too delicate to be mounted on mobile platforms. In addition, any active (e.g. X-

ray) interrogation technology cannot be used to check vehicles that carry passengers

or livestock [61].

However Geiger counter’s limited performance introduces serious mathematical

and technical challenges. Geiger counters merely record radiation rays hitting their

internal crystal, regardless of whether these rays come from the source to be detected

or from naturally occurring background radiation. The question thus is whether the

aggregate count is due to background alone or to the superposition of background

and source. This problem can be formulated as a binary hypothesis test—if deadlines

are imposed, this becomes a fixed-time interval test—that has received considerable

coverage in the literature [7].

When detecting radioactive material, the perceived rate of count reception at

each sensor changes with the distance between the sensor and the source, giving rise to a

dynamic, time-inhomogeneous stochastic process. As a result, analytic characterization

for the error probabilities in this decision problem is usually intractable, and thus upper

and lower bounds are sought, and efforts to this end have been made using Chernoff

bounds [21, 31, 48, 58]. Analytic bounds like these are central to designing motion

control strategies for the mobile sensors that optimize detection probability.
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1.4 Existing Methods

1.4.1 Radiation Detection Using Passive Radiation Counters

It should first be noted that “passive” here means that the radiation sensor

considered here only counts the radiation rays emitted by source and background,

without otherwise interacting with the target. The term “passive” does not mean that

the sensors are necessarily static. Literature in radioactive material detection exposes

the difficulties in determining the radioactivity of a target using exclusively (passive)

radiation counters, motivating combining sensor modalities.

For the most part, approaches in available literature attempt to identify not

only the nature of the target but also its location solely based on radiation coun-

ters [8, 15,46]. Such approaches essentially face a combination of problems—detection

and localization—which is inherently very challenging, both at analytic and compu-

tational level. For static sensors and source, a location estimator can be constructed,

and a sequential probability ratio test can be formed [15]. In addition to estimating

the source’s position, algorithms within a Bayesian framework can also estimate source

intensity [8, 46]. How the sensor-to-source distance change affects the sensor measure-

ment quality is explained [47]: the Signal-to-Noise Radio (SNR) scales with the inverse

square of the distance, which means the contribution to radiation detection of a small

sensor closer to the source is equivalent to that of a much bigger sensor at a longer

distance.

Utilizing mobility in nuclear measurement has recently been studied [19,34,43],

but their research directions are different from the one in this dissertation. To achieve

network coverage, randomized sensor motion is utilized [43]; to fulfill the radiation

mapping task, controller for sensor motion is designed [19]; and to determine the exis-

tence of static sources, predetermined [38] or information-driven [55,56] sensor motion

controller are proposed. These methods often require that during each observation

period, the mean radiation intensities observed by sensors remain constant. If the dis-

tance between sensors and source change dynamically while measurements are taken,

the observed radiation counts follows a time-inhomogeneous Poisson distribution that

3



must be treated differently.

It is also not entirely clear about the direct relation between sensor mobility

and the performance of these radiation measuring tasks. Several performance mea-

sures that relates the sensor motion to nuclear measurement are proposed, such as the

variance of the expected radiation intensity at individual spatial bin [34, 38], and var-

ious information-theoretic measures [18, 55, 56]. Although these are intuitive choices,

they may be considered equally arbitrary from the perspective of the decision maker.

Because it is not clear how the direct performance metrics, such as detection rate and

false alarm rate, depend explicitly on sensor mobility, and how they can be optimized.

Published results support the hypothesis that sensor networks can be effective in

remotely detecting static radiation sources [8]. When the source is in motion, however,

the associated analytic complexity translates to significantly increased computational

complexity, and updating posterior probabilities using Bayes rule becomes problematic,

even for networks of modest size [14, 46] and under assumptions on the motion of the

source being linear with constant velocity or acceleration.

This dissertation focuses on one of the constituent problems—namely, detection.

That is to study what is the best that can be done about sensor deployment for

detection task, under the assumption that the emission characteristics and trajectory

of the source are known. The rationale behind this divide-and-conquer strategy is that

on one hand, given the security application in mind, one probably may have an idea

of the type of material that is expected to be found. On the other hand, a multitude

of other sensing modalities (e.g. cameras [75] –see Section 1.4.2) can be used to detect

and track a mobile target; one does not need to track motion based solely on Geiger

counters.

In existing literature, the sensors’ motion are not directly related to the detection

performance, i.e, error probabilities, but the focus is more on exploring the workspace

following indirect metrics or even predetermined paths. The approach in this disser-

tation, on the contrary, directly minimizes the upper bound on error probability and

4



focuses on the target detection problem. The assumption that the target can be lo-

calized has lead to the determination of Chernoff bounds on error probabilities [49],

which are utilized here to formulate an optimal sensor motion control problem. The

optimal motion solutions based on those bounds drive the mobile robots to minimize

the Chernoff bounds of the probabilities of error with respect to their control inputs.

Unlike information theory based metrics [18, 55, 56], these error probability bounds

directly measure the reliability of the decision made by detection process.

1.4.2 Visual Based Target Tracking

Target tracking using vision, laser, sonar and other sensor measurements is

widely used in autonomous robot technologies. This utilization supports the assump-

tion that sensory perceptions other than mere radiation measurements can inform

about the motion of the target.

Cameras on unmanned aerial vehicles have shown great potential in recognizing

and tracking targeted subjects [4,17,28]. In the same spirit, studies on simultaneously

monitoring and detecting abnormal behavior in crowds [59] can be valuable in generat-

ing potential target lists for radiation detection process. Multi-robot tracking problems

also attract a lot attention for applications in surveillance [68, 78, 79]. Using multiple

sensor modalities [60] contributes to robust target tracking. Model-based target mo-

tion prediction [53, 71] can offer information on target motion when tracking mobile

targets. Yet, working with mobile sensors, including the field of view constraint [23] as

part of the motion planning can be challenging. These studies offer evidence that tar-

get localization using sensors other than radiation counters can help reveal the nature

of a potentially radioactive target.

1.4.3 Motion Planning

In this dissertation, assumptions are made that motion of target can be ac-

quired via means other than those based on radiation measurements. Based on this as-

sumption, the motion planning problem that guides sensor nodes towards time-varying

5



target in complex environments is studied. Existing motion planning methods face

challenges when targets are moving. Sampling based methods have to handle trade

offs between performance and optimality. Their computation cost is not quite suit-

able yet for real-time, onboard implementation on small scale robots. On the other

hand, potential-based methods are not developed to natively handle time-varying tar-

gets in cluttered environments, and does not provide optimality guarantees. There is

a need for better navigation methods that can adapt to the dynamics of robots while

minimizing computation cost.

The particular motion planning problem considered here is an instance of a gen-

eral time-varying problem of navigating amongst obstacles. When it is the environment

that is time-varying, e.g., the obstacles are moving, the problem has been approached

from the perspective of roadmaps [80]. Optimal trajectories can be generated based

on these roadmaps; however, as the dimensionality of the problem—primarily due to

multiple platforms—increases, computational complexity presents some serious chal-

lenges. Alternatives that promise to preserve optimality (at least asymptotically) at a

smaller computational cost, including Optimal Probabilistic Road Map (PRM∗) and

Optimal Rapidly exploring Random Tree (RRT∗) [32]. These algorithms have been

adapted to various situations that require fast generation of new solutions amongst ob-

stacles [16, 44, 52]. Although asymptotically optimal in theory, appropriate extension

heuristics have to be carefully chosen. At the end, there is always a trade-off between

real-time performance and optimality.

Dealing with dynamic environments in real-time presents computational chal-

lenges to any sampling based technique. To circumvent such draw back, this disser-

tation adopts a potential (navigation) function approach. Although a sampling-based

planner may offer travel distance optimal paths—which a potential field controller

cannot guarantee—on-line trajectory adaptation imposes stringent constraints on the

computational power mobile platforms should carry.

The time-varying nature of the workspace presents unique challenges to po-

tential function based controllers too. Existing work has treated instances of moving

6



obstacles, particularly in cases where the “obstacles” are simultaneously deployed sen-

sor platforms [20, 42, 67]. When moving entities are all controllable, this problem

reduces to an instance of a (bigger) time invariant one. Avoiding collisions with both

static and moving objects within a navigation function framework, however, needs to

be treated with extreme care, because one of the basic working assumptions of the

original methodology of [36] no longer holds: obstacles are no longer guaranteed to

be some ε apart. This issue is not addressed here; instead, the novelty of the navi-

gation function approach used in this dissertation is in its ability to handle moving

destinations with provable convergence guarantees.

1.4.4 Source Seeking with Limited Information

Multiple sensory and mapping technologies, such as target localization, environ-

ment mapping, as well as self localization, are needed to carry out a radiation detection

task in a complex environment. However some prerequisites for the application of these

technologies may not be in place, due to limitations in robots’ sensing and computa-

tion capacity. It is then necessary to study possible options when some of the above

mentioned assumptions no longer hold.

Studies on wifi [30], sound [1], radio [69,72] signal strength-based mapping and

source seeking have been shown promising for source seeking with limited informa-

tion. A wheeled robot subject to unicycle kinematic constraints can converge to the

extremum of a signal field by tuning its forward and turning velocity either determinis-

tically [77] or stochastically [40,41], solely relying on sampling such signal field without

global localization. A general class of robot dynamics can perform source seeking tasks

using stochastic approximation techniques [5]. However, these results usually only hold

in obstacle free space. This dissertation performs a preliminary study on the possibility

of extending such source seeking methods to cluttered environments by allowing robots

to recover from collisions with some probability. This added collision recovery behavior

extends a single continuous source seeking system into a hybrid one, that consists of

both a continuous flow space as the robot navigates in the free space, as well as discrete
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events that capture collisions. This type of hybrid system with random events is often

referred to as a Stochastic Hybrid System (SHS). One particular interesting aspect of

this problem is to find out the probability of reaching certain set while avoiding some

other set in the workspace. Such reachability problem is studied in [11], where the flow

dynamics is deterministic while the jumps are stochastic. Extension to systems with

stochastic flow dynamics have been made [10, 12]. Further studies aim at maximizing

the probability of reaching specified subsets through optimal control of a SHS by dis-

cretization and dynamic programming over limited time horizon [33,62, 63]. However,

the computation cost associated with solving the reachability and optimization prob-

lem for a SHS is quite high. In this dissertation, a method for bounding the reachability

probability for source seeking in cluttered environments is presented, which shall serve

as a first step in theoretically analyzing source seeking problems with wall collisions

events.

1.5 Problem Statement

This dissertation focus on solving the following problem: find the optimal way

to improve radiation detection methods, by exploiting sensor mobility.

The radiation detection process is closely tied to the distances between the sen-

sors and the potential target due to the square distance attenuation of perceived source

radiation strength, which leads to the first problem solved in this dissertation: what is

the direct relation between sensor mobility and the radiation detection performance?

The answer to this problem given in Chapter 3 leads to a following question:

given that some particular radiation detection performance measures can be computed

as functions of sensor trajectories, what would be the optimal sensor trajectories that

maximize detection performance with guaranteed bound on false alarm rate?

Once this optimal control problem is solved, a motion planner and robot con-

trollers need to be designed to implement such optimal strategy on actual robots moving

in physical world. A solution to motion planning in clustered environments while pur-

suing time-varying target set is given in Chapter 4 and the controllers are developed in
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Chapter 5 to guarantee the robots with different dynamics can converge to the smooth

trajectories given by the motion planner.

Lastly, assume that the robot of interest cannot locate themselves perfectly while

in pursuit of their targets but are capable of recovering from collisions with obstacles

in the environment with some probability, then a question arise as what would be

the performance bounds on the chance of successfully converging to some signal field’s

extremum in cluttered environments for such robot. This question is investigated in

Chapter 8. The conclusions drawn are to serve as first step in radiation detection using

robots with only basic sensors, such as encoders, an Inertial Measurement Unit (IMU)

and radiation counters.

1.6 Scientific Contributions

This dissertation addresses challenges in radioactive source detection that relate

to minimizing error probabilities through sensor mobility and navigating in cluttered

environments while tracking a time-varying target.

Existing literature on radiation detection usually utilizes static sensors and fol-

lows Bayesian approach to detecting and estimating target states including position,

velocity as well as acceleration. This dissertation will reveal that using static sensors,

tracking a weak mobile radioactive source is unrealistic due to low signal noise ratio

and limited time window, which motivates us to take a different approach by focusing

on detecting the nature of the target and estimate target trajectory through other

means such as visual tracking.

Existing work on radiation detection using mobile sensors does not reveal the

relation between the sensor motion and error probabilities directly. Their focus is more

on exploring the workspace and locating static radioactive sources while our focus is

on deciding the nature of the target given target’s location. In this dissertation, the

optimal sensor motion is obtained, which minimizes Chernoff bounds on detection error

probabilities directly.
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In terms of navigating mobile sensors, the fundamental challenge here is to work

with time-varying targets. Sampling-based methods may not be able to re-plan fast

enough to provide convergence guarantees to a mobile target. This dissertation shows

that a modification to a navigation function-based controller can make it converge to

time-varying target.

It has been shown that with local sensor readings and velocity feedback, a

robot with limited sensing capacity can still converge to the extremum of the field in

open space [40, 41, 77]. However, introducing obstacles completely changes the sys-

tem dynamics. This dissertation proposes a new model that captures the uncertainty

in occasional collisions and studies the success rate of the robot converging to field

extremum while considering collisions with obstacles.

This dissertation starts with formulating and solving an optimization problem to

obtain sensor trajectories that minimize an upper bound on the Probability of missed

detection (PM) while constraining the Probability of false alarm (PFA) below a given

constant α ∈ (0, 1). Based on the analytic solution of the aforementioned optimal

control problem, a modified navigation function-based motion planner is proposed,

which steers mobile sensors inside cluttered environment. Low-level controllers are

designed to ensure that robots—in the experimental studies conducted here, these

would be a quadrotor and a wheeled mobile robot—can converge to the reference

trajectory given by the motion planner. Preliminary studies are initiated on the lower

bounds on the probability of reaching signal extremum for mobile robots that are

reasonably resilient to collisions using only local signal readings.

This dissertation includes material from [50], in which I contributed to the work

of finding tightest Chernoff bounds, likelihood ratio test threshold selection, sensor

management optimization and the simulation and experimental validation of the ben-

efits of sensor mobility.
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Chapter 2

TECHNICAL PRELIMINARIES

The first step towards solving a radiation detection problem is to make a deci-

sion on the validity of the two hypotheses: either the target is benign or radioactive;

this corresponds to two Poisson processes with different intensity signatures. If the

target is benign, the sensors are essentially recording background radiation, the mean

intensity of which is assumed known. On the other hand, if the (moving) target is

indeed radioactive, the sensors are expected to observe a Poisson process with time

varying intensity. The observed Poisson process is a composition of the background

radiation, and the radiation counts from the radioactive source, whose intensity suffers

square distance attenuation between sensor and source. Because both the sensors and

the source can be moving during the detection period, the observed Poisson process’s

intensity will also change accordingly.

Now assume that a set of measurements Nt(i) at each sensor is collected. To

decide which hypothesis is true, a LRT is optimal [7] in the sense that compared to

any other tests, it achieves the lowest probability of errors. The LRT is based on the

idea of using the ratio between the likelihood of getting the given sensor measurements

under the two hypotheses as the criterion for making a decision. If the ratio is above a

carefully chosen threshold, then the hypothesis on the numerator is in favor, otherwise,

the denominator one is decided.

This chapter provides the mathematical preliminaries on modeling radiation

measurement process and making decisions between hypotheses using LRT. Back-

ground information and essential assumptions made in this dissertation on formulating

optimal control problems and navigating amongst obstacles are presented as well.
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2.1 Radiation Sensor Model

The gamma ray reception process at the radiation counter side when the dis-

tance between sensor and source is time-varying can be described mathematically by

a inhomogeneous Poisson process.

Definition 2.1.1 Suppose λ(t) is a nonnegative, measurable function such that∫ t

0
λ(s) ds < ∞ for all t > 0. A point process Nt on a probability space (Ω,F ,P)

adapted to the filtration (Ff : t > 0) is said to be a (P,Ft)-Poisson process with

intensity λ(t) if for 0 ≤ s ≤ t,

1. Nt −Ns is independent of Fs, and

2. Nt − Ns is a Poisson random variable with parameter
∫ t

s
λ(u) du, i.e. for all

n ∈ Z
+,

P(Nt −Ns = n) = e−
∫ t
s λ(τ)dτ (

∫ t

s
λ(τ)dτ)n

n!
.

To define this process in a radiation detection setting, first let (Ω,F ) be a

measurable space, supporting a k-dimensional vector of counting processes Nt =

(Nt(1), . . . , Nt(k)), t ∈ [0, T ]. For our problem, Nt(i) represents the number of counts

registered at sensor i ∈ {1, 2, . . . , k} up to (and including) time t ∈ [0, T ]. These mea-

surements are typically assumed to be independent from each other, with an exception

of [66]. The two hypotheses H0 and H1 regarding the nature of the target correspond

to two distinct probability measures on (Ω,F ). Hypothesis H0 corresponds to a prob-

ability measure P0, with respect to which Nt(i), 1 ≤ i ≤ k, are independent Poisson

processes over t ∈ [0, T ] with background radiation intensities βi(t), respectively. Hy-

pothesis H1 corresponds to a probability measure P1, with respect to which the Nt(i),

1 ≤ i ≤ k, are independent Poisson processes over t ∈ [0, T ] with the sum of back-

ground and target induced radiation intensities βi(t)+νi(t), respectively. The decision

problem is thus one of identifying the correct probability measure (P0 versus P1) on

(Ω,F ), based on a realization of the k-dimensional process Nt = (Nt(1), . . . , Nt(k)).

The following requirements are imposed on βi and νi.
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Assumption 2.1.2 For 1 ≤ i ≤ k, βi : [0, T ] → [βmin, βmax] is a bounded, continuous

function with 0 < βmin < βmax < ∞, βmin, βmax independent of i ∈ {1, 2, . . . , k}.

Assumption 2.1.3 For 1 ≤ i ≤ k, νi : [0, T ] → [νmin, νmax] is a bounded, continuous

function with 0 < νmin < νmax < ∞, νmin, νmax independent of i ∈ {1, 2, . . . , k}.

Let (FN
t : 0 ≤ t ≤ T ) be the filtration generated by the process Nt.

1 Then,

for any event A ∈ FN
t , an observer of the sample path s �→ Ns, 0 ≤ s ≤ t, knows at

time t whether or not the event A has occurred. The σ-field FN
T thus represents the

information generated by the totality of sensor observations up to t = T ; to wit, the

information on which the decision must be based.

2.2 Decision Making

The process of deciding whether an object is radioactive or not can be formulated

as a hypotheses testing problem. Hypotheses 0: object is not radioactive and λ = β;

Hypotheses 1: object is radioactive and λ = β + ν. According to Neyman-Pearson

Lemma, a LRT is the optimal method for deciding between two hypotheses [7]. A test

for deciding between hypotheses H0 and H1 on the basis of FN
T observations can be

thought of as a set A1 ∈ FN
T with the following significance: if the outcome ω ∈ A1,

H1 is decided; if ω ∈ A0 � Ω \ A1, H0 is decided. For a test A1 ∈ FN
T , two types of

errors might occur. A type I error, “false alarm”, occurs when the outcome ω ∈ A1 (i.e.

H1 is decided) while H0 is the correct hypothesis. A type II error, “miss”, occurs when

ω ∈ Ω \ A1 (i.e. H0 is decided) while H1 is the correct hypothesis. The probability of

false alarm is given by P0(A1), while the probability of a miss is given by P1(Ω \ A1).

Then, the probability of detection is given by P1(A1) = 1− P1(Ω \ A1).

In the Neyman-Pearson framework, one is given an acceptable upper bound on

the probability of false alarm α ∈ (0, 1), and the problem is to find an optimal test:

a set A∗
1 ∈ FN

T which maximizes the probability of detection over all tests whose

1 Thus, for t ∈ [0, T ], FN
t = σ(Ns : 0 ≤ s ≤ t) is the smallest σ-field on Ω with respect

to which all the (k-dimensional) random variables Ns, 0 ≤ s ≤ t, are measurable.
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probability of false alarm is less than or equal to α. The following result describes the

optimal test. The underlying probabilistic setup is as described above.

Theorem 2.2.1 ([49]) Consider a network with k sensors and a fusion center con-

nected in a parallel configuration.2 For 1 ≤ i ≤ k, let Nt(i), t ∈ [0, T ] denote the

observation at sensor i over the time interval [0, T ] and let (τn(i) : n ≥ 1) be the jump

times of Nt(i). Assume that at decision time T , sensor i transmits to the fusion center

the statistic

LT (i) � exp

(
−
∫ T

0

νi(s) ds

)
NT (i)∏
n=1

(
1 +

νi(τn(i))

βi(τn(i))

)
computed on the basis of its observation t �→ Nt(i), t ∈ [0, T ]. Then, the test A∗

1 =

{LT ≥ γ} performed at the fusion center, with LT �
∏k

i=1 LT (i) and γ > 0 satisfying

P0(LT ≥ γ) = α, is optimal for FN
T -observations in the sense that for any A1 ∈ FN

T

with P0(A1) ≤ α, we have P1(A
∗
1) ≥ P1(A1).

2.3 Chernoff Bounds on Error Probabilities of Likelihood Ratio Test

The performance of the test {LT ≥ γ} can be measured by the probabilities of

false alarm and miss defined by

PFA � P0(LT ≥ γ) and PM � P1(LT < γ) , (2.1)

respectively. In many cases of interest, however, the exact computation of these error

probabilities is mathematically intractable, motivating the need for good upper bounds

which are easily computable. Theorem 2.3.1, stated below, derives such bounds on PFA

and PM using Chernoff’s inequalities.

For p ∈ R, it is defined:

Λ(p) � logE0[L
p
T ] = logE0[e

p �T ] , (2.2)

2 Each sensor can only communicate with a central unit called the fusion center; see
[70].
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where �T � logLT is the log likelihood ratio, and Ei denotes expectation with respect

to probability measure Pi, i ∈ {0, 1}. The term Λ(p) is thus the cumulant generating

function of �T under H0. Also let

μi(t) � 1 +
νi(t)

βi(t)
(2.3)

for 1 ≤ i ≤ k, t ∈ [0, T ]; thus, μi(t) is the ratio of intensities for H1 versus H0. The

intensities at sensor i at time t under H0 and H1 can now be written as βi(t), and

μi(t)βi(t), respectively.

Theorem 2.3.1 ([50]) Let η � log γ ∈ R. The Chernoff bounds on PFA and PM are

given by

PFA ≤ exp

(
inf
p>0

[Λ(p)− pη]

)
, (2.4a)

PM ≤ exp

(
inf
p<1

[Λ(p) + (1− p)η]

)
, (2.4b)

where for p ∈ R, Λ(p) is explicitly computable via

Λ(p) =
k∑

i=1

∫ T

0

[
μi(s)

p − pμi(s) + p− 1
]
βi(s) ds . (2.5)

Note that the explicit analytic formula for Λ(p) in (2.5) is a consequence of

the assumption of deterministic intensities, which allows us to circumvent the intricate

filtering analysis in [31] needed to accommodate stochastic intensities.

2.4 Optimal Control

This dissertation will formulate an optimization problem that aims at minimiz-

ing the Chernoff bounds on the error probabilities when deciding whether the target

is radioactive or not. In general, an optimal control problem consists three parts: the

state dynamics, the cost function associated with the states and control inputs, and

the constraints on the states and control inputs.

Assume the state dynamics can be described by Ordinary Differential Equations

(ODEs):

ẋ = f(t, x, u) , x(t0) = x0 ,
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where t is time, and t0 is the initial time. Variable x(t) ∈ R
n is the state, u(t) ∈ U ⊂ R

m

is the control input and x0 is the initial value for the state.

The optimal control problem aims at minimizing a cost functional with respect

to u in the form of:

J(u) =

∫ tf

t0

L(t, x, u) dt+K(tf , xf ) ,

where L and K are given functions typically referred to as running, and terminal cost

respectively. The time period [t0, tf ] can either be fixed or free to change.

The constraints may include the upper or lower bounds on the states and control

inputs, and it may also be in the integral form:

C(u) =

∫ tf

t0

M(t, x, u) dt = C0 ,

where C0 is a constant value and M is a given function of (t, x, u).

For the radiation detection problem at hand, due to the limitation on the de-

tection time window, this dissertation aims at optimizing detection performance over a

specific bounded time period. Due to the structure of Chernoff bounds on probability

of false alarm and miss, the cost function and optimization constraint only involve

the running cost term. This type of optimization problem can be approached both

numerically and analytically (see Chapter 3).

2.5 Motion Planning

To implement the optimal strategy on actual sensor platforms in cluttered envi-

ronments, a navigation function, which constructs a virtual potential field that guides

robot in cluttered environment, can be used to direct robots amongst obstacles. Al-

ternative methods such as Rapidly exploring Random Tree (RRT), Probabilistic Road

Map (PRM) are versatile in terms of workspace structure and relatively fast due to

the use of sampling. To achieve real-time performance, however, these planners must

be tailored with suitable heuristics, which makes performance guarantees difficult to

obtain. On the contrary, at the price of limiting the workspace to sphere/star world

topologies and sacrificing some optimality, navigation function methods provide smooth
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motion plans that can be adapted to different robots dynamics. The explicit feedback

based controller offers real-time performance with managable computation cost.

The motion planner of Chapter 4 follows an artificial potential function approach

[36]. Before jumping into the detailed modification on the potential function and the

controller design, the environment setup is first introduced here. The workspace for

the sensor nodes discussed in this dissertation is defined as a sphere world, where the

outer boundary of the workspace is a sphere around the origin and all obstacles are

spheres completely included in the workspace. These obstacles are sets Oj, where

j ∈ {1, . . . ,m}, which are assumed to be open balls in the appropriate Euclidean space

(here, R
2 or R

3) having radius ρj and center oj. The boundary of obstacle j, for

j ∈ {1, . . . ,m}, is described by means of the function βi j = ‖xi − oj‖2 − ρ2j , which

vanishes on the obstacle’s boundary and is positive in the space surrounding it. Set

∂O0 marks the outer workspace boundary, of radius ρ0; this boundary is expressed in

the form βi 0 = ρ20 − ‖xi‖2, for o0 = 0. Then a single scalar function that serves as a

metric of proximity to (any) obstacle boundary βi =
∏M

j=0 βi j can be defined.

Once the interior of workspace boundary is “punctured” with every obstacle, the

free workspace P = B(ρ0) \
⋃m

j=1 Oj is obtained. Assume that Oj for j = {1 . . .m} are

isolated, static, sufficiently far away from the target location, and that this target lo-

cation is sufficiently away from the workspace boundary ∂O0—these four requirements

correspond to the collision-free workspace remaining valid [36]. It shall be shown in

Chapter 4 that using our modified potential function and novel controller, our sensor

nodes are able to track this time varying target set in a valid sphere world workspace,

at least during the sensors’ integration window.

2.6 Vehicle Control

Due to the different kinematics and dynamics that come with different physi-

cal robot platforms, lower level controllers are developed to ensure all kinds of robot

deployed can track the reference trajectory given by the motion planner. Feedback

linearization and backstepping techniques are used to ensure convergence.
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Since combining motion planning with realistic robot dynamics in the same

feedback loop can be overly complicated, it may be more practical to find a reference

trajectory first, and then develop a local controller that would track such a reference. In

this dissertation, the motion planner of choice is based on potential function, and gives

a reference velocity field that guides a single integrator point robot through a cluttered

environment to a moving target set. However real robot dynamics are typically of

higher order and nonlinear, requiring special treatment. The particular robot dynamics

discussed in this dissertation include those of wheeled robots and quadrotors.

Through output feedback linearization, (with horizontal position being the out-

put) the sensor mounted on a wheeled robot can be treated as a single integrator, which

naturally fits the robot into our potential function based motion planning framework.

The treatment for a quadrotor is a bit more complex [45]. Yet that system too can be

controlled as a double integrator through inverse dynamics combined with backstep-

ping techniques [35,37]. This approach enables the development of a controller for the

quadrotor that ensures the robot’s converge to the reference velocity commands as well

as the target set. The controller design is detailed in Chapter 5.

2.7 Extremum Seeking

If the amount of prior information given is limited, and assume that no map

nor global localization methods are available, the extremum seeking techniques for

navigation should still be applicable. With single sensor and local readings, a robot

can follow an average path converging to min/max points of signal field by randomly

perturbing itself. Using a group of robots, better estimates of the gradient of the field

can be obtained through accurate formation control and localization in local frames.

A wheeled robot can converge to the extremum of the signal field without global

localization [77]. This approach employed periodic perturbation on the forward velocity

of a wheeled robot that rotates at constant angular velocity. The periodically perturbed

forward velocity includes a tunable bias term that is appropriately combined with
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extremum seeking to produce a net effect of drifting towards the source:

v = cJ sin(ωt) + αω cos(ωt) . (2.6)

This velocity controller uses measurements of the signal field J at the robot’s location

to execute extremum seeking. Provided that ω in (2.6) is more than three times the

angular velocity of the wheeled robot, the local convergence of such controller is proved

via averaging. Instead of perturbing the forward velocity deterministically as above, a

stochastic version of similar extremum seeking controller has also been constructed [41].

One limitation in these methods is that the controller’s convergence is only guaranteed

in open space. In case collisions are not always fatal to the robot, this dissertation

studies the probability bound of convergence for such extremum seeking controller in

the presence of obstacles.

2.8 Stochastic Hybrid System Modeling

When employing such randomized controller without localization or environ-

ment information, modeling the randomness in robot’s dynamics as well as handling

inevitable collisions are challenging.

To account for non-deterministic behavior in both robot’s motion in free space—

i.e., the stochastic perturbation in the forward velocity—and during collision events, a

mathematical framework that can incorporate both continuous and discrete stochastic

behavior is needed. The continuous flow of the robot can be modeled using Stochastic

Differential Equations (SDEs); the reachability problem of SDE is studied [10, 12, 57]

under different settings.

Collisions can be modeled based on a discrete time discrete state Markov process

[27]. Let {X0, X1, ...} be a sequence of random variables which take values in some

countable set S, called state space. A Markov process enjoys the Markov property:

P (Xn = s|X0, X1, Xn−1) = P (Xn = s|Xn−1) ,

for all n ≥ 1 and s ∈ S. The problem at hand is to identify the probability of reaching

specific state sets, without being absorbed in its complement.
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2.9 Conclusion

In this chapter, an optimal binary hypotheses testing scheme LRT is introduced

for deciding whether a potential target is radioactive or not. Probability bounds on

the chance of making mistakes using this LRT is also presented, which can be uti-

lized to formulate the optimization problem solved in Chapter 3. The environmental

configuration sphere world is introduced to clarify the workspace model used in this

dissertation, which would be revisited in Chapter 4. Preliminary evidence are pro-

vided on robot converging to signal field extremum, which validates the study based

on Markov process in Chapter 8.
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Chapter 3

OPTIMAL STRATEGIES FOR RADIATION DETECTION

The first key aspect in using a team of mobile sensors to decide the radioactive

nature of a mobile target is to determine the criterion for making such decision. As

discussed in Chapter 2, an LRT provides optimal performance when making binary

decisions about the radioactivity nature of a target. Yet the threshold in the LRT can-

not be obtained analytically due to the intricate nature of the inhomogeneous Poisson

processes involved. However the probability of the test arriving at erroneous conclu-

sions can be bounded, which can help determining the sub-optimal threshold to use.

Knowing that the underline Poisson process is influenced by the trajectories of the

sensors, one can treat these bounds as functions of sensor trajectories.

This dependency between the test’s performance bounds and the sensor trajecto-

ries can be used as a basis for an optimal control problem, which aims at minimizing the

bounds on error probabilities through a choice of sensor trajectories. This optimal con-

trol problem can be solved numerically, or even analytically depending on the dynamics

model assumed for the mobile sensors. Numerical solution to this optimization problem

can be obtained using General Pseudospectral Optimal Control Software (GPOPS), a

general purpose MATLAB software package specialized to nonlinear optimal control

problems. The software uses a class of variable-order Gaussian quadrature methods,

that approximates the continuous-time optimal control problem as a sparse Non-linear

Programming (NLP) by expressing continuous functions as polynomials [6, 24–26, 54].

The numerical results provide insight into the solutions of the optimal control prob-

lem analytically, which is approached using necessary conditions for optimality with

the optimal control problem posed within the framework of Pontryagin’s Maximum

Principle.
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This chapter first provides a threshold selection method for LRT based on Cher-

noff bounds and then formulates an optimal control problem linking the sensor trajec-

tories with the detection performance. First an example optimal control problem is

solved numerically, and then a more general case is solved analytically under assump-

tions on the simplified vehicle dynamics, using the intuition gained from the numerical

solution. The analytic solution provides us a guideline as how to improve detection

performance using sensor mobility.

3.1 Problem Statement

Given the LRT described in Theorem 2.2.1, find a suitable threshold γ that

ensures the probability of false alarm PFA = P0(LT ≥ γ) <= α for a given α ∈ (0, 1).

Assume the sensors (radiation counters) are controllable and their trajectories subject

to ẋi = f(t, xi, ui), for i ∈ {1, · · · , k}, search for optimal u∗
i that minimizes the Chernoff

bounds (2.4b) on PM = P1(LT < γ).

3.2 Threshold Selection for Radiation Detection

Imagine a mobile vehicle which could be carrying a radioactive point source of

activity a. The trajectory of this target is denoted xt(t) ∈ R
3, assuming that ‖ẋt‖ ≤ Vt

for t ∈ [0, T ]. In the specific setting considered in this dissertation, the target is to be

classified as non-radioactive or radioactive within a time period of T seconds using a

collection of k mobile sensors (radiation counters). The motion of the radiation sensors

is controllable, and the trajectory of sensor i for i ∈ {1, . . . , k} is denoted xi(t) ∈ R
3.

This dissertation assumes that the source intensity is comparable to background.

The background radiation intensity at the location of sensor i is denoted bi > 0 and will

be considered constant, which is valid so long as the spatial variations and detection

task duration T are relatively small during the detection process.

Although background intensity can be assumed constant, the perceived source

intensity by sensor i changes with the distance between the source and sensor i. Specif-

ically, the closer the sensor is to the source, the more radiation from the source it is
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likely to detect. If, for the sake of simplicity, sensors are assumed identical having a

cross section coefficient χ, then it is generally accepted [46] that the mean count rate νi

measured by sensor i follows an inverse square law with respect to the distance between

sensor and source. This inverse square relationship is adopted as the sensor model in

this dissertation:

νi �
χa

2χ+ ‖xi − xt‖2 . (3.1)

Thus, when ‖xi−xt‖ = 0, the source is touching the surface of the sensor, and the latter

measures exactly half of source’s emitted rays. With the perceived radiation sensor

model ν and background radiation level bi defined, mathematical tools described in

Sections 2.1, 2.2, and 2.3 can be utilized to establish a likelihood ratio test for deciding

whether the mobile target is radioactive or not.

Theorem 2.2.1 describes an LRT which is optimal when making binary hypothe-

ses testing, namely for deciding whether the source is radioactive or not. By performing

the described LRT, the minimum PM can be achieved while PFA is constrained. How-

ever, the threshold value γ needs to be decided first to perform the test. To determine

the threshold γ used in LRT, the equation PFA = P0(LT > γ) = α needs to be solved

for γ. Then PM can be used to evaluate how well the test is in detecting radioactive

sources. However obtaining the closed form of these error probabilities is mathemat-

ically intractable and a performance measure for the LRT can be obtained by using

upper bounds on error probabilities Theorem 2.3.1 [50].

As shown in Theorem 2.3.1, PFA and PM are upper bounded by functionals of

both μi and a scalar parameter p. With some algebraic manipulation on (2.4a), for

any given scalar p > 0,

PFA ≤ exp

⎛⎜⎝inf
p>0

⎡⎣ k∑
i=1

∫ T

0

[
μi(s)

p − pμi(s) + p− 1
]
βi(s) ds− p log γ

⎤⎦
⎞⎟⎠ .

To achieve the infimum, the first and second order derivatives of the right hand side are

taken with respect to p. At the point p∗ where the expression attains its minimum, the
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first order derivative should be zero and the second order derivative should be positive:

k∑
i=1

∫ T

0

[
μi(s)

p∗ log μi(s)− μi(s) + 1
]
βi(s) ds− log γ = 0 (3.2)

k∑
i=1

∫ T

0

[
μi(s)

p∗(log μi(s))
2
]
βi(s) ds > 0 . (3.3)

The inequality in (3.3) is satisfied for any value p∗ ∈ (0, 1). (3.2) offers a equality

constraint governing p∗ and the threshold γ used in the LRT.

In practice, it is normally required that PFA must be bounded by a constant

value α > 0. This constant α is taken to be very small, because if the detection system

produces too many false alarms, the user will tend to ignore it. To understand the

need for this constraint on PFA, consider the following illustrative problem: assume

the real probability of the target being radioactive is PR (usually a small number

reflecting our expectation that there is little chance of nuclear contamination under

normal conditions.), when the likelihood ratio is greater than the chosen threshold,

what is the chance that the source is indeed radioactive? The answer is

PR(1− PM)

(1− PR)PFA + PR(1− PM)
=

1− PM

1− PM + ( 1
PR

− 1)PFA

.

Now that to have a reasonable large chance of accurate detection, PFA must be at least

comparable to PR, otherwise the denominator is dominated by the value of PFA/PR.

Now to enforce PFA < α, take (2.4) and substitute γ from (3.2) to obtain:

PFA ≤ exp

⎛⎜⎝
⎡⎣ k∑

i=1

∫ T

0

[
μi(s)

p∗ − p∗μi(s) + p∗ − 1
]
βi(s) ds− p∗ log γ

⎤⎦
⎞⎟⎠

= exp

⎛⎜⎝
⎡⎣ k∑

i=1

∫ T

0

[
μi(s)

p∗ − p∗μi(s)
p∗ log μi(s)− 1

]
βi(s) ds

⎤⎦
⎞⎟⎠ = α . (3.4)

Equations (3.2) and (3.4) together can be used for computing the right threshold

γ for LRT as well as the parameter p∗ for the Chernoff bounds of Theorem 2.3.1.

Now recall that from (2.4b), p∗ needs to be less than 1, to ensure the bound

on PM is less than one. With p∗ < 1 as an additional constraint, there may not be
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a solution to (3.2) and (3.4). This signifies that the available measurements, given

sensor trajectories, and target trajectory, do not give enough information to make a

valid decision on whether target is radioactive or not, under the false alarm constraint.

When there is no valid threshold for a given false alarm constraint and detection setup,

one may consider one or more of the following alternatives, including optimize sensor

trajectories, increase the number of sensors used, extend the detection period and relax

the false alarm constraint. Among these options, optimizing sensor trajectories can be

performed without extra burden on the detection task and thus this is the direction

chosen in this dissertation, while all other options will either increase the cost of the

radiation detection system by adding sensors or affect the performance of the system

by relaxing the constraint on time and accuracy.

3.3 Minimize Error Bounds by Optimal Control

3.3.1 Optimization Problem Formulation

An optimization problem is defined by the cost and constraints functions. In this

case the constraint is that PFA < α. The cost will be defined to be the Chernoff bound

on PM , a value closely tied to the false alarm rate and a natural performance metric

candidate for assessing how successful the radiation detection task is. Assuming that

the measurement statistic is sufficient to satisfy the false alarm constraint, investigation

into the bound on PM starts by taking (2.4b), substituting γ by p∗ as given in (3.2),

and incorporating the false alarm constraint (3.4):

PM ≤ exp

⎛⎝ k∑
i=1

∫ T

0

[
μi(s)

p − pμi(s) + p− 1
]
βi(s) ds+ (1− p) log γ

⎞⎠
= exp

⎛⎝ k∑
i=1

∫ T

0

[
μi(s)

p − pμi(s)
p log μi(s)− 1 + μi(s)

p log μi(s)− μi(s) + 1
]
βi(s) ds

⎞⎠
= exp

⎛⎝ k∑
i=1

∫ T

0

[
μi(s)

p + (1− p)μi(s)
p log μi(s)− μi(s)

]
βi(s) ds

⎞⎠
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= α exp

⎛⎝ k∑
i=1

∫ T

0

[
μi(s)

p log μi(s)− μi(s) + 1
]
βi(s) ds

⎞⎠ .

Now to perform a test on a mobile source, multiple mobile sensors are deployed

to collect radiation counts for a limited period of time T and the likelihood ratio is

computed as stated in the Theorem 2.2.1 using μi as defined in (2.3) as a function of νi,

which is in turn function of sensor poses as suggested by (3.1). This chain of reasoning

establishes the connection between the trajectories of sensors and the test’s statistic.

Similar reasoning applies to Theorem 2.3.1, showing that the probability bounds on

PFA and PM are also functions of the sensors’ poses. To formally reveal the dependency

between the bounds on PFA, PM and sensor trajectory xi, the governing equation for

xi needs to be introduced first, which in general can be stated as ODE.

Assume that the trajectory xi of sensor i is controlled through input ui(t) as in

ẋi = f(xi, ui) , (3.5)

where the function f(·) is Lipschitz continuous. Also assume that constraints are

imposed on control actuation in the form ‖ui‖ ≤ umax for some constant umax. All

sensor motion control inputs are collected in a stack vector u = (u1, . . . , uks). Recall

(3.1), and note that since xi is implicitly determined by ui, and νi is a function of xi,

νi is a functional operating on ui; we thus write νi(ui), or more generally νi(u).

Following (2.3), and treating νi as function of u, we write:

μi(u) � 1 +
νi(u)

bi
. (3.6)

Now it is apparent that the logarithm of an upper bound on the probability of

miss PM for the network of sensors is analytically expressed as

JPM(u, p)�
ks∑
i=1

∫ T

0

[
μi(u)

p + (1− p)μi(u)
p log μi(u)− μi(u)

]
bi ds , (3.7)

while the probability of false alarm is upper bounded by a constant α ∈ (0, 1), i.e.

PFA ≤ α, if

FFA(u, p) �
ks∑
i=1

∫ T

0

[
pμi(u)

p log μi(u)− μi(u)
p + 1

]
bi ds = − logα . (3.8)
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The equation (3.7) is also rewritten by plugging in the equality constraint (3.8):

JPM(u, p)� logα +
ks∑
i=1

∫ T

0

[
μi(u)

p log μi(u)− μi(u) + 1
]
bi ds . (3.9)

It is therefore natural to formulate an optimal control problem where JPM is

the cost to be optimized with respect to u and p under constraint (3.8)—with logα as

a constant. In this problem, the state of the dynamical system is μ � (μ1, . . . , μks),

implicitly determined by u in (3.6) via (3.1) and (3.5).

3.3.2 Numerical Determination of Optimal Sensor Trajectories

Optimal control theory is expected to suggest how sensor mobility can be ex-

ploited. However a first look at the optimal control problem (3.9)-(3.8) reveals that

both the cost and constraint are integrals of highly complex nonlinear functions. To

gain some insight, a specific problem is first solved numerically. This section is from [50]

and the sensor model used in this section is in accordance with the one used in [50].

Consider an example where ks = 5 sensors are available, and sensors 1 and 5 are

mobile. The five sensors are originally at locations (x1, y1) = (−3, 0), (x2, y2) = (−1, 0),

(x3, y3) = (0, 0), (x4, y4) = (1, 0), (x5, y5) = (3, 0). Set x = (x1, y1, x2, y2, . . . , x5, y5)
ᵀ,

with
(
x1(t), y1(t)

)
,
(
x5(t), y5(t)

)
evolving according to

ẍ1 = u1 , ÿ1 = u2

ẍ5 = u3 , ÿ5 = u4

(3.10)

with initial conditions
(
x1(0), y1(0)

)
= (−3, 0),

(
x5(0), y5(0)

)
= (3, 0), and u =

(u1, . . . , u4)
ᵀ, which are the accelerations of sensors in x and y directions. Further

assume that the velocity and control inputs of the mobile sensors are subject to the

constraints

|ẋi| ≤ 1 , |ẏi| ≤ 1 , |ui| ≤ 5 . (3.11)

This set of constraints on sensor dynamics enforce the bounded control assumption

raised in previous section and imposes velocity limit on sensor as well since sensors can

not move arbitrarily fast.
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The target now follows a circular trajectory of radius R = 0.5 m centered at

the point (0, 2), with maximum velocity vmax
s = 1.26 m/s and maximum acceleration

amax
s = 3.16 m/s2:

xs(t) = 0.5 cos

(
4πt

5

)
, ys(t) = 2 + 0.5 sin

(
4πt

5

)
. (3.12)

To emphasize the effectiveness of mobility in improving decision accuracy in

this example, the source intensity is reduced to be less than the background radiation

level even when observed at zero distance. Assume that the target is indeed a source

of radiation with activity a = 480 counts per minute (cpm), while background is at a

level of β = 780 cpm. It is required that a decision on source’s radioactivity should be

made based on the sensor measurements within 10 seconds.

The optimal control laws u are numerically computed using the GPOPS soft-

ware. Figure 3.1 presents the closed-loop paths for the mobile sensors 1 and 5 under

the direction of the optimal control u. Under the optimal control input u, sensors 1

and 5 move so as to minimize their instantaneous distance from the target, but due to

their velocity bounds they cannot follow exactly the target’s circular path, which can

also be seen in Figure 3.2, that shows the history of the horizontal speeds of sensor 1

and the target (the source). While the sensor’s speed is confined in the [−1, 1] interval,

the target’s speed periodically exceeds that limit, forcing the sensor to cut its circular

reference path trying to keep up with the faster source. With sensors 1 and 5 chasing

the target along paths generated by the optimal control u∗, the optimal value for the

optimization cost turns out to be

J∗
PM = −2.07 ,

with the probability of false alarm being constrained to remain below1 α = 10−3. This

amounts to having η(u∗) = −2.07, yielding an upper bound on the probability of

missed detection of 1.26× 10−4 = exp(J∗
PM)× α.

1 Approximate current nuisance alarm rate at U.S. border crossings is reported as
10−4 [76].
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Figure 3.1: Source path and optimal paths for mobile sensors 1 and 5. The source is
circling at a radius of 0.5 around point (0,2), and is approached by sensor
1 from the left, and sensor 5 from the right. The two sensors cannot keep
up with the source due to their motion constraints, so they “cut” the
source’s circular path along rounded inscribed rectangles.

In this scenario, the sensors’ controlled mobility offered an order of magnitude

improvement in their SNR. The SNR is computed using the expression S√
S+B

, where

S denotes the (estimated) integrated source count rate, and B is the integrated back-

ground count rate [47]. Had all sensors remained stationary during the 10 second time

window, the SNR for detectors 1, . . . , 5 would have been 0.4980, 1.1434, 1.3617, 1.1434,

and 0.4980, respectively. With sensors 1 and 5 chasing the target, they improve their

SNR from 0.4980 to 4.6843.
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Figure 3.2: Horizontal velocity of target (source) and sensor 1 over time. The sensor’s
absolute speed is upper bounded by 1, while the target’s periodically
exceeds that bound. The sensor cannot track the motion of the faster
source perfectly.

Not surprisingly, the optimal solution to the sensor trajectories verifies our orig-

inal hypotheses: it is beneficial to have sensors moving close to the target for as long

as possible during the detection period. Still, this needs to be formally proven.

3.3.3 Analytic Determination of Optimal Sensor Trajectories

For simplicity, assume that the position trajectory of sensor i is controlled

through input ui(t) as in

ẋi = ui . (3.13)
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and that the constraints on control actuation are of the form ‖ui‖ ≤ umax for some

constant umax > Vt = maxt∈[0,t] ‖xt(t)‖. Collect all sensor motion control inputs in a

stack vector u = (u1, . . . , uks).

In this problem, the state of the dynamical system is μ � (μ1, . . . , μks), implic-

itly determined by u in (3.6) via (3.1) and (3.13); specifically,

μ̇i =
2χia(xt − xi)

bi(2χi + ‖xt − xi‖2)2 (ui − ẋt) . (3.14)

The path to an analytic solution starts with transforming the constrained op-

timal control problem (3.7)–(3.8) into an unconstrained one. The first partial result

establishes the monotonicity of functional FFA in (3.8) with respect to the positive

parameter p.

Lemma 3.3.1 Fix u. FFA is strictly increasing with p.

Proof Write ∂FFA

∂p
=
∑ks

i=1

∫ T

0
p μp

i (log μi)
2bi dt, and note that it is strictly positive

since μi > 1, p ∈ (0, 1).

Lemma 3.3.2 Fix p. FFA is strictly increasing with positive needle perturbations on

μi.

Proof Consider first a needle perturbation of the form εδ(t − t1) on coordinate i of

μ, yielding a perturbed μ̃ with component μi(t) + εδ(t − t1); here, δ(t − t1) is the

Dirac function offset at t1 and ε > 0 a small parameter. The Taylor expansion on the

integrand of FFA(μ, p) shows that

FFA(μ̃, p) ≈ FFA(μ, p) + biεp
2μi(t1)

p−1 log μi(t1) ,

Notice that the perturbed FFA is strictly increasing with respect to the perturbation ε

in the control μi at time t1 with δ(t− t1) duration given p2μi(t1)
p−1 log μi(t1) > 0.

Apply the Maximum Principle and extract the optimal motion coordination

strategy for each sensor:
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Proposition 3.3.3 The solution for sensor i ∈ {1, . . . , ks} to the optimal control prob-

lem (3.7)–(3.8)–(3.14) within the feasible set U = {u ∈ R
3ks : ‖ui‖ ≤ umax} is

ui =

⎧⎪⎪⎨⎪⎪⎩
xt−xi

‖xt−xi‖umax xi = xt

ẋt xi = xt

.

Proof Given (3.7)–(3.8), the cost function is:

JPM =
ks∑
i=1

∫ T

0

[
μp
i + (1− p)μp

i log μi − μi

]
bi ds .

Since JPM is always finite, by Fubini’s theorem,

JPM =

∫ T

0

ks∑
i=1

[
μp
i + (1− p)μp

i log μi − μi

]
bi ds ,

To find the necessary condition for optimal control policy, the unconstrained

problem is first solved, that is to minimize JPM without considering the constraint

(3.8). In order to do so, start with the following Lagrangian:

L =
ks∑
i=1

[
μp
i + (1− p)μp

i log μi − μi

]
bi . (3.15)

Here the states of optimization problem are μ′
is whereas p ∈ (0, 1) is a constant.

Now the Hamiltonian can be represented as

H =
ks∑
i=1

λiμ̇i(ui)−
ks∑
i=1

[
μp
i + (1− p)μp

i log μi(s)− μi(s)
]
bi , (3.16)

and dynamics of the costates λ′
is, which correspond to μ′

is, are written as

λ̇i = −∂H

∂μi

=
[
(1− p)pμp−1

i log μi + μp−1
i − 1

]
bi .

To solve for the optimal costate λi, the sign of the λ̇i and λi are analyzed

first. Knowing that bi > 0, the sign of the terms within the square bracket, denoted

IPM(p, μi), determines the sign of λ̇i:

IPM(p, μi) � (1− p)pμp−1
i log μi + μp−1

i − 1 .
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Notice that IPM(p, 1) = 0 for any p ∈ (0, 1), and it is monotonically decreasing

with respect to μi:

∂IPM

∂μi

= −(1− p)2pμp−2
i log μi + (1− p)pμp−2

i + (p− 1)μp−2
i

= −μp−2(1− p)2(p log μi + 1) < 0 .

It can now be concluded that IPM(μi) < 0 for μi > 1. Thus it is guaranteed

that λ̇i < 0 for any μi > 1, p ∈ (0, 1).

Now since μ∗
i (T ) can take any value in (1, 1 + a

2bi
], there are two mutually

exclusive and exhaustive cases: either μ∗
i (T ) ∈ (1, 1 + a

2bi
), or μ∗

i (T ) = μimax = 1 +

a
2bi

. If μ∗
i (T ) ∈ (1, 1 + a

2bi
), the transversality condition requires λi(T ) = 0. Thus,

given λ̇i < 0, it is λi(t) > 0 ∀t ∈ (0, T ]. In light of this, and given (3.14), the

Hamiltonian maximization condition H(μ∗,u∗,λ∗) = maxu∈U H(μ∗,u∗,λ∗) applied

on (3.16) requires that

u∗
i =

xt − xi

‖xt − xi‖umax , (3.17)

that is, it suggests the maximal control effort to close the distance between sensor and

source as close as possible. Using such a controller, eventually (given big enough T )

it will be μ∗
i (T ) = μimax . At this point, the second case is in effect. Denote Ts the

switching time. Now t ∈ [Ts, T ] with boundary condition μi(Ts) = μi(T ) = μimax and

∂JPM

∂μi

∣∣∣∣∣
t

= λ̇i(t) < 0. To minimize JPM when t ∈ [Ts, T ], μi should once again be kept

at its maximum value.

Since the unconstrained optimal control strategy is always at least as good

as of the constrained optimal strategy, proving that the unconstrained strategy is

equivalent to the constrained strategy can be done by showing that the constrained

optimal strategy is also at least as good as the unconstrained strategy, which shall

be true if unconstrained optimal strategy u∗ always satisfies the constraint when the

constraint is feasible.

Given that the FFA(μ, p) is monotonically increasing with respect to p and

FFA(μ, 0) = 0, it can be asserted that for μ∗, one can always find a p that satisfies
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the constraint (3.8) if FFA(μ
∗, 1) >= − logα. On the other hand, for cases that

FFA(μ
∗, 1) < − logα, the unconstrained optimal trajectory μ∗ would fail to satisfy the

constraint, and this is because the constraint is infeasible for any control inputs in the

feasible set U , which is proven by the following reasoning:

According to Lemma 3.3.2, FFA is monotonically increasing with respect to per-

turbations in μ. Given that following the proposed optimal trajectory μ∗ derived from

unconstrained case, the maximum possible value of μ over time is already obtained. So

FFA(μ
∗, 1) already reaches the maximum possible value over all possible trajectories of

μ. Thus if FFA(μ
∗, 1) is still less than − logα, the constraint FFA(μ

∗(u∗), p∗) = − logα

is infeasible for u∗ ∈ U and p ∈ (0, 1).

Essentially what Proposition 3.3.3 dictates is for the sensor platforms to close

the gap between themselves and the suspected target as fast as possible.

3.4 Conclusion

This chapter has laid out the complete procedure one would need to follow to

decide whether a mobile target is radioactive or not. How the LRT is connected to

sensor trajectories is shown, and the Chernoff bound on probability of miss is minimized

while constraining the probability of false alarm by optimizing sensor trajectories using

both numerical optimization and analytic proofs under sensor dynamics constraints.

Here is a summary of the methodology introduced in this chapter and used through

out this dissertation for radiation detection using mobile sensor networks.

Radiation detection procedure outline:

1. Drive the mobile sensors adhere to the optimal control guidance u∗, that is to

catch up with the target and keep a close distance for as long as possible;

2. Collect radiation counts and the time at which the counts are received at each

sensor. Record the trajectories of each sensor and the target at the fusion center;

3. Compute the partial likelihood ratio LT (i) defined in Theorem 2.2.1 at each

sensor;
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4. Collect all LT (i) from all sensors and get the total likelihood ratio LT =
∏k

i=1 LT (i)

at fusion center;

5. Compute the threshold for the LRT at fusion center using (3.2) and (3.4) where

μi are computed based on the trajectories of sensors and target;

6. Compare likelihood ratio LT to threshold, and if LT is higher than the threshold,

conclude that the target is radioactive. Otherwise, declare the target benign.

In the next Chapter 4 and Chapter 5, the implementation of the this radiation

detection procedure in physical world will be discussed.
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Chapter 4

ROBOT NAVIGATION

Chapter 3 provided a complete procedure summarized in Section 3.4 to decide

whether a moving target is radioactive. However, it should be pointed out that the

control strategy obtained by solving the optimal control problem (3.7)–(3.8)–(3.14) is

still under the assumption of an ideal world where the robot’s dynamics is simplified

to single integrator and spatial constraints of the workspace are omitted.

Limiting the feasible workspace positions that sensors can attain augments the

set of constraints in the optimal control problem formulation of Chapter 3. In the

general case, the resulting optimal control problem may not admit analytic solutions.

Even if treated numerically, the solver may fail to provide reasonable results as these

constraints could be highly nonlinear and ill conditioned at the boundary. For example,

log(x) or 1/x are often used as barrier functions to prevent solution crossing the obstacle

boundaries. Yet, their values and derivatives all tend to infinity when x approaches

zero, which makes it difficult for an optimization solver to converge to a solution.

These considerations motivate an alternative, albeit sub-optimal, approach to sensor

management, which—while adhering to the same strategy introduced by solving the

optimal radiation detection problem—is likely to trade-off some performance for safety

and analytically established convergence properties.

Given that our goal is to move the sensor towards the target as fast as possible

while avoiding collisions, a well-chosen motion planner that suits this purpose needs

to be formulated. One option could be optimal sampling based controller represented

by PRM∗ and RRT∗. However, these methods rely on relatively large amounts of

computation, especially so when online path modification or re-generation is required,

which is necessary when the goal is moving. Real time performance could be challenging
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considering the limitation on the onboard computation power that a mobile robot can

offer. Even though these methods provides asymptotically optimality, in real time

application, there would always be a compromise between the computation cost and

path optimality.

On the other hand, this dissertation decides to take a different approach. Using

the insight obtained from the unconstrained case, a sensor management strategy is

developed for navigation amongst obstacles in the context of navigation functions. The

sensor platforms are not allowed to physically touch and collide with their target; they

are to keep a minimum safe distance rt away from it. The destination for the sensors

thus becomes a set, the surface of a sphere centered at the moving target. Instead

of running at full speed toward the target, sensors will now perform steepest descent

over a smooth artificial landscape in which obstacles are regions of high elevation and

the target sits surrounded by an area of depression. This approach—while adhering to

the same principle of closing the distance as quickly as possible—is likely to trade-off

some performance for safety and analytically established convergence properties. Yet

this path planner is able to provide analytic feedback controller that provides smooth

trajectory towards the moving target while avoiding obstacles. This chapter shall show

how to construct such controller, why the controller is applicable to real robot and why

it guarantees obstacle avoidance.

4.1 Problem Statement

Let the trajectory of sensor i, denote xi ∈ R
n, n ∈ {2, 3}, be governed by the

single integrator model: ẋi = ui, ui ∈ R
n. In a sphere world introduced in Section 2.5,

find a controller ui that guarantees the sensor i converge to a set ‖xi − xt(t)‖ = rt,

where xt(t) is a smooth time varying trajectory in R
n, from almost everywhere in the

sphere world.
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4.2 Navigation Function Construction

For sensor i at position xi, the goal function that the potential field attempts

to minimize takes the form

Ji(xi, t) = (‖xi − xt(t)‖2 − r2t )
2 .

It can be shown that Ji has two distinct sets of critical points, one isolated point at

xt which is a local maximum, and a manifold of local minima on the boundary of the

sphere Bxt(rt) defined by ‖xi−xt(t)‖2− r2t = 0. Define Bxt(δt) as a (small) ball around

xt with radius 0 < δt < rt. It shall be shown later that as long as initial conditions are

rt away from xt, the stated controller provides convergence to ∂Bxt(rt).

So far the sensors have been treated as point masses (negligible volume); the

possibility of them colliding with each other is therefore ignored and steering them

away from environment obstacles is the main focus of the motion planner design.

With obstacle function β introduced in Section 2.5 and the objective function

J defined above, the following navigation function is constructed with tuning constant

k > 0:

ϕi(xi, xt) =
Ji(xi, xt)(

Ji(xi, xt)k + βi(xi)
)1/k . (4.1)

The next section shows that using this potential function, a feedback controller can be

constructed to drive any robot with single integrator dynamics to our moving goal set.

4.3 Navigation Function Controller: Convergence

The proposed controller can drive a single integrator robot to the time varying

set from within workspace except starting inside the zero measure attraction region of

saddles.

Theorem 4.3.1 Given that the workspace is P valid, for any xt, there exists a positive

value N(xt) such that for every k ≥ N(xt), the function

ϕi(xi, xt) =
Ji(xi, xt)(

Ji(xi, xt)k + βi(xi)
)1/k (4.2)
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is such that all critical points other than those in ∂Bxt(rt) are either nondegenerate

with attraction regions of measure zero or in Bxt(δt), and the gradient field generated

by ∇xi
ϕi has ∂Bxt(rt) as the only limit set with non-zero measure attraction region

outside Bxt(δt).

Proof The fact that outside Bxt(δt), ϕi has only local minima on target set ∂Bxt(rt),

and that all other critical points are non-degenerate (saddle) with measure zero attrac-

tion, is established through the series of Propositions A.0.1 through A.0.7 stated and

proven in the Appendix.

There are some practical considerations related with the application of a bang-

bang controller like (3.17) within a constrained environment, especially when it is

undesirable for sensor platforms to collide with their target at maximum speed. Even

when the system’s manifold of attractors is set at a safe distance rt away from the

target, flowing along the direction of the negated gradient of (4.2) at full speed is

certain to result in overshoot and oscillatory behavior in the neighborhood of the

attracting set. The sensors’ approach to this goal set needs to be fast but gradual.

For these reasons, given Theorem 4.3.1, a relaxation on (3.17) for implementation in

constrained environments in the following form is proposed

u◦
i = −c

∇xi
ϕi

‖∇xi
ϕi‖+ ξ

− (∇xtϕ
ᵀ
i ẋt)

∇xi
ϕi

‖∇xi
ϕi‖2 , (4.3)

for some constants c < umax, and ξ > 0.

Theorem 4.3.2 The closed loop system (3.13)–(4.3) converges to the set {xi ∈ R
3 :

Ji(xi, xt) = 0}, from almost everywhere in {xi ∈ R
3 : βi(xi) > 0, xi /∈ Bxt(rt), ‖xi‖ <

ρ0} given that in (4.2), k > supxtN(xt), where supremum is taken over all possible

values of xt.

Proof The closed loop system is time-varying due to xt(t). The proof is thus based

on Barbalat’s lemma using function ϕi. The aim is to show that limt→∞ ϕ̇i = 0.
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First note that ϕi ≥ 0. Then expand ϕ̇i and plug (4.3) to verify that

ϕ̇i = −c
‖∇xi

ϕi‖2
‖∇xi

ϕi‖+ ξ
≤ 0 . (4.4)

So limt→∞ ϕi exists and bounded. Thus according to Barbalat’s lemma, proving that

limt→∞ ϕ̇i = 0 reduces to showing that ϕ̇i is uniformly continuous in t, which can be

ensured if ϕ̈i is bounded. Toward this end note that

ϕ̈ = −c
ξ + 1

2
‖∇xi

ϕi‖
(‖∇xi

ϕi‖+ ξ)2
d‖∇xi

ϕi‖2
dt

,

and is bounded if
d‖∇xiϕi‖2

dt
is. Indeed,

d‖∇xiϕi‖2
dt

= −2
∇xi

ϕᵀ
i ∇2

xi
ϕi ∇xi

ϕi

‖∇xi
ϕi‖+ ξ

− 2
∇xtϕ

ᵀ
i ẋt

‖∇xi
ϕi‖2 ∇xi

ϕᵀ
i ∇2

xi
ϕi ∇xi

ϕi

+ 2∇xi
ϕᵀ ∇xi

(∇xtϕi) ẋt .

With ϕi being a smooth function, its first and second partial derivatives are bounded on

the compact subset of R3 where βi ≥ 0. The second term does not explode because the

expression
∣∣∇xiϕ

ᵀ
i [∇2

xi
ϕi] ∇xiϕi

‖∇xiϕi‖2
∣∣ admits an upper bound equal to the maximum eigenvalue

of the Hessian of ϕi—which is finite. Therefore, since ‖ẋt‖ < Vt,
d‖∇xiϕi‖2

dt
is bounded,

and ϕ̇i is uniformly continuous, it follows that limt→∞ ϕ̇i = 0. Then (4.4) implies

that limt→∞ ‖∇xi
ϕi‖ = 0, which in turns suggests—based on Theorem 4.3.1 and k >

supxtN(xt)—that with time xi → {x ∈ R
3 : Ji(x, xt) = 0} from almost all initial

conditions in {xi ∈ R
3 : βi(xi) > 0, xi /∈ Bxt(rt), ‖xi‖ < ρ0}, notice that as long as

xi(0) /∈ Bxt(0)(rt), it will always be xi(t) /∈ Bxt(t)(rt) due to ϕ̇ ≤ 0 and ϕ reaches

minimum at ∂Bxt(t)(rt). Since the workspace is valid, supxt
N(xt) is always finite.

4.4 Navigation Function Controller: Boundedness

The navigation function controller is proved to be bounded when the robot

is away from unstable critical points. Control law (4.3) is essentially a modulated

(negated) gradient following tracking controller with a feedforward to compensate for

target motion. It can be shown that if supt≥0 ‖ẋt(t)‖ is sufficiently small compared to
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umax, then (c, ξ, ε) can be always be chosen so that both (a) ‖u◦
i ‖ ≤ umax for all positions

that βi(xi) > 0 except for a small region around saddle points, and (b) (gradual)

convergence to the surface of the ball of radius rt around the target is analytically

established. The former claim on the boundedness of (4.3), relates to lower bounding

‖∇xi
ϕi‖ which appears in the denominator of the second term. This term vanishes

as xi approaches one of the critical points of ϕi. For a properly tuned navigation

function, those critical points can be expected to be in a set
⋃m

j=0{xi|βij(xi) < ε} ∪
∂Bxt(rt)∪Bxt(δt). Notice that the critical point in Bxt(δt) is not reachable from outside

Bxt(rt) since the robot would converge to ∂Bxt(rt) before reaching into Bxt(δt). Under

reasonable assumptions1 the magnitude of the control input is proved to be upper

bounded.

Lemma 4.4.1 For xi sufficiently far from unstable critical points, u◦
i is bounded.

Proof Bound ‖u◦
i ‖ as

‖u◦
i ‖ =

∥∥∥∥−c
∇xi

ϕi

‖∇xi
ϕi‖+ ξ

− (∇xtϕ
ᵀ
i ẋt)

∇xi
ϕi

‖∇xi
ϕi‖2

∥∥∥∥
≤ c

∥∥∥∥ ∇xi
ϕi

‖∇xi
ϕi‖+ ξ

∥∥∥∥+ |∇xtϕ
T
i ẋt|

∥∥∥∥ ∇xi
ϕi

‖∇xi
ϕi‖2

∥∥∥∥
< c+

‖∇xtϕi‖
‖∇xi

ϕi‖‖ẋt‖

= c+
‖kβi∇xi

Ji‖
‖kβi∇xi

Ji − Ji∇xi
βi‖‖ẋt‖

= c+ (1 +
‖kβi∇xi

Ji‖ − ‖kβi∇xi
Ji − Ji∇xi

βi‖
‖kβi∇xi

Ji − Ji∇xi
βi‖ )‖ẋt‖

≤ c+

(
1 +

‖Ji∇xi
β‖

‖kβ∇xi
Ji − Ji∇xi

β‖
)
‖ẋt‖ .

The denominator ‖kβ∇xi
Ji − Ji∇xi

β‖ vanishes at critical points, i.e., unstable critical

points and the target set.

1 We need to note, however, that requiring xi to be away from saddle points cannot
be guaranteed a priori for all initial conditions; there will be a set of initial condi-
tions around the attraction regions of the unstable critical points of ϕi that generate

trajectories which cross into
{
xi : 1 +

‖Ji∇xiβ‖
‖kβ∇xiJi−Ji∇xiβ‖

≥ umax−c
max{‖ẋt‖}

}
.
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As xr is converging to the target set ∂Bxt(rt), the upper bound of ‖u◦
i ‖ becomes:

‖u◦
i ‖ < c+

⎛⎝1 +
‖∇xiβ

β
‖

‖k∇xiJi
Ji

− ∇xiβ

β
‖

⎞⎠ ‖ẋt‖ ,

and since, by valid workspace assumption, any point in the target set ∂Bxt(rt) is always

at least εt away from obstacles, ‖∇xiβ

β
‖ is upper bounded. Therefore,

‖∇xi
Ji‖

Ji
=

4‖xi − xt‖
|‖xi − xt‖2 − r2t |

xi→∂Bxt (rt)−−−−−−−→ +∞ ,

bounding ‖u◦
i ‖ around the target set and making it converge to c+ ‖ẋt‖.

If now xi is close to a unstable critical point, the control input is still bounded

by umax as long as xi satisfies

xi ∈
{
xi : 1 +

‖Ji∇xi
β‖

‖kβ∇xi
Ji − Ji∇xi

β‖ ≤ umax − c

max{‖ẋt‖}
}

.

The above can be relaxed to{
xi : ‖kβ∇xi

Ji − Ji∇xi
β‖ ≥ max{‖ẋt‖}

umax − c−max{‖ẋt‖} sup (Ji∇xi
β)
}

,

where the supremum is taken over {xi : βi(xi) > 0}. Thus, as long as xi stays suffi-

ciently far away from unstable critical points, the control input is bounded.

4.5 Conclusion

Equipped with navigation function based motion planner, a point mass sensor

can effectively track its intended target using the reference trajectory provided by (4.3).

But sensor platforms are not point masses, which leads to the next challenge discussed

in Chapter 5: to implement a low level trajectory tracking controller that adapts to

different dynamics while ensuring the convergence property of the motion planner.
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Chapter 5

ROBOTIC PLATFORM INTERFACES

Theorem 4.3.2 establishes the convergence properties of the motion controller

for platform dynamics (3.13) in the form of a single integrator. A natural question

that arises is what can be said about more complicated sensor platform dynamics.

This chapter demonstrates how the control inputs designed for the single integrator

case (4.3) can be adapted to different physical sensor platforms. In this dissertation,

this is achieved through application of standard nonlinear system analysis techniques,

including full state, or output, feedback linearization and backstepping.

In this chapter, the quadrotor model and the wheeled robot model are used to

show that with proper controller design, these two types of robot are guaranteed to

converge to the reference trajectory given by navigation function based motion planner.

5.1 Problem Statement

The quadrotor’s state dynamics is governed by (5.1). The wheeled robot’s state

dynamics is governed by (5.6). The goal is to design controllers for the quadrotor and

the wheeled robot so that the onboard sensor’s planar velocity (ẋ, ẏ) converges to the

reference velocity described by (ẋdes, ẏdes) � u◦
i ∈ R

2, where u◦
i is defined in (4.3).

5.2 Quadrotor

5.2.1 Dynamics Model

The quadrotor used in our experiments is an AscTec Hummingbird, which comes

with a thrust power controller that takes in unitless numerical commands that range

from 0 to 1 representing the power output of the Hummingbird’s rotors, with 1 cor-

responds to maximum rotor speed. Yet the actual force generated is more relevant to

43







world coordinates, as shown in Figure 5.2.

R =

⎡⎢⎢⎢⎢⎣
cosψ cos θ − sinφ cosψ sin θ + cosφ sinψ − cosψ sin θ cosφ− sinφ sinψ

− cos θ sinψ sinφ sinψ sin θ + cosφ cosψ sinψ sin θ cosφ− sinφ cosψ

sin θ cos θ sinφ cosφ cos θ

⎤⎥⎥⎥⎥⎦ .

5.2.2 Acceleration Controller Design

The linear acceleration controller that controls the quadrotor’s acceleration in

Xw, Yw, and Zw directions through changing its attitude and thrust force can be

obtained by first rearranging the (5.1):⎡⎢⎢⎢⎢⎣
−F sin θ cosφ

F sinφ

F cos θ cosφ

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
mẍ cosψ −mÿ sinψ

−mẍ sinψ −mÿ cosψ

mz̈ +mg

⎤⎥⎥⎥⎥⎦ . (5.2)

Then the linear acceleration controller (5.3) can be solved from (5.2). It supplies Euler

rotation angles (φ, θ, ψ) and thrust force F to the quadrotor’s position dynamics (5.1)

to achieve desired (ẍ, ÿ, z̈) in world coordinates, assuming that the factory-shipped

attitude controller realizes the attitude and thrust fast enough so that (φ, θ, ψ, F ) are

achieved almost instantaneously:

F = m
√
(z̈ + g)2 + ẍ2 + ÿ2 , (5.3a)

θ = arctan 2(−ẍ cosψ + ÿ sinψ, z̈ + g) , (5.3b)

φ = arctan 2((−ẍ sinψ − ÿ cosψ) cos θ, z̈ + g) . (5.3c)

Notice that there is no need to control the yaw angle ψ if only the accelerations in

Xw, Yw, Zw directions need to be regulated. Thus the rotation rate ψ̇ is fixed to be

zero, and the in flight measurement of ψ is used to complete the controller (5.3).
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5.2.3 Planar Trajectory Controller

In this section, only the planar motion of the quadrotor is considered while the

quadrotor’s motion in Z direction is controlled independently. Using linear accelera-

tion controller (5.3a), (5.3b), the planar position dynamics xi ∈ R
2 of the quadrotor

platform i can be controlled in the form of a double integrator with input wi ∈ R
2

ẍi = wi , (5.4)

with wi = (ẅxi
, ẅyi) is supplied to (5.3a), (5.3b). A backstepping controller is then

designed to ensure ẋi converge to a desired velocity reference u◦
i = u◦

i (xi, xt, ẋt) given by

the potential field gradient (4.3) constructed in Chapter 4. (Note that similar control

architectures have been used for convergence to fixed points [3,35].) It follows that for

a choice of parameter kd > 0, the input to (5.4) can be set as

wi = u̇◦
i −∇xi

ϕi − kd[ẋi − u◦
i ] . (5.5)

Proposition 5.2.1 For the closed-loop system (5.4)–(5.5), convergence of ẋi to u◦
i is

guaranteed.

Proof First write the error in the reference velocity as ev = ẋi − u◦
i , and express the

closed-loop system in the form

ẋi =u◦
i + ev ,

ėv =wi − u̇◦
i .

Consider now the (time-varying) function

V (xi, xt, ev) = ϕi(xi, xt) +
1

2
eᵀvev

and compute

V̇ = ∇xi
ϕᵀ
i (u

◦
i + ev) +∇xtϕ

ᵀ
i ẋt + eᵀv (wi − u̇◦

i )

= −c
‖∇xi

ϕi‖2
‖∇xi

ϕi‖+ ξ
+ (∇xi

ϕi + wi − u̇◦
i )

ᵀ ev .
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Let the control input wi to (5.5) yields

V̇ = −c
‖∇xi

ϕi‖2
‖∇xi

ϕi‖+ ξ
− kde

ᵀ
v ev .

Application of Barbalat’s lemma along lines parallel to those in Chapter 4 com-

pletes the proof by showing that ∇xi
ϕi and ev converge to zero with time. The only

requirement additional to the treatment of Chapter 4 is that ev has to be bounded;

this is however, ensured from the negative semidefiniteness of V̇ and the positive defi-

niteness of V with respect to xi and ev.

5.3 Wheeled Robot

5.3.1 Kinematic Model

The iCreate is a wheeled ground mobile robot manufactured by iRobotTM (Fig-

ure 5.3). It is essentially a differential drive robot that can be modeled using unicycle

kinematic constraints taking linear velocity v and angular velocity ω as input:

ẋr = v cos θr , ẏr = v sin θr , θ̇r = ω . (5.6)

5.3.2 Position Controller

A Geiger counter is mounted on top of the robot to collect radiation measure-

ments. It is the position of this sensor that should be driven towards the target. The

geometric setup between the sensor and robot is shown in Figure 5.4.

The sensor position can be described as xs = rs cos θr+xr and ys = rs sin θr+yr,

Its kinematics is governed by:

ẋs = v cos θr − rsω sin θr ,

ẏs = v sin θr + rsω cos θr .
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Figure 5.3: The iCreate robot with a Geiger counter mounted on top of it.

Thus in order to drive the sensor at a specific speed described by (ẋdes, ẏdes), iCreate

should be driven with velocity (v, ω):

v = ẋdes cos θr + ẏdes sin θr ,

ω =
1

rs
(−ẋdes sin θr + ẏdes cos θr) .

(5.7)

Using controller (5.7), the sensor can be driven as if it was a single integrator.

Thus the navigation controller (4.3) can be directly applied.

5.4 Conclusions

By designing the lower-level controllers (5.3), (5.5) and (5.7), the navigation

function based motion planner proposed in Chapter 4 can be implemented on robots
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Chapter 6

SIMULATION RESULTS

Under certain simplifying assumptions, sensor mobility can be optimally utilized

in the context of networks of radiation counters to boost detection performance in low-

rate radiation activity detection scenarios. In the problem at hand, the suspected

source is mobile, and sensors have knowledge of its position and velocity. Analytic

optimal control solutions point to motion coordination strategies that tend to minimize

the distance between sensor and suspected source as quickly as possible, resembling

bang-bang minimum-time solutions to optimal control problems.

This optimal radiation detection strategy proposed in Chapter 3 uses the Cher-

noff bounds on error probabilities to evaluate the performance of radiation detection,

which is due to the difficulty in obtaining the analytic expression for PFA and PM . Yet

these values can be numerically estimated using Monte-Carlo simulations. In this chap-

ter, a comparison between the Chernoff bounds and Monte-Carlo estimates reveals that

the slopes of the curves of both bounds and Monte Carlo probability estimates are con-

sistent, indicating that using the bounds as a proxy for the true—but unknown—error

probabilities may not significantly affect the performance of optimal controllers.

Taking the analytic, closed-form solutions obtained for sensor motion in un-

constrained environments, motion planning strategies are developed for sensor coor-

dination and navigation in obstacle environments with bounds on actuation effort in

Chapter 4. The motion planning methodology is based on gradient descent along po-

tential fields generated by a special type of time-varying navigation functions. The

resulting control laws are feedback-based and reactive to the source’s motion, ensuring

asymptotic tracking of the mobile source in addition to obstacle avoidance. The control

strategy is tested in simulation on a two-dimensional detection scenario regarding its
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boundedness in Section 6.2, and the detection efficiency is confirmed through Monte

Carlo analysis in Section 6.3.

6.1 Chernoff Bounds: Monte Carlo Validation

To provide some indication regarding the ability of the bounds derived in (3.8)

and (3.7) to capture the corresponding error probabilities, this section compares these

bounds against Monte-Carlo estimates of PFA and PM defined by (2.1). The compari-

son is performed in the context of the following example. This example is from [50].

1 2 4

moving source

sensor array

3

Figure 6.1: A planar sensor array detecting a moving source. Thick dashed arrows
mark gamma rays emitted by the source, while thin dashed arrows are
background.

Consider k = 4 identical sensors (see Figure 6.1). The sensors, stationary at

planar coordinates (in m) (0, 0), (0.5, 0), (1.5, 0), (2.5, 0), are labeled 1 through 4 re-

spectively. A source of intensity a = 120 cpm is initialized at coordinates (3.0, 0.5) m,

and starts moving parallel to the x axis, in a negative direction, from sensor 4 toward

sensor 1, with a constant speed of 0.03 m/s. The background is β = 10 cpm and the

decision time is T = 100 s1.

1 The values for these calculations are chosen to match the experimental parameters
of Section 7.5; they are not to be understood in themselves as typical in a real nuclear
detection scenario, although their relative scale can produce computational results that
are—see [29].
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To generate samples of a inhomogeneous Poisson process, the method of thinning

[39, 51] is used. In more detail, to simulate a Poisson process with time-dependent

intensity λ(t), a constant intensity λd > 0 which dominates λ(t) should be set first

so that 0 ≤ λ(t) ≤ λd for all t ∈ [0, T ]. Assumptions 2.1.2 and 2.1.3 ensure that

a suitable λd can be found. Thus a sample path of a homogeneous Poisson process

with intensity λd can be generated. Suppose that T ∗
1 , T

∗
2 , . . . , T

∗
n are the event times

(corresponding to jumps of the Poisson process) over (0, T ]. Each event time T ∗
j is

retained with probability λ(T ∗
j )/λd and deleted with probability 1 − λ(T ∗

j )/λd. The

retained event times now correspond to a sample path of a Poisson process with time-

dependent intensity λ(t) [39], [51, Theorem 3]. Notice that in our problem, λ(t) will

be of one of the two forms βi(t) and μi(t)βi(t).

With this procedure at hand for generating samples of inhomogeneous Poisson

processes, PFA = P0(LT ≥ γ) and PM = P1(LT < γ) for LT computed as in Theorem

2.2.1 can be estimated for different values of the threshold γ > 0. To estimate the

probability of false alarm PFA, let

Aγ � {ω ∈ Ω : LT (ω) ≥ γ} .

n samples ω1, ω2, . . . , ωn are drawn from Ω according to the probability measure P0.

This corresponds to generating n realizations of the (k-dimensional) process Nt =

(Nt(1), . . . , Nt(k)) over time t ∈ [0, T ], where the Nt(i)’s are independent Poisson

processes with intensities given by β. For each such realization, the likelihood ratio

LT = LT (ωi) can be computed as in Theorem 2.2.1 and the probability PFA = P0(Aγ)

can be approximated by
1

n

n∑
i=1

1Aγ (ωi) . (6.1)

Similarly, to estimate the probability of miss let

Ac
γ � Ω \ Aγ = {ω ∈ Ω : LT (ω) < γ} .
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n samples ω1, ω2, . . . , ωn are drawn from Ω, now according to the probability measure

P1. Equivalently, n realizations of Nt = (Nt(1), . . . , Nt(k)) over t ∈ [0, T ] are gen-

erated, where the Nt(i)’s are independent Poisson process with intensities μi(t)βi(t).

Computing LT = LT (ωi) for each realization, PM = P1(A
c
γ) is estimated by

1

n

n∑
i=1

1Ac
γ
(ωi) . (6.2)

To ensure that the estimates in (6.1), (6.2) are sufficiently close to P0(Aγ),

P1(A
c
γ) with high enough probability, n (number of samples) should be large enough.

Indeed, for ε, δ ∈ (0, 1), taking n ≥ 1
2ε2

ln 2
δ
ensures [73] that the quantities in (6.1),

(6.2) estimate the corresponding probabilities to accuracy ε > 0 and confidence 1− δ:

P0

⎛⎜⎝
∣∣∣∣∣∣ 1n

n∑
i=1

1Aγ (ωi)− P0(Aγ)

∣∣∣∣∣∣ ≤ ε

⎞⎟⎠ ≥ 1− δ ,

P1

⎛⎜⎝
∣∣∣∣∣∣ 1n

n∑
i=1

1Ac
γ
(ωi)− P1(A

c
γ)

∣∣∣∣∣∣ ≤ ε

⎞⎟⎠ ≥ 1− δ .

For instance, to approximate the probabilities to within 1% (corresponding to ε = 0.01),

with a confidence of 95% (corresponding to δ = 0.05) 18 445 runs are needed.

Figure 6.2 compares (the Monte Carlo estimates of) the error probabilities PFA

and PM with the corresponding Chernoff upper bounds, for various values of the thresh-

old. For example, based on Figure 6.2, and for an acceptable false alarm rate of less

than 5%, one can choose a threshold γ by interpolating the “Monte Carlo PF” line

between log10 γ = −2 and log10 γ = 0 and the error in approximating this probabil-

ity using the Chernoff bound for the same threshold is in the order of 20%. Clearly,

for both PFA and PM , the Chernoff bounds and Monte Carlo estimates tend to agree

around the values of 0 and 1 (the two ends of the horizontal axis). Due to the constraint

imposed on the probability of false alarm (typically, far below 0.1), realistic instantia-

tions of these bounds are more likely to occur at values of PFA close to zero, suggesting

large thresholds, further to the right than the depicted scale in Figure 6.2. Due to nu-

merical difficulties in obtaining reasonable estimates using the Monte-Carlo method,
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the probability estimates could not be easily extended to this part of the threshold

domain. Yet extrapolating from the graphs of the figure indicates that the Chernoff

bound for the probability of false alarm will further close the distance between itself

and the actual false alarm probability while maintaining its decreasing trend. But,

what is more important in the context of sensor mobility optimization is the fact that

the slopes of the curves of both bounds and Monte Carlo probability estimates are con-

sistent, indicating that using the bounds as a proxy for the true—but unknown—error
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Figure 6.2: Comparison between our Chernoff bounds and Monte Carlo simulation
estimates of the error probabilities —false alarm (PF), and probability
of miss (PM)—for a range of different likelihood ratio thresholds. The
Monte Carlo probability estimates are shown in piece-wise linear curves,
while Chernoff bounds curves are smooth. Solid curves denote estimates
on the probability of false alarm, and dashed curves correspond to prob-
ability of miss estimates. The 95% confidence intervals are marked over
Monte Carlo estimate points. The emission rates for source and back-
ground are taken equal to the ones used in Section 7.5: a = 120 cpm for
the source, and β = 10 cpm for background. These activity numbers may
be artificial, selected to match our (slow) emission rates of our emulation
apparatus of Section 7.5, but their ratio matches the order of magnitude
of intensities in real-life detection scenarios [22].
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probabilities may not significantly affect the performance of optimal controllers.

6.2 Boundedness of the Navigation Function Based Motion Planner

Consider a 2-and-a-half dimensional environment, the projection of which on

the 2 dimensional horizontal plane gives the planar workspace topology of Figure 6.3.

In this environment, a simulated point quadrotor is steered to track a point target

moving counterclockwise along a circular path around the origin with angular velocity

π
5
rad per second. The thin solid (blue) path in Figure 6.3 corresponds to the simulated

quadrotor’s trajectory. The target initially starts at point (x, y) = (0.15, 0) m, and in

the scenarios shown in Figure 6.3, it is assumed that the target’s position and velocity

are known exactly. The minimum safe distance is 0.05m.
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Figure 6.3: Simulation: a target is circling the origin along a thick red dashed path,
and a quadrotor starting from behind an obstacle follows a thin blue solid
path as it converges to its target and follows it around in circles. Here,
the path of the quadrotor is marked with a thin solid blue line, while the
motion of its target is shown in thick dashed red.
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Lemma 4.4.1 warns about the existence of trajectories attracted to a neighbor-

hood of saddles, which is illustrated in Figure 6.4, showing that the attraction basin

is typically of small measure. Indeed, Figure 6.4 marks initial positions from which

trajectories cross into{
xi : 1 +

‖Ji∇xi
β‖

‖kβ∇xi
Ji − Ji∇xi

β‖ ≥ umax − c

max{‖ẋt‖} = 10

}
.

The marked region shrinks as umax is increased.
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Figure 6.4: A graph showing the feasible region (white) and regions requiring velocity
references that are 10 times higher than target velocity (black) inside the
workspace for a point target following circular trajectory centered at
origin with radius r = 0.15 and angular velocity ω = π/5 that starts at
point (0.15, 0).

6.3 Simulated Radiation Detection With Mobile Sensors

A 2 1
2
dimensional space simulation scenario (the environment geometry is in-

variant along the third spatial coordinate) is used to test the control law. Its two-

dimensional projection is depicted in Figure 6.5. Sensor and source physical volumes

are neglected. The target is following a sinusoid trajectory starting initially at point
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(x, y) = (15, 0)(m). Its x velocity is constantly 0.3π(m/s) and y velocity is given as

0.3π cos( π
50
t)(m/s). It is assumed that the target’s position and velocity is known to

all sensors.
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Figure 6.5: A 2D simulation scenario. A source carrying target is circling the origin
and its path is shown as a thick (red) curve. Four mobile sensors start
moving from initial positions behind disk-shaped obstacles, and navigate
along the dashed-line paths toward the source’s neighborhood following
the gradient field of a time-varying navigation function. Sensors collect
measurements for a time window of two minutes before they make a
decision as to whether the target is radioactive.

Applying control law (4.3) to each sensor dynamics (3.13), results in the motion

behavior shown in Figure 6.5. By closing the distance between themselves and the

target while navigating their cluttered workspace, they increase their SNR of their

radiation measurements. A detection time window T = 130 s is considered, after

which sensors are called to make a decision based on their measurements as to whether

the target they were tracking was radioactive.
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Figure 6.6: Distance between sensors and target. Our simulation test bed refers to
mobile sensors as quads, envisioning quadrotors equipped with Geiger
counters.

The target is indeed radioactive, with an activity of a = 2.4×106 (Poisson mean)

counts per minute, while the background radiation is taken to be at a level of b = 10

counts per minute. Despite this large difference, the sensor geometric characteristics

as expressed by the cross-section coefficient χ = 10−4m2 combined with the inverse

square distance effect render the average perceived source activity νi (see (3.1)) at the

sensor’s location comparable to background.

Along these paths, 2 sample sets of 73 778 i.i.d. two-minute histories of simulated

radiation measurements are recorded. The target is set to be radioactive in one set and

benign in the other. For each sample, a binary hypothesis test 2.2.1 is performed with

a threshold of γ = 3.4, designed to guarantee a false alarm rate of less than 1% [50].

Monte Carlo methods empirically estimate the probability of false alarms and correct

detection at an accuracy level of ε = 0.005 and confidence of 95% [74]. These estimates
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are 0.12% for the false alarm, and 99.42% for the detection rate.

6.4 Conclusion

The numerical difference between the Chernoff bounds and the actual probabil-

ity of errors in LRT is shown in Section 6.1, which suggests that in the region of low

probability of false alarm rate, the value difference between Chernoff bounds and Monte

Carlo estimated probability of errors is not large. It is also convinced that except for

a limited set of initial conditions, the proposed navigation function based controller

is always bounded and converge to the desired target set. The simulated radiation

detection task is also a success, which paves way for conducting such experiment on

physical platforms with real Geiger counters and radioactive source.
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Chapter 7

EXPERIMENTAL VALIDATION

The theory for optimal radiation detection, and the controllers that are adapt-

able to different robot platforms are proposed in the previous chapters. The effec-

tiveness of the optimal strategy, the stability and the boundedness of our controllers

are shown in simulation. In this chapter, it is validated through experiments that us-

ing mobile sensors enables detecting mobile weak sources that would otherwise pass

stationary radiation counters unnoticed.

The robot control system that supports our experiments with radiation detection

using mobile sensors is first introduced. The overview of the experiment system is

provided to give a big picture on how different components including robots and sensors

are bind together. Then a deeper look into the quadrotor controller’s state transitions

explains the switching logic between navigation function controller and Proportional-

Integral-Derivative (PID) controller, which helps achieving better flight performance

in terms of stability and accuracy.

The effectiveness of mobile sensors in radiation detection tasks is demonstrated

by two sets of experiments. The laser emulated radiation detection experiment is de-

signed to compare the difference between using static sensors and mobile sensors. In

this experiment, a laser device is used to emulate radiation emission process. With

this laser device, experiments can be safely conducted to validate our radiation detec-

tion method while avoiding the usage of strongly radioactive materials that may be

hazardous. The detection performance of using four static sensors is compared to that

of using three static sensors combined with one mobile sensor. It is shown that the

additional mobile sensor greatly improves detection rate by significantly increasing the

signal to noise ratio. Convinced that mobile sensor is the key to detecting low intensity
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radioactive materials, an experiment is designed to detect Vaseline beads using mobile

robots carrying Geiger counters, which are extremely weak radioactive sources. Our

tests showed that the radiation intensity read from these beads using Geiger counter

drop to 10% of background radiation level when observed 15 cm away. Yet detecting

the presence of these beads mounted on a crawler robot is made possible using one

ground robot and one aerial robot.

7.1 Robot Control System

The radiation detection experiment described in Section 7.6 validates that even

a weak mobile source can be detected using mobile sensors. Two robots are used in

that experiment: one ground wheeled robot iCreate from iRobot, one aerial quadro-

tor Hummingbird from AscTec. Previous chapters cover the theoretical side of the

controller design that drives these two robots towards the target set while avoiding ob-

stacles. This section covers the actual implementation of these controllers on physical

platforms, which requires integration of multiple software and hardware systems.

The experiments are conducted indoor without GPS guidance. Thus the local-

ization task is taken care of by Vicon motion capture system, which provides feedback

terms to our navigation controller implementation. Extra sensors including a camera

and a Geiger counter are mounted on Hummingbird to enable vision based target track-

ing and collecting radiations counts respectively. A portable computer, Raspberry Pi,

is loaded on Hummingbird to process and transmit these sensory data. iCreate carries

another Geiger counter to gather more radiation statistics along with the Humming-

bird during the detection period, which would allow more accurate determination of

the target’s radioactive nature.

The expected experiment procedure would be:

1. Hummingbird starts tracking the target and shares the target position with iCre-

ate.
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2. With target information, both robots can get into close range of target while

avoiding obstacles using navigation function-based controller.

3. Use Geiger counters mounted on the two robots to collect radiation readings

during the detection period.

4. Record all necessary information for radiation detection procedure listed in the

end of Chapter 3.

5. Run data processing after collecting all the data and decide whether the target

is radioactive or not.

Now to bind all the hardware together to achieve this expected experiment pro-

cedure, a robot control system is developed, and its layout is illustrated in Figure 7.1.

Looking at the structure of this system layout, it is apparent that the Robot Operating

System (ROS) nodes (green blocks) are the main structures that support communica-

tion between software and hardware, and between different subsystems such as robots,

PC, Vicon motion tracking system, etc. A quick introduction to ROS will show the

advantage brought by adopting it as the foundation of our robot control system.

ROS is a widely used open source robot operating system that provides hardware-

to-software interfaces for commonly used robots and sensor systems, and communica-

tion infrastructure between distributed processes deployed on multiple platforms. The

basic elements in ROS are nodes, which can be considered as individual programs. A

ROS network consists multiple ROS node and a ROS master-node. The ROS master-

node provides basic functions in ROS and must be initialized before any other nodes

are created. For our application, the master node is created on the Master PC. All the

green blocks in the Figure 7.1 are customized ROS nodes that are running in its own

thread.

The ROS system provides multiple methods for these nodes to exchange infor-

mation with each other. One of the most commonly used interfaces is “topic”. This

is a powerful tool that enables us to easily link different components of the robot

63





system together without worrying about the network configurations or data transmis-

sion protocols. For example: in our application, the Visual Tracker node needs to

obtain the pictures taken by the camera from the Raspberry Pi Camera Driver node

through remote communication. So the Raspberry Pi Camera Driver node publishes

a topic called /camera/image/compressed and the Visual Tracker node subscribes to

the same topic. The ROS master node will then connect the publisher (Raspberry Pi

Camera Driver node) with the subscriber (Visual Tracker node) and image data can

be transmitted through this topic using network interface (in this case, WIFI). ROS

also allows multiple nodes publishing and subscribing the same topic simultaneously,

a feature that enables information sharing among several nodes.

Another great advantage of using ROS is that it has a widely spread user base

due to its open source nature. Researchers and engineers all over the world are con-

tributing to the ROS environment, providing numerous off-the-shelf software packages

that can be utilized in our application. Specifically in our system layout, the iCre-

ate Driver, the Hummingbird Driver, the Raspberry Pi Camera Driver, and the Vicon

Driver are all available as open source packages. Then the only hardware driver I need

to develop myself is the Geiger Counter Driver. This advantage of using ROS packages

saves a huge amount of development time and allows us to focus on our interest: the

iCreate Controller, the Hummingbird Controller and the Visual Tracker.

If one looks closely at the robot controller nodes, it will be clear that the iCreate

controller and the Hummingbird controller have a lot in common. This reflects the

advantage of our navigation controller design: Our higher level navigation controller

can be easily adopted by different robots through their lower level controller layer.

Yet, controlling Hummingbird still requires slightly more sophisticated control logic

that was not shown in the system layout for the sake of compactness of the layout.

For a quadrotor like Hummingbird, the Navigation Controller is more suitable for

tracking continuous trajectory, whereas PID controller provides better stability when

the quadrotor is driven from point to point, which are close to each other. In order

to achieve successful flight mission, a combination of Navigation Controller and PID
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keep hovering over target. This strategy provides relatively more stable motion but it

does not consider obstacle avoidance during tracking. Yet assuming that the target will

not run into obstacles by itself, the quadrotor can be allowed to keep tracking target

without worrying about collisions. This route is taken for our radiation detection using

multiple mobile robots experiment in Section 7.6 for its better flight stability.

The landing schedule for the quadrotor consists three blocks: Ascend, Navigate

to base, and Land. During the tracking mission, the quadrotor usually operates at a

very close range to other robots including the target robot and the other tracking robot

iCreate. When the detection task comes to an end, it would be safer to first invoke the

PID controller to lift the quadrotor to a higher altitude, which is done by the Ascend

block, so that it has more space to maneuver. Once ascended, quadrotor is driven to

the point above the landing base position using navigation controller (Navigate to base

block). Upon reaching the flight area just above the base, the quadrotor would then

lower itself using PID controller to a point < 5 cm above ground, an altitude at which

the quadrotor can then shutdown its motors and land safely (Land block).

7.3 Target Tracking Using Visual Feedback

As pointed out in our controller design, obtaining target position feedback is the

prerequisite for close range radiation detection. In order to do so, a camera system is

mounted on the quadrotor to take advantage of its overhead field of view. Each frame

taken by the camera was sent back by the quadrotor’s onboard computer Raspberry

Pi and processed on the Visual Tracker ROS node hosted on Master PC. The Visual

Tracker would figure out whether a target robot is in the field of view, where is the

target with respect to the center of image frame and how much the target had moved

from frame to frame. This refined information is then passed to the Hummingbird

Controller. The Hummingbird Controller will deduce where the target is in the global

frame and share this information with iCreate Controller.
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7.3.1 Quadrotor Camera System

The onboard camera system consists of three components: a portable computer

Raspberry Pi, a camera break out board, and a custom made landing support to

provide mounting space for the Raspberry Pi and camera.

The red plastic parts in Figure 7.3 are components of the landing support. The

joints between the landing supports and quadrotor are made into separate parts to

connect the landing support to quadrotor base, instead of simply extend the quadrotor

base to ground as a whole piece. Because these joints are constantly under impact

during landing and require occasionally replacement. Instead of reproducing the whole

extended landing support, only the broken joints need to be replaced.

The Raspberry Pi used here works as a transmitter that passes the camera

images back to the more powerful workstation through wireless network. It is also

used to gather gamma-ray counts from Geiger counter mounted along with the camera.

The Raspberry Pi is powered through a 2-Cell Lithium Polymer (LiPo) battery and a

5V voltage regulator. The LiPo battery is favorable here for its high energy density

and high current output, which are advantageous for our task since the payload on

Hummingbird needs to be reduced as much as possible while being able to power up

a small computer, a camera, a Geiger counter and a WIFI adapter. The wireless data

transmission is especially power hungry when large amount of data such as compressed

images are passed at relatively high frequency (∼10 frames per second (FPS)).

The camera breakout board (Raspicam) is an off-the-shelf product designed

to be used together with Raspberry Pi. It supports up to 1920 × 1080 resolution

image recording at speed up to 90 FPS. However to strike for a balance between the

wireless network bandwidth and the image quality, images are captured with resolution

320 × 240 pixels at 10 FPS in experiments. Also in Figure 7.4, Notice that since the

camera is off center of the quadrotor with a 45 degree angle between the camera image

coordinate’s x axis and the quadrotor’s body coordinate’s x axis. When combining

the local information from the camera and the global information from the Vicon

system, the transform between the camera coordinate system and Hummingbird body
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Figure 7.3: The sensor assembly is mounted on the customized 3D-printed landing
support designed for Hummingbird. From the top side view, the Rasp-
berry Pi, which is a miniature computer, is sitting in the center of the
landing support. The Hummingbird carries a 2 cell LiPo battery to power
up the Raspberry Pi and its attached sensors.

coordinate system must be treated carefully.

7.3.2 Image Transmission and Processing

The ROS Groovy is installed on Raspberry Pi along with a camera support

ROS package. The camera support package extracts images frame by frame from the

Raspicam and send them out using ROS topic interface through wireless network.

On the master computer, a Visual Tracker ROS node is created to process these

incoming images. The ROS node stores an image of the target crawler robot a priori

(Figure 7.5), which serves as a template of the target robot. Because the R-G-B values
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Figure 7.4: View on the bottom side of the landing support. The camera is fixed to
the support to capture images looking downwards from the quadrotor.
The Geiger counter’s detection tube is placed next to the camera lens.
5 volts power regulator is used to regulate the voltage supplied by the
LiPo battery (6.0 − 8.4 volts) and provide consistent 5 volts voltage to
the Raspberry Pi board.

of the received image are all correlated with the amount of light hitting the object. its

hue value is first extracted by converting RGB color to Hue Saturation Value (HSV)

representation before processing the image for target tracking. This conversion can

reduce the influence of lighting and saturation while keeping the color characteristics.

In the next step, the program would compare the received image (Figure 7.6)

with the template to find out whether the target robot is in the current field of view. To

perform such comparison in limited time period (0.1 second when images are coming

in at 10 FPS), the incoming images are first shrank to 160 × 120 pixels and then
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Figure 7.5: The template image pre-stored in the program, providing prior knowledge
for detecting the presence of target robot.

the features in both template and incoming images are extracted and matched. The

concept image feature intuitively corresponds to distinguishable region of an image that

can be numerically detected and compared. The feature detector and extractor applied

to these images is the Speeded Up Robust Feature (SURF) algorithm implemented in

OpenCV library. SURF is the state-of-art image feature detector and extractor and it

is invariant to scale and rotation, and sufficiently fast to handle our small size images

at 10 FPS.

The target robot is determined to be within the image frame if the matched

features (linked dots in Figure 7.7) exceed a certain amount. The target’s position

in the camera coordinates is then computed as the center of mass of all matched

feature points. Although there are quite a bit mis-alignment between the template and

incoming frame, these mis-alignment won’t affect our computation of target position

because the matching transform are not used to calculate the pose of the target. The

matching result are solely used to extract points in the incoming image that may belong

71







moving counterclockwise along a circular path around the origin with angular velocity

π
5
rad per second. Figure 7.9 compares the performance of this controller in simulation

to the results of an experimental study that is discussed later in this section; at this

stage we are interested in the thin solid (blue) path in Figure 7.9, which corresponds to

the simulated vehicle’s trajectory. The target initially starts at point (x, y) = (0.15, 0)

m, and in the scenarios shown in Figure 7.9, it is assumed that the target’s position

and velocity are known exactly.
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Figure 7.9: Simulation (left): a target is circling the origin along a thick red dashed
path, and a quadrotor starting from behind an obstacle follows a thin blue
solid path as it converges to its target and follows it around in circles.
Experiment (right): the same scenario is repeated with a real quadrotor
in an experiment where it tracks a simulated target following another
circular path with slightly larger radius; here, the path of the quadrotor
is marked with a thin solid blue line, while the motion of its target is
shown in thick dashed red.

Now controller (5.5) is applied on an AscTec Hummingbird quadrotor, which is

supposed to move in a physical environment identical to that of Figure 7.9, with the

difference that obstacle boundaries are virtual. The target is now following a circular

path of radius 0.2 m, with a linear speed of 0.1 m/s. The path followed by the real

quadrotor as it tracks its target is shown in Figure 7.9 as a dashed-dot curve. While
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not evident in Figure 7.9, the unmodeled (assumed very fast) attitude dynamics of the

quadrotor, affect its tracking performance.1 The difference in performance between

simulation and experiment, attributed here to the unmodeled attitude dynamics, is

shown more clearly in Figures 7.10 and 7.11. Figure 7.10 shows the distance between

the sensor platform and its target over time, in dashed (red) curve for the simulated

robot case, and in solid (blue) curve for the actual hardware. The desired distance

(clearance) is set at 50 mm, and it is shown as a horizontal (blue) dashed line. Although

in both cases, the distance converges to the desired one, the real quadrotor maintains

a larger distance error.

The reason for the tracking discrepancy in the experimental tests is more appar-

ent in Figure 7.11. By ignoring the attitude dynamics, one essentially assumes that the

desired roll and pitch angles are attained instantaneously. Figure 7.11 shows that while

the attitude dynamics may be indeed fast, their converging time is not infinitesimal

compared to that of position dynamics. A lag in achieving the desired pitch angle,

propagates into a lag in linear acceleration, which is then integrated into a velocity

error.

7.5 Laser-emulated Radiation Emissions

The experiment detailed in this section validates the utility of the error prob-

ability bounds through experimentation with custom-built hardware that emulates

radioactivity on the plane without imposing any health risks. In particular, the statis-

tics of radioactive decay as perceived by a Geiger counter are emulated using a novel

device that emits laser beams in random directions on a horizontal plane, triggered at

random times that are exponentially distributed. Of course, nuclear emission is truly

three-dimensional and a planar emulation system cannot fully and faithfully capture

the nature of this phenomenon. It has been shown, however, that along a fixed plane

1 In fact, the robot’s manufacturer does not give direct access to the attitude control
loops; the roll-pitch-yaw angles are treated as control setpoints by the default firmware
on this robot.
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Figure 7.10: The distance between target and the quadrotor in the simulation and
experimental cases. The horizontal (blue) dashed line is the desired
distance to target, while the solid (blue) is the actual distance between
target and quadrotor during experiment, and the (red) dashed curve is
the distance to the simulated platform.

of motion for the detector, the statistics of the events incident to the sensor can be ad-

equately approximated. Details of the emulation device design and validation against

real radiation measurements from a Geiger counter are documented elsewhere [29].

7.5.1 Laser-emulation: Experimental Setup

The experimental setting is shown in Figure 7.12. In this setting, the laser de-

vice is mounted on top of the white round mobile robot, acting as a surrogate source
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Figure 7.11: Comparison between the desired and the actual pitch angle during the
flight, and its effect on linear position dynamics.

of radiation. The sensors are realized via long rectangular boxes containing light de-

tectors, configured to pick up a laser emission. There are four static sensors, arranged

along the same line at the edge of the gray floor mat, and a single mobile sensor,

mounted on top of a black square mobile robot, which is steered along a line parallel

to that of the static sensors, and at the same distance with respect to the target.

The stationary sensors 1, . . . , 4 are located at spatial coordinates (0, 0), (0.5, 0),

(1.5, 0), (2.5, 0), respectively, with coordinates measured in m. In Figure 7.12, the

leftmost sensor in the upper left corner is sensor 1. The mobile sensor, sensor 5, is

initially at rest at location (3, 1). The source is initialized at coordinates (3.0, 0.5),

and starts moving parallel to the x axis, in a negative direction, from sensor 4 toward
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Figure 7.12: The experimental setup that realizes a one dimensional detection sce-
nario. In the static network tests, only sensors 1, . . . , 4 are used, while
in the mobile network tests we utilize the spatial symmetry of the con-
figuration to replace the static sensor 1 with the mobile sensor 5. Sensor
width is 0.4 m.

sensor 1, with a constant speed of 0.03 m/s. The source’s intensity is a constant a = 2

cps, while the background rate is at β = 0.167 cps. The time interval for the detection

is a window of 100 s, and the acceptable probability of false alarm is set at α = 10−3.

Note that in the two dimensional setting of Figure 7.12, the source intensity as

perceived by a sensor is no longer inversely proportional to the square of the distance,

as typically considered for the three-dimensional case [47]. Now the solid angle in χ

scales linearly with the distance [29]; in both cases, the perceived intensity is in fact

inversely proportional to the solid angle associated with the volume between the source

and the sensor’s surface. This solid angle scales with the square of the radius in three

dimensions, but linearly on the plane.
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Figure 7.13: The perceived intensity at the sensor is inversely proportional to the
solid angle. In 3D, this angle scales with the square of the distance; on
the plane—as in the case of this experiment—it scales linearly with the
distance.

In the planar case of Figure 7.12, the solid angle φ is calculated as a function

of the sensor’s instantaneous relative position with respect to the target, and then the

perceived intensity ν is obtained as ν = aφ
2π
. This intensity varies between 0.007 cps

and 0.24 cps, which is comparable to the background rate of β = 0.167 cps.

To simulate that uniform background rate—it cannot be reproduced by the laser

device, for it would experience the same attenuation as the source signal—the count

output of each sensor is superimposed externally with a temporal sequence of samples

drawn from a Poisson distribution with mean β. We can thus know what percentage

of the total average count rate is attributed to the source, but the detection algorithm

is unaware of this; instead, it is presented with the count sum, and this is what it uses

to compute the likelihood ratios.

7.5.2 Results and Discussion

To assess the contribution of mobility to the accuracy of detection, experiments

are conducted for two cases: one in which the data collected from four static sensors

1, . . . , 4 are utilized to make a decision, and one in which static sensor 1 is replaced

with the mobile sensor 5 so that the total number of sensors is constant and equal to

four in both cases; see Figure 7.12.

Thirty-two different runs are performed. For each run, finite-interval LRTs

with a range of different threshold values, from 10−4 to 106, are conducted. The error
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probabilities for each threshold value are estimated as empirical averages over the set

of all 32 LRTs conducted with that same threshold value.

Figure 7.14 compares the empirical average of the probability of miss for LRTs

conducted over a range of different threshold values for 32 different experimental tri-

als with 4 static sensors, against Monte Carlo estimates of this probability, and the

proposed Chernoff bound. Figure 7.14 indicates that empirical averages from the ex-

periments with the static network remain close to Monte Carlo estimates, suggesting

an agreement between experimental and simulation results. In this context, the Cher-

noff bounds are shown to be tight in the region of low thresholds, while becoming more

conservative for higher threshold values.
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Figure 7.14: Comparison between Chernoff bound, Monte Carlo and Experiment
estimates for probability of miss in cases when all sensors are static.
The bars show the 95% confidence interval of estimates of probabilities
using both Monte Carlo and experimental data.

Table 7.1 lists the detection results over a set of the 32 static and mobile sensor

network configuration trials, when the optimal controls u∗, and optimal thresholds

γ(u∗) are utilized. The third column in Table 7.1 lists the computed Chernoff bounds

on the probability of missed detection, while the two rightmost columns document the
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Table 7.1: Optimal LRT parameters, and detection results for the static and mobile
sensor network configurations

network
topology

optimal
threshold

Chernoff
bound

missed
sources

empirical proba-
bility

static 540.70 0.541 4 0.125

mobile 27.98 0.028 0 –

frequency of missed detection errors. For the case of the mobile sensor, the resulting

threshold is much smaller compared to that of the static case. The Chernoff bound

on the probability of missed detection is lower than 3%, and agrees with experimental

data where the source is detected in all 32 tests. In contrast, the static case Cher-

noff bound (54.1%) is conservative compared to the actual error probability results

(12.5%), due to the inherent conservativeness of the bounds. Nonetheless, Table 7.2

that reports the SNR for the two cases computed using the same expression used in

Chapter 3, suggests a clear three-fold improvement in the signal-to-noise ratio due to

sensor mobility, corroborating the simulation results of Chapter 3.

Table 7.2: SNR of individual sensors in the experimental tests, for static and mobile
sensor network configurations

network
topology

SNR 1 SNR 2 SNR 3 SNR 4 SNR 5

static 1.25 1.79 2.03 1.78 –

mobile – 1.79 2.03 1.78 3.78

7.6 Detection of Vaseline Beads Mounted on Mobile Robot

The setup of the experiment where physical sensor platforms are tracking and

identifying radioactive sources is depicted in Figure 7.15. An AscTec Hummingbird

quadrotor and an iCreate wheeled mobile robot are fitted with Geiger counters, and

are tasked to detect the presence of a very weak radiation source composed of a small

number of Vaseline glass (containing Uranium oxide) beads. This source is carried
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around on a miniature 3D-printed wheg-leg crawling robot, remotely controlled by a

human operator. This source is so weakly radioactive, that its perceived intensity

drops at a level of less than 10% of ambient background just after 17 cm away. The

background radiation level observed by our two sensors during the experiments, ranges

from 9.5 to 12.5 counts per minute. In order for detection to be feasible within a time

window of 3 minutes, the two sensor platforms have to get close to the target (source),

at a distance of less than 10 cm.

crawler

source

ground platform

aerial

platform Geiger
counter

Geiger
counter

Figure 7.15: The radiation detection experiment. Geiger counters are carried by an
aerial platform (1) and a ground platform (2), while the weak radiation
source (3) moves with a remotely controlled crawling robot.

The experiment evolves in the same virtual obstacle workspace as the test shown

in Figure 7.9. Here, the outer workspace boundary is at a radius of 150 cm around the

origin of the inertial coordinate frame. The four small (virtual) interior obstacles have

a radius of 15 cm, while the single bigger one is of 22.5 cm radius. During the detection

task, the two mobile sensor platforms gather radiation count information using their

on-board Geiger counters, and at the end of the 3 minute observation window, they
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transmit wirelessly their computed statistics to a central computer that performs the

likelihood ratio test. The outcome of this test is a decision as to whether the target is

radioactive.

Given that for the particular sensor geometry utilized, the cross-section coeffi-

cient χi is negligible compared to the distance between sensor and source, the perceived

source intensity can confidently be approximated as νi =
χia

2χi+r2i
≈ ai

r2i
, so that the actual

value of the sensor cross-section coefficient is no longer required, and the average of the

counts recorded in the unit of time becomes bi+
ai
r2i
. Figure 7.16 confirms the validity of

this approximation, and illustrates why it is impractical to attempt detection of weak

moving radiation sources using stationary counter networks.

Figure 7.16: The perceived source intensity νi follows an r2 fall-off. Circles mark
radiation measurements made by the Geiger counter mounted on the
quadrotor, and the dashed curve corresponds to a ai

r2i
fit.

Thus coming as close to the target as possible is key to being able to detect weak
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radioactive material in motion. The controller constructed closes the distance between

sensor and source and maintains it at a desired small set-point during the detection

time window. A motion capture system is used to obtain ground truth information

and provide initial target position information to the sensor platforms, while a camera

on board the quadrotor uses visual feedback to localize the target while in motion.

The target trajectory information obtained through the on-board sensors contains a

significant amount of noise; however, the noise in the signal does not prevent the

platforms from tracking their target reasonably well (Figure 7.17).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

time index

40

60

80

100

120

140

160

180

200

D
is
ta
n
c
e
(m

m
)

visual feedback

ground truth

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

time index

20

40

60

80

100

120

140

D
is
ta
n
c
e
(m

m
)

visual feedback

ground truth

Figure 7.17: Distance between sensor platforms—Left ground, Right aerial—and tar-
get maintained based on visual feedback against ground truth. The unit
of measurement on the time index axis is 0.02 seconds.

Figure 7.18 shows the paths of the two platforms and their target, moving amidst

the virtual obstacles during one of the radiation detection experiments. The dashed

(blue) line corresponds to the (projected on the horizontal plane) path of the aerial

platform, which returns to the initial landing spot at the end of the 3 minute tracking

window. The dotted (red) curve marks the path of the wheeled ground platform, while

the solid (green) quivering path is that of the source, which wavers somewhat being

at the end of a pole fixed on the crawling legged vehicle. Due to the noisy nature

of the visual target motion feedback information and the sensitivity of any potential
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field reference close to an equilibrium configuration, once the platforms achieved the

10 mm target distance objective using (5.5), they switched to a local PID controller

for tracking.

Figure 7.18: Superimposed paths of sensor platforms and target during a single ra-
diation detection trial

Fifty radiation detection trials like the one shown in Figure 7.18 were conducted,

and likelihood ratio tests were performed for a maximum false alarm rate of 1.2 %. Out

of the 50 different trials, half were performed with a radiation source on the target, and

the other half without it. In all cases where the source was not present on the target,

the likelihood ratio test concluded correctly that the target was benign. Out of the

25 cases where the target was carrying a source, one was reported as a false negative,

while in the remaining 24 the target was classified correctly.2

2 This type of behavior is expected, since detection tests of this nature are skewed
conservatively on the side of keeping false alarm rates low. The rationale is that if this
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7.7 Conclusion

This chapter demonstrates the advantage of having mobile sensor in detect-

ing weak mobile radioactive sources. It is also evident that the navigation function

based controller can drive the quadrotor and the wheeled robot in cluttered environ-

ments with the help of the low level controllers designed for these two platforms. Yet,

conducting these experiments requires comprehensive sensory feedback, such as Vicon

motion capturing and camera visual feedback that are introduced in the Section 7.1.

As a possible extension, the possibility of driving robots to field extremum with limited

sensory feedback in next chapter.

is not the case, then human operators will tend to ignore the detection systems’ report.
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Chapter 8

SOURCE SEEKING WITH LIMITED SENSOR INFORMATION

In this dissertation, techniques for improving radiation detection performance

by exploiting sensor mobility are presented. Yet, to implement our proposed strategy in

practice as shown in Chapter 7, a comprehensive sensory system is required including

both global localization (motion capture, GPS, etc) and optical feedback (camera,

laser, etc). A possible extension to the work presented in this dissertation is to explore

the possibility of source seeking with limited sensory information.

Assume a ground wheeled robot is available; it is capable of measuring its for-

ward and turning velocity using encoders, and its heading direction using compass.

This robot carries a sensor which measures the strength of some signal field, such as

light intensity, radio signal strength, or radiation intensity. Consider now this mobile

sensor platform deployed in an environment filled with obstacles.

If the robot follows the gradient of the field deterministically, it may be easily

trapped in some non-convex boundary of obstacles. But if some randomness is injected

into both the motion of the robot and its interaction with obstacle boundaries, there

should be a chance for the robot to get away from such trapped position by drifting

and bouncing randomly. In this chapter, such randomness behavior is modeled and

preliminary study is performed to find the bounds on the probability of the sensor

platform reaching field extremum.

8.1 Modeling Boundary Reflection Events

Let the robot move in a constrained space W ⊂ R
2. The state space representa-

tion of the robot consists of (x, y, θ), where (x, y) represents the robot’s position in R
2,
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and θ represents the robot’s heading angle between its forward direction and global x

axis.

Assume that when the robot is operating in the interior of W , its kinematics is

adequately described in the form of (5.6):

ẋ = v cos θ , ẏ = v sin θ , θ̇ = ω .

The robot may come into contact with the free space boundaries. Assume that each

time the robot hits the boundary of W , the robot will break with probability Pb. If

the robot doesn’t break, it will bounce back to a state that is no further than ε away

from the hit point xh ∈ ∂W while remaining in W . The set of possible bounce back

positions can be written as Bxh
(ε)∩W̊ . Since our goal is to reach certain closed subset

SG ⊂ W̊ , the robot will terminate its motion once it hits the boundary of SG. Now

the system can be modeled as a stochastic hybrid system:

Let Q = {1, 2, 3, 4} be the discrete states of the hybrid system. The state 1

means the robot is in the normal operation mode subject to unicycle kinematics (5.6).

State 2 means a collision event occurs and the robot is broken after colliding with

workspace boundary. State 3 is associated to a collision event in which the robot

remains intact after colliding with workspace boundary. State 4 means the robot

reaches the goal set.

Let X = {X1,X2,X3} be a partition of the continuous state space of the hybrid

system. Set X1 = W \ S̊G, represents the workspace excluding the interior of the goal

set. X2 = ∂W , represents the workspace boundary. X3 = ∂SG, represents the goal set

boundary.

Then state space of the stochastic hybrid system can be represented as a tuple

X̄ = Q×X with its flow and jump transitions defined as following:

• When the robot’s discrete state is 1:

– If (1, x) ∈ (1,X1), the free space away from the boundaries, the system

evolves according to (5.6).
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– If (1, x) ∈ (1,X2), meaning that it collides with the boundary, it may either

break and the hybrid state jumps to (2, x) with probability Pb, or remain

intact, in which case the hybrid state jumps to (3, x).

– If (1, x) ∈ (1,X3), which means the robot reaches goal boundary, the hybrid

state jumps to (4, x) with probability 1.

• When the system is at (2, x) ∈ (2,X2), it immediately jumps back to (2, x) with

probability 1, making (2, x) an absorbing state. (2, x) models the robot’s failure

state.

• When the system is at (3, x) ∈ (3,X2), it immediately jumps to a random point

that’s distributed over the set (1,Bx(ε) ∩ W̊) with probability 1. (3, x) models

the robot bounce state.

• When the system is at (4, x) ∈ (4,X3), it immediately jumps to (4, x) again with

probability 1, making (4, x) an absorbing state. (4, x) models the robot’s success

in reaching the goal.

• All states in ({2, 3} × {X1,X3}) ∪ (4× {X1,X2}) are not reachable.

Thus the jump transition probability R is:

R((1, x ∈ X2), (2, x)) = Pb

R((1, x ∈ X2), (3, x)) = 1− Pb

R((1, x ∈ X3), (4, x)) = 1

R((2, x ∈ X2), (2, x)) = 1

R((3, x ∈ X2), (1, y ∈ Bx(ε) ∩ W̊)) = fbounce(y ∈ Bx(ε) ∩ W̊)

R((4, x ∈ X3), (4, x) = 1

where the fbounce is a probability density function over the set Bx(ε) ∩ W̊ , and the

jumps always happen at ∂Xi, i ∈ Q. The underlying Markov Chain that represents

the transition between different discrete states is illustrated in Figure (8.1). Notice
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Assumption 8.2.2 SG ∩
((∪x∈∂WBx(ε)

) ∩ W̊
)
= ∅, meaning that the goal set is not

directly reachable by bouncing off workspace boundaries.

Proposition 8.2.3 If Assumptions 8.2.1 and 8.2.2 hold and the evolution of the hybrid

system observes Markov property, that is the conditional evolution of the future states

of the process only depends on present state, Preach(x0) is lower bounded by

Preach,c(x0) +
Psl(1− Pb)

1− (1− Psu)(1− Pb)
(1− Preach,c(x0)) .

Proof Define the set near the boundary in the workspace: F(ε) =
(∪x∈∂WBx(ε)

)∩W̊ .

Let fx0(x) be the probability density function that describes the distribution of points

in F(ε) where the sample paths starting at x0 bounce off at, after hitting the boundary

∂W once.

Preach(x0)

=Preach(x0,without collisions) + Preach(x0,with collisions)

=Preach,c(x0) + [1− Preach,c(x0)](1− Pb)Preach(x0|intact after 1 collision)

=Preach,c(x0)+

[1− Preach,c(x0)](1− Pb)

∫
F(ε)

Preach(x|after bouncing once)fx0(x) dx

Markov Property
= Preach,c(x0) + [1− Preach,c(x0)](1− Pb)

∫
F(ε)

Preach(x)fx0(x) dx (8.1)

fx0(x) is determined by both the flow dynamics in the hybrid system that determines

where the robot hits the boundary, and the jump transition that determines where the

robot would bounce to after the collision. In general, obtaining the explicit closed-form

of fx0(x) is intractable.

Yet, with Assumption 8.2.1, the integrand in the integral term in (8.1) can be

lower bounded. For xb ∈ F(ε):

Preach(xb) = Preach,c(xb) + [1−Preach,c(xb)](1−Pb)

∫
F(ε)

Preach(x)fxb
(x) dx (8.2)

≥ Psl + (1− Psu)(1− Pb)

∫
F(ε)

Preach(x)fxb
(x) dx . (8.3)
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Now plug (8.3) into (8.1), we can obtain:

Preach(x0)
(8.3)

≥ Preach,c(x0) + [1− Preach,c(x0)](1− Pb)∫
F(ε)

[
Psl + (1− Psu)(1− Pb)

∫
F(ε)

Preach(s)fxb
(s) ds

]
fx0(x) dx

=Preach,c(x0) + [1− Preach,c(x0)](1− Pb)Psl+

[1− Preach,c(x0)](1− Pb)
2(1− Psu)

∫
F(ε)

[∫
F(ε)

Preach(s)fxb
(s) ds

]
fx0(x) dx

repeat(8.3)

≥ Preach,c(x0) + [1− Preach,c(x0)](1− Pb)Psl

[1 + (1− Pb)(1− Psu) + (1− Pb)
2(1− Psu)

2 + · · · ]

=Preach,c(x0) +
Psl(1− Pb)

1− (1− Psu)(1− Pb)
(1− Preach,c(x0))

(8.4)

8.3 Conclusion and Next Steps

With Proposition 8.2.3, a lower bound on the Preach can be obtained without

finding the probability distribution fxb
(x), or solving (8.1) and (8.2) explicitly. The

only prerequisite for finding such lower bound is to find the lower and upper bounds Psl

and Psu . This corresponds to solving a reachability problem for the continuous part of

the hybrid system (flow dynamics). Yet, the result may not always be very informative,

as the Psl is likely to be zero if the environment contains convex shapes—this cancels

the bouncing related terms (Pb, Psl , Psu) in the lower bound (8.4).

A more interesting scenario arises when the robot’s kinematics [57] or the con-

troller [40,41] are randomized [40,41]. The next step would be solving the reachability

problem with these stochastic process and possibly compare the bound given in Propo-

sition 8.2.3 with the reachability result that from analyzing the SHS that includes both

stochastic flow dynamics and random jumps [10, 62,63].
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Chapter 9

CONCLUSIONS AND FUTURE DIRECTIONS

This dissertation targets the problem of improving the reliability of the decision

making process by exploiting sensor mobility, when testing whether a target in transit

is radioactive or not.

Thanks to the existing analytic bounds on the probabilities of making mis-

takes during the test, an optimal control problem can be formulated to minimize these

bounds. This problem is subsequently solved to obtain the optimal control policy as

well as the threshold for the testing process, both numerically and analytically using

Pontryagin’s Maximum Principle. Solving this optimal control problem establishes

explicit connections between sensor trajectories and radiation testing performance.

The analytic solutions reveal that the best strategy is to move the sensors to-

wards the target as fast as possible. Thus when planning sensor motions, instead of

minimizing the error bounds, which are complex functions of sensor trajectories, the

goal is simplified to reaching the target in shortest time possible. Yet in a cluttered

environment, tracking a mobile target without collision with both obstacles and the

target still present challenges that may involve rapid replanning and compromising

optimality. In this dissertation, a modified navigation function based controller is pro-

posed, which—instead of rushing the robot towards the target at maximum speed and

likely leading to collisions or overshoots—follows a more gradual gradient of a virtual

potential functions. This controller suits the purpose of bringing sensors towards the

target in practice and guarantees obstacle avoidance as well as convergence to time-

varying target set.

Thanks to its analytic structure, the navigation function based controller can

be tailored to different robot platforms easily, regardless that it is originally designed
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for single integrator model. This dissertation designs two adaptive controllers for the

quadrotor and the wheeled robot respectively, and demonstrates that these controllers

combined with navigation function based planner is well behaved on physical platforms

with much more complex dynamics compared to single integrator model through sim-

ulations and experiments.

In a laser-emulated radiation detection experiment, a comparison between using

solely static sensors, and a combination of static and mobile sensors indicates that the

addition of sensor mobility could greatly improve the detecting performance in terms

of reducing error probabilities. In subsequent experiments, sensor platforms including

one quadrotor and one wheeled robot were used to track a mobile crawling robot and

decide whether it contained the extremely weak radioactive source (Vaseline beads).

The promising results validates the previously proved detection strategy.

The limitation of the proposed radiation detection methodology is that although

it is shown that a fast gradient descend type controller is suitable for the task, it requires

localization information of both the mobile sensor platforms and the target. Yet in

some cases, there might be difficulty in obtaining these information and a possible

solution is to conduct a gradient descend on the signal strength field rather than the

virtual potential field. It is probably that in cluttered environments, collisions would

be unavoidable when this type of gradient descend controller is in effect. These collision

events can be captured using stochastic hybrid system model, and by analyzing the

underlying Markov process, preliminary results on the success rate of the converging

to field extremum shows relation between the success rate and the randomness of the

sensor motion. The accurate estimation of the success rate of a single experiment can

help deciding the total number of repetitions needed to guarantee the success rate

above given level. Thus one can decide how many robots would be needed to cover

certain space so that reliable detection result can be obtained. This is of practical

importance and can be a direction to future research.
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Appendix A

THEOREM 4.3.1: INTERMEDIATE RESULTS

To simplify notation, we drop the subscript xi from the expressions of the gradi-

ent and hessian of the navigation, with the understanding that all these differentiations

are with respect to xi. Similarly, instead of distinguishing the obstacle and navigation

function of agent i by writing βi and ϕi, we simply refer to it generically as β and ϕ.

We will use the index i to range over obstacles in the environment.

With a slight abuse of notation, we will now think of the free workspace P as a

subset of Rn (instead of just R3); the results established in this section hold irrespective

of the particular value of n ∈ N+. Let ∂ST = {x ∈ R
n : ‖x − xt‖ = rt}, for a small

ε > 0 Bi(ε) � {x ∈ R
n : 0 < βi(x) < ε), and (re)define the decomposition of P into

sets ∂F , F0(ε), F1(ε), F2(ε) and W(ε) as follows.

1. the free space boundary

∂F = ∂P = β−1(0) ;

2. the set “near the obstacles”

F0(ε) �
M⋃
i=1

Bi(ε) \ ∂ST ;

3. the set “near the workspace boundary”

F1(ε) � B0(ε) \ (∂ST ∪ F0(ε)
)

;

4. the set “away from the obstacles”

F2(ε) � P \ (∂ST ∪ ∂F ∪ F0(ε) ∪ F1(ε)
)

.
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5. the set “away from the obstacles and target”

W(ε) = F2(ε) \ Bxt(δt) .

Recall that a workspace is called valid, if the obstacles do not overlap with each

other and the destination (set).

Proposition A.0.1 If the workspace is valid, any xd ∈ ∂ST is a degenerate local

minimum of ϕ. A vector v satisfying vᵀ ∇2ϕ(xd) v = 0 has to be tangent to ∂ST .

Proof Evaluate

∇ϕ(xd) =
(Jk + β)1/k ∇J − J ∇(Jk + β)1/k

(Jk + β)2/k

∣∣∣∣∣
xd

and note that since J
∣∣
xd

= 0 and ∇J
∣∣
xd

= 0, it is ∇ϕ(xd) = 0. Now

∇2ϕ(xd) =
(Jk + β)1/k ∇2J − J ∇2(Jk + β)1/k

(Jk + β)2/k

∣∣∣∣∣
xd

= β−1/k ∇2J
∣∣∣
xd

= 8 β−1/k(xd − xt)(xd − xt)
ᵀ .

Consider arbitrary vector v ∈ R
n and evaluate the quadratic form

vᵀ ∇2ϕ(xd) v = 8 β−1/k vᵀ (xd − xt)(xd − xt)
ᵀ v = 8 β−1/k ‖vᵀ(xd − xt)‖2 .

This means that vᵀ ∇2ϕ(xd) v ≥ 0 with equality if and only if v is normal to (xd − xt),

that is, when v is tangent to ∂ST .

Proposition A.0.2 If the workspace is valid, all the critical points of ϕ are in the

interior of the free space.
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Proof Let x0 be a point in ∂F . Then by definition, βi(x0) = 0 for some i ∈ {0, ...,M}.
From the workspace being valid, it follows that βj > 0 for all j ∈ {0, ...,M}, j = i.

Then,

∇ϕ(xd) =
(Jk + β)1/k ∇J − J ∇(Jk + β)1/k

(Jk + β)2/k

∣∣∣∣∣
x0

=
∇J − 1

k
J1−k (kJk−1∇J +∇β)

J

∣∣∣∣∣
x0

= −1

k
J−k

M∏
j=0,j �=i

βj∇βi = 0 ,

which completes the proof.

Proposition A.0.3 For every ε > 0 there exists a positive integer N(ε) such that if

k ≥ N(ε) then there are no critical points of Jk

β
in W(ε).

Proof A sufficient condition for Jk

β
not having critical points in W is [ [36, Proposition

3.4]]

k >
J ‖∇β‖
β ‖∇J‖ .

For this, it is sufficient to have

k ≥ sup
W

J

‖∇J‖ sup
W

‖∇β‖
β

>
J ‖∇β‖
β ‖∇J‖ .

The existence of a finite bound of supW
J

‖∇J‖ supW
‖∇β‖
β

can be established analytically

as follows.

sup
W

J

‖∇J‖ = sup
W

(‖x− xt‖2 − r2t
)2

|4‖x− xt‖3 − 4r2t ‖x− xt‖| = sup
W

√
J

4‖x− xt‖ .

Since ‖x − xt‖ is bounded from below and above in W , and infW ‖x − xt‖ = δt, it is

ensured that supW
J

‖∇J‖ is finite. For the other bound, we have

‖∇β‖
β

< sup
W

‖∇β‖
β

≤ sup
W

M∑
i=0

‖∇βi‖
βi

≤ 2

ε

⎡⎣ρ0 + M∑
i=1

sup
W

‖x− oi‖
⎤⎦ . (A.1)
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The strict inequality is due to the fact that ‖x‖ < ρ0 for any point in W . Equation

(A.1) implies that supW
‖∇β‖
β

exists and is bounded. Thus, a choice of a sufficiently

large k ≥ N(ε) would be

N(ε) :=
1

ε
sup
W(0)

{ √
J

2‖x− xt‖

}
(ρ0 +

M∑
i=1

sup
W(0)

‖x− oi‖) . (A.2)

The proof is thus completed.

Proposition A.0.4 For any valid workspace, there exists an ε0 > 0 such that Jk

β
has

no local minima in F0(ε), as long as ε < ε0.

Proof The analysis focuses on F0(ε), and that implies that for any critical point

xc ∈ F0(ε), for some i we will have xc ∈ Bi(ε); therefore, 0 < βi(xc) < ε. The validity

of the workspace guarantees that ‖oi−xt‖ > rt+ρi+εt. Because of this, that particular

ball Bi(ε) is bounded away from ∂ST : for any x ∈ Bi(ε), it is ‖x− xt‖ > rt as long as

0 < ‖x− oi‖− ρi <
√

ε+ ρ2i − ρi < εt < ‖oi − xt‖− rt − ρi. Since xc is a critical point,

kβ∇J = J ∇β at xc. Note that everywhere in F0(ε), J = 0 and β = 0. Therefore,

∇J is aligned with ∇β. Using the concept of the omitted product [ [36]]

β̄i �
M∏

j=0, j �=i

βj ,

vector ∇β expands to

∇β =
M∑
j=1

2(xc − oj)β̄j − 2β̄0xc = 2(xc − oi)β̄i + 2βi

M∑
j=1,j �=i

(xc − oj)
β̄j

βi

− 2β̄0 xc

and by defining

αi � 2
M∑

j=1,j �=i

(xc − oj)
β̄j

βi

− 2
β̄0

βi

xc ,

which is a vector independent from ε, and bounded in F0(ε), one has

∇β = 2(xc − oi)β̄i + βi αi .
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From kβ∇J = J ∇β at xc it now follows that

∇J =
J

kβ
∇β ⇐⇒ 4(‖xc − xt‖2 − r2t )(xc − xt) =

J

kβ
[2(xc − oi)β̄i + βi αi]

which leads to

xc − xt =
‖xc − xt‖2 − r2t

4

(
2
xc − oi
kβi

+
αi

kβ̄i

)
. (A.3)

If one now sets

Ck � sup
W(0)

{ √
J

2‖xc − xt‖

}⎛⎝ρ0 +
M∑
i=1

sup
W(0)

‖xc − oi‖
⎞⎠ ,

then according to (A.2) in the proof of Proposition A.0.3, a suitable choice of k would

be

k :=
Ck

ε
,

in which case (A.3) becomes

xc − xt =
ε(‖xc − xt‖2 − r2t )

4Ck

(
2
xc − oi

βi

+
αi

β̄i

)
. (A.4)

Taking the inner product of both sides of kβ∇J = J∇β with ∇J yields

kβ∇Jᵀ ∇J = J ∇βᵀ ∇J =⇒ kβ =
β̄i ∇βᵀ

i ∇J + βi ∇β̄ᵀ
i ∇J

16‖xc − xt‖2 . (A.5)

From this point, one can then prove that the critical point of Jk

β
is not a local

minimum by showing that ∇2 Jk

β
has at least one negative eigenvalue at that point.

(The procedure follows the exact same steps as [ [36, Proposition 3.6]].) Essentially, it

amounts to using any vector v̂ orthogonal to ∇βi

‖∇βi‖ as a test vector, and showing that

at xc and for small enough ε, v̂ᵀ ∇2 Jk

β
v̂ < 0. The process in detail is as follows:

β2

Jk−1
v̂ᵀ ∇2 Jk

β

∣∣
xc

v̂ = kβ v̂ᵀ ∇2J v̂ − 2Jβ̄i + v̂ᵀ Jβi

[1− 1
k

β̄i

∇β̄i ∇β̄ᵀ
i −∇2β̄i

]
v̂

(A.5)
=

β̄i ∇βᵀ
i ∇J + βi ∇β̄ᵀ

i ∇J

16‖xc − xt‖2 v̂ᵀ ∇2J v̂ − 2Jβ̄i + v̂ᵀ Jβi

[1− 1
k

β̄i

∇β̄i ∇β̄ᵀ
i −∇2β̄i

]
v̂

= β̄i

( v̂ᵀ ∇2J v̂

16‖xc − xt‖2 ∇βᵀ
i ∇J − 2J

)
+ βi

( v̂ᵀ ∇2J v̂

16‖xc − xt‖2 ∇β̄ᵀ
i ∇J + J v̂ᵀ

[1− 1
k

β̄i
∇β̄i ∇β̄ᵀ

i −∇2β̄i

]
v̂
)

. (A.6)
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To determine the sign of the far right side of (A.6), perform the expansion of v̂ᵀ ∇2J v̂

into

v̂ᵀ
[
4(‖xc − xt‖2 − r2t )I+ 8(xc − xt)(xc − xt)

ᵀ] v̂
= 4(‖xc − xt‖2 − r2t ) + 8 v̂ᵀ (xc − xt)(xc − xt)

ᵀ v̂

= 4(‖xc − xt‖2 − r2t ) + 8(v̂ᵀ(xc − xt))
2 , (A.7)

where I denotes the identity matrix, and plug (A.4) into (A.7), to express v̂ᵀ ∇2J v̂ in

the form

4(‖xc − xt‖2 − r2t ) + 8
∣∣∣v̂ᵀ ε(‖xc − xt‖2 − r2t )

4Ck

(
2
xc − oi

βi

+
αi

β̄i

)∣∣∣2
= 4

√
J +

ε2J |v̂ᵀαi|2
2C2

k β̄
2
i

. (A.8)

where v̂ᵀ(xc − oi) = 0 and
√
J is substituted for ‖xc − xt‖2 − r2t (for brevity), since in

F0(ε) it holds ‖xc − xt‖ > rt.

Given now that the second term in (A.6) can be made arbitrarily small by

choosing ε > βi, one can establish the negative definiteness of (A.6) by ensuring that

the first term is strictly below zero. The second factor in the first term in (A.6) can

be expanded

v̂ᵀ ∇2J v̂

16‖xc − xt‖2 ∇βᵀ
i ∇J − 2J

(A.8)
=

2
√
J + ε2J

4C2
k β̄

2
i
|v̂Tαi|2

8‖xc − xt‖2 2(xc − oi) 4(xc − xt)
√
J − 2J

= 2J

[
(xc − oi)

ᵀ(xc − xt)

‖xc − xt‖2 − 1

]
+

ε2J1.5|v̂ᵀαi|2
4C2

k β̄
2
i ‖xc − xt‖2

(xc − oi)
ᵀ(xc − xt)

=
2J(xt − oi)

ᵀ(xc − xt)

‖xc − xt‖2 +
ε2J1.5|v̂ᵀαi|2 (xc − oi)

ᵀ(xc − xt)

4C2
k β̄

2
i ‖xc − xt‖2

and by applying known relations [36, Lemma 3.5] one arrives at

v̂ᵀ ∇2J v̂

16‖xc − xt‖2 ∇βᵀ
i ∇J − 2J

≤ 2J‖xt − oi‖ (
√

ε+ ρ2i − ‖xt − oi‖)
‖xc − xt‖2 + ε2 sup

F0(ε)

J1.5|v̂Tαi|2 (xc − oi)
ᵀ(xc − xt)

4C2
k β̄

2
i ‖xc − xt‖2

. (A.9)
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At this point, (A.9) is used in (A.6) to upper bound the left hand side of (A.6)

β2

Jk−1
v̂ᵀ ∇2 Jk

β

∣∣
xc

v̂ ≤ 2Jβ̄i ‖xt − oi‖ (
√

ε+ ρ2i − ‖xt − oi‖)
‖xc − xt‖2

+ ε

(
β̄i ε sup

F0(ε)

J1.5|v̂Tαi|2 (xc − oi)
ᵀ(xc − xt)

4C2
k β̄

2
i ‖xc − xt‖2

+
v̂ᵀ ∇2J v̂

16‖xc − xt‖2 ∇β̄ᵀ
i ∇J

+ J v̂ᵀ
[
1− 1

k

β̄i
∇β̄i ∇β̄ᵀ

i −∇2β̄i

]
v̂

)
.

Now choosing ε appropriately small, the second term can be made sufficiently small so

that the sign of the first term dominates. The sign of the latter is determined by the

expression
√
ε+ ρ2i − ‖xt − oi‖, which for small ε approaches ρi − ‖xt − oi‖, which is

guaranteed negative by the validity of the workspace. (The target xt is (rt + ρi) away

from the center of obstacle i.)

Proposition A.0.5 If k ≥ Ck

ε
, then there exists an ε1 > 0 such that ϕ̂ = Jk

β
has no

critical points on F1(ε), as long as ε < ε1.

Proof The set F1(ε) expresses the neighborhood of the workspace (outer) boundary.

Select ε small enough so that the B0(ε) neighborhood of the outer boundary is disjoint

from the rt-neighborhood of the target: β0 < ε < ρ20 − (‖xt‖ + rt)
2. Then any critical

point xc ∈ F1(ε) will satisfy β0(xc) = ρ20 − ‖xc‖2 < ε, implying ‖xc‖ > ‖xt‖+ rt. Then

in B0(ε)

∇Jᵀ ∇β0 =4(‖xc − xt‖2 − r2t )(xc − xt)
ᵀ (−2xc)

=8(‖xc − xt‖2 − r2t )(x
ᵀ
t xc − ‖xc‖2)

≤8(‖xc − xt‖2 − r2t )(‖xc‖‖xt‖ − ‖xc‖2)
=8(‖xc − xt‖2 − r2t ) ‖xc‖ (‖xt‖ − ‖xc‖)
<0 .
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By choosing ε small enough, we can ensure that ∇ϕ̂ does not vanish in F1(ε). Here is

why:

∇ϕ̂ᵀ ∇J =
[kJk−1

β
∇J − Jk

β2
∇β
]ᵀ

∇J

=
Jk(16kβ ‖xc − xt‖2 −∇βᵀ ∇J)

β2

=
Jk[16kβ‖xc − xt‖2 − (β0 ∇β̄ᵀ

0∇J + β̄0 ∇βᵀ
0∇J)]

β2

(∇Jᵀ∇β0<0)
>

Jkβ0(16kβ̄0‖xc − xt‖2 −∇β̄ᵀ
0∇J)

β2

and thus any ε small enough to make k >
∇β̄ᵀ

0 ∇J

16β̄0‖xc−xt‖2 , will also make ∇ϕ̂ᵀ ∇J positive.

In fact, the choice utilized earlier, i.e., k = Ck

ε
suffices. To see this,

∇β̄ᵀ
0∇J

16β̄0‖xc − xt‖2
≤ ‖∇β̄0‖‖∇J‖

16β̄0‖xc − xt‖2
=

√
J
β

∑M
i=1 β̄i‖∇βi‖

4‖xc − xt‖

<
1

ε
sup
W(0)

{ √
J

2‖xc − xt‖

}
M∑
i=1

sup
W(0)

‖xc − oi‖ ,

and compare to

k :=
Ck

ε
=

1

ε
sup
W(0)

{ √
J

2‖xc − xt‖

}(
ρ0 +

M∑
i=1

sup
W(0)

‖xc − oi‖
)

>
1

ε
sup
W(0)

{ √
J

2‖xc − xt‖

}
M∑
i=1

sup
W(0)

‖xc − oi‖ .

It thus suffices to pick ε < ε1 = (ρ0)
2 − (‖xt‖ + rt)

2 to ensure that no critical points

are in F1(ε).

Proposition A.0.6 Critical points in the interior of F0(ε) are non-degenerate.

Proof One way to establish such a claim [ [36, Proposition 3.9]] is to partition the

tangent space of ϕ̂ into a subspace that yields positive values for the quadratic form

constructed with ∇2ϕ̂, and a subset that yields negative values. The negative case

is established by Proposition A.0.4. The positive case, again along the lines of [ [36,

Proposition 3.9]], is established here by taking a test direction ∇̂βi =
∇βi

‖∇βi‖ , and picking
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ε small enough to obtain ∇̂β
ᵀ
i ∇2ϕ̂ ∇̂βi > 0. Note that for a given i, ∇̂βi defines one

subspace, and all the vectors v̂ form its orthogonal complement. To verify the sign of

∇̂β
ᵀ
i ∇2ϕ̂ ∇̂βi, expand the expression

β2

Jk−1
∇̂β

ᵀ
i ∇2ϕ̂ ∇̂βi = ∇̂β

ᵀ
i kβ∇2J ∇̂βi

+
J(1− 1

k
)

β
(∇βᵀ ∇̂βi)

2 − J ∇̂β
ᵀ
i ∇2β ∇̂βi . (A.10)

We know [36, Proposition 3.9] that for small enough ε,

J‖∇β‖2
2kβ

+
J(1− 1

k
)

β
(∇βᵀ ∇̂βi)

2 − J ∇̂β
ᵀ
i ∇2β ∇̂βi > 0 .

Although different J function is used here, the same derivation in [ [36, Proposition

3.9]] holds here. So to set the sign of (A.10), it suffices to make

∇̂β
ᵀ
i kβ∇2J ∇̂βi ≥

J‖∇β‖2
2kβ

. (A.11)

Recalling (A.7), and that ‖xc−xt‖2−r2t =
√
J since xc is a critical point, the left hand

side of (A.11) is

∇̂β
ᵀ
i kβ∇2J ∇̂βi = 4kβ

√
J + 8kβ| ∇̂β

ᵀ
i (xc − xt)|2 (A.12)

and because xc is a critical point, taking squared norms of both sides of kβ∇J = J ∇β

yields (
4kβ

√
J ‖xc − xt‖

)2
= J2 ‖∇β‖2 ,

from which one extracts that

4kβ =
J‖∇β‖2

4kβ‖xc − xt‖2 . (A.13)

Plugging now (A.13) back into (A.12) yields

∇̂β
ᵀ
i kβ∇2J ∇̂βi =

J3/2 ‖∇β‖2
4kβ‖xc − xt‖2 +

J‖∇β‖2 ∣∣ ∇̂β
ᵀ
i (xc − xt)

∣∣2
2kβ‖xc − xt‖2 .
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Now (A.11) takes the form

J3/2 ‖∇β‖2
4kβ‖xc − xt‖2 +

J‖∇β‖2 ∣∣ ∇̂β
ᵀ
i (xc − xt)

∣∣2
2kβ‖xc − xt‖2 ≥ J‖∇β‖2

2kβ

⇐⇒ J1/2

2‖xc − xt‖2 +

∣∣ ∇̂β
ᵀ
i (xc − xt)

∣∣2
‖xc − xt‖2 ≥ 1

⇐⇒ ‖xc − xt‖2 − r2t + 2
∣∣ ∇̂β

ᵀ
i (xc − xt)

∣∣2
2‖xc − xt‖2 ≥ 1

⇐⇒ 2
∣∣ ∇̂β

ᵀ
i (xc − xt)

∣∣2 ≥ ‖xc − xt‖2 + r2t . (A.14)

For xc ∈ Bi(ε) (guaranteed by Proposition A.0.4), ‖xc − xt‖ > rt. Now let

rt assume the form rt = ζ infBi(ε) ‖xc − xt‖ for an appropriate ζ < 1, and recall that

∇̂βi =
∇βi

‖∇βi‖ , where∇βi = 2(x−oi). With this in mind, one satisfies (A.14) by ensuring

that

1 + ζ2

2
≤
(
(xc − oi)

ᵀ(xc − xt)

‖xc − oi‖ ‖xc − xt‖
)2

=⇒ 2
∣∣ ∇̂β

ᵀ
i (xc − xt)

∣∣2 ≥ ‖xc − xt‖2 + r2t . (A.15)

An appropriately small choice of ε can establish (A.15), as the following derivation

shows:

(xc − oi)
ᵀ(xc − xt)

‖xc − oi‖ ‖xc − xt‖ ≥
√
J

4k

[
(2‖xc − oi‖2)/βi + [αᵀ

i (xc − oi)]/β̄i

]
√
J

4k

[
(2‖xc − oi‖)/βi + ‖αi‖/β̄i

] ‖xc − oi‖
≥ (2‖xc − oi‖2)/βi − (‖αi‖‖xc − oi‖)/β̄i

(2‖xc − oi‖2)/βi + (‖αi‖‖xc − oi‖)/β̄i

=
1− (βi‖αi‖)/(2β̄i‖xc − oi‖)
1 + (βi‖αi‖)/(2β̄i‖xc − oi‖)

= 1− (βi‖αi‖)/(β̄i‖xc − oi‖)
1 + (βi‖αi‖)/(2β̄i‖xc − oi‖)
≥ 1− βi‖αi‖

β̄i‖xc − oi‖
≥ 1− ε ‖αi‖

β̄i‖xc − oi‖
and thus to satisfy (A.11), it suffices to pick

ε <
(
1−
√

1 + ζ2

2

) infi(ρi infBi(ε) β̄i)

supF0(ε) ‖αi‖ =⇒ ε <
(
1−
√

1 + ζ2

2

) β̄i‖xc − oi‖
‖αi‖ .

Proposition A.0.7 There exists k0 > 0 such that for any k > k0, any critical point

xc ∈ Bxt(δt) is a local maximum of Jk

β
.
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Proof To study the critical points in Bxt(δt), we work on the two cases:

Case I: ∇β|xt = 0, xc = xt,

∇J |xt = 0 ⇒ kβ(xt)∇J |xt = J(xt)∇β|xt = 0, we shall have xt as one of the

critical points in Bxt(δt). In this case, for any unit vector q ∈ R
n:

β2

Jk−2
qᵀ∇2(

Jk

β
)|xtq

=qᵀ(kβJ∇2J + k(k − 1)β∇J∇Jᵀ − J2∇2β)q

=qᵀ
(− 4J1.5kβI− J2∇2β

)
q

=− 4r6t kβ − r8t q
ᵀ∇2βq .

Recall that to make the workspace valid, Bxt(rt) should not intersect ∂F , then at xt,

βi > r2t for i ∈ {0 . . .m} ⇒ β > r2mt . So as long as

k > k1 =
1

4
r
(2−2m)
t sup

q
(|qᵀ∇2βq|) ,

qᵀ∇2(J
k

β
)|xtq is guaranteed to be negative for any unit vector q ∈ R

n and the critical

point xt is a local maximum of Jk

β
.

Case II: For any xc = xt, xc ∈ Bxt(δt):

For any unit vector q ∈ R
n, q can be presented as scaled sum of v1 =

∇J
‖∇J‖ and

v2, a unit vector perpendicular to v1, i.e. q = q1v1 + q2v2, q
2
1 + q22 = 1, q1q2 > 0. In

order to ensure that ∇2(J
k

β
) is negative definite at xc, a critical point of Jk

β
in Bxt(δt),

we study the sign of β2

Jk−2 q
ᵀ∇2(J

k

β
)|xcq:

β2

Jk−2
qᵀ∇2(

Jk

β
)|xcq

=
β2

Jk−2

(
q21v

ᵀ
1∇2(

Jk

β
)|xcv1 + q22v

ᵀ
2∇2(

Jk

β
)|xcv2 + q1q2v

ᵀ
1∇2(

Jk

β
)|xcv2 + q1q2v

ᵀ
2∇2(

Jk

β
)|xcv1

)
.

(A.16)

Recall that at critical point xc, kβ∇J = J∇β. Take the norm of both side:

kβ(4J0.5‖xc − xt‖) = J‖∇β‖ , k‖xc − xt‖ = J0.5‖∇β‖
4β

. (A.17)
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The first term in (A.16) can be expanded as:

q21
β2

Jk−2
vᵀ1∇2(

Jk

β
)|xcv1

=q21v
ᵀ
1(kβJ∇2J + k(k − 1)β∇J∇Jᵀ − J2∇2β)v1

=q21v
ᵀ
1

(
kβJ [8(xc − xt)(xc − xt)

ᵀ − 4J0.5I] + k(k − 1)β∇J∇Jᵀ − J2∇2β
)
v1

=q21(8k(2k − 1)βJ‖xc − xt‖2 − 4kβJ1.5 − J2vᵀ1∇2βv1)

(A.17)
= q21(

J2‖∇β‖2
β

− 2J1.5‖∇β‖‖xc − xt‖ − J2vᵀ1∇2βv1 − 4kβJ1.5)

≤q21(
J2‖∇β‖2

β
− J2vᵀ1∇2βv1 − 4kβJ1.5) .

Since v2 is an arbitrary unit vector that is perpendicular to ∇J , it is also per-

pendicular to (xc − xt). The second term in (A.16) can be expanded as:

q22
β2

Jk−2
vᵀ2∇2(

Jk

β
)|xcv2

=q22v
ᵀ
2(kβJ∇2J + k(k − 1)β∇J∇Jᵀ − J2∇2β)v2

=q22v
ᵀ
2

(
kβJ [8(xc − xt)(xc − xt)

ᵀ − 4J0.5I] + k(k − 1)β∇J∇Jᵀ − J2∇2β
)
v2

=q22(−4kβJ1.5 − J2vᵀ2∇2βv2) .

Similarly we shall have:

q1q2
β2

Jk−2
vᵀ1∇2(

Jk

β
)|xcv2 = q1q2(−J2vᵀ1∇2βv2) ,

q1q2
β2

Jk−2
vᵀ2∇2(

Jk

β
)|xcv1 = q1q2(−J2vᵀ2∇2βv1) .

Since ∇2β is symmetric, vᵀ1∇2βv2 = vᵀ2∇2βv1. Now (A.16) can be upper bounded by:

β2

Jk−2
qᵀ∇2(

Jk

β
)|xcq

≤q21(
J2‖∇β‖2

β
− J2vᵀ1∇2βv1 − 4kβJ1.5) + q22(−4kβJ1.5 − J2vᵀ2∇2βv2)

+ q1q2(−J2vᵀ1∇2βv2) + q1q2(−J2vᵀ2∇2βv1)

=− 4kβJ1.5 + q21(
J2‖∇β‖2

β
− J2vᵀ1∇2βv1) + q22(−J2vᵀ2∇2βv2) + 2q1q2(−J2vᵀ1∇2βv2)
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≤− 4kβJ1.5 + J2(
‖∇β‖2

β
+ |vᵀ1∇2βv1|+ |vᵀ2∇2βv2|+ |vᵀ1∇2βv2|) .

Recall that to make the workspace valid, Bxt(rt) should not intersect ∂F , then

in Bxt(δt), βi > (rt− δt)
2 for i ∈ {0 . . .m} ⇒ β > (rt− δt)

2m, and J ≤ r4t . So as long as

k > k2 =
r2t

4(rt − δt)2m

[
sup

xc∈Bxt (δt)

(‖∇β‖2
β

+ |vᵀ1∇2βv1|+ |vᵀ2∇2βv2|+ |vᵀ1∇2βv2|
)]

,

we shall satisfy qᵀ∇2(J
k

β
)|xcq < 0 for any q ∈ R

n and any critical point xc in Bxt(δt)

other than xt is guaranteed to be local maximum of Jk

β
.

To sum up two cases, k > k0 = max{k1, k2} will guarantee any critical point in

Bxt(δt) to be local maximum of Jk

β
.
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