
CONSTRUCTING STRATEGIES FOR GAMES WITH SIMULTANEOUS

MOVEMENT

by

Jeremy Keffer

A dissertation submitted to the Faculty of the University of Delaware
in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Computer Science

Summer 2015

c© 2015 Jeremy Keffer
All Rights Reserved

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 3730247

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

ProQuest Number: 3730247

CONSTRUCTING STRATEGIES FOR GAMES WITH SIMULTANEOUS

MOVEMENT

by

Jeremy Keffer

Approved:
Errol Lloyd, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:
Babatunde Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion
it meets the academic and professional standard required by the
University as a dissertation for the degree of Doctor of Philosophy.

Signed:
Daniel L Chester, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion
it meets the academic and professional standard required by the
University as a dissertation for the degree of Doctor of Philosophy.

Signed:
John Case, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion
it meets the academic and professional standard required by the
University as a dissertation for the degree of Doctor of Philosophy.

Signed:
Kathleen McCoy, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion
it meets the academic and professional standard required by the
University as a dissertation for the degree of Doctor of Philosophy.

Signed:
Jeffrey Heinz, Ph.D
Member of dissertation committee

ACKNOWLEDGMENTS

I’ve made lots of friends during my time at UD. I would love to ac-

knowledge all of you, but the list is so long and I’m also afraid I’d leave

someone out; so I’m going to keep this short.

I’d like to thank my wife, Shuwei. She spent the entirety of my

graduate education living paycheck to paycheck with me. She put up with

me every day. She was there when I was floundering, and when I wasn’t

sure I could ever finish a Ph.D. I know the experience was quite stressful

for her.

I’d also like to thank Dan Chester. It is no exaggeration to say that

without him, this dissertation would not have been possible. He went

above and beyond what should be expected of a doctoral advisor. He gave

me more help, patience, and kindness than I ever deserved. He is the true

mastermind behind this work. It has been my greatest honor and privilege

to play the John Watson to his Sherlock Holmes; and like Dr. Watson, I

will now narrate this story.

iv

TABLE OF CONTENTS

LIST OF ALGORITHMS . vii
LIST OF TABLES . viii
LIST OF FIGURES . ix
ABSTRACT . x

Chapter

1 INTRODUCTION . 1

2 GAME COLLECTION . 4

2.1 Right Turn . 4

2.1.1 Premise . 4
2.1.2 Rules . 5

2.2 Bear Brawl . 7

2.2.1 Premise . 7
2.2.2 1D Hero vs. Bear . 8
2.2.3 2D Heroes vs. Bears . 10

3 TWO-PLAYER, ZERO-SUM GAMES 15

3.1 Matrix Games . 16
3.2 Solving Matrix Games . 17
3.3 Recursive Games . 19
3.4 Value of Recursive Games . 21
3.5 1D Hero vs. Bear as a Recursive Game 23

4 GAMES OF SPEED AND SURVIVAL 25

4.1 Equivalence between Games of Speed and Games of Survival 28

v

4.2 A Constructive Proof of the Existence of Epsilon Strategies . 29

5 GAME THEORY OF LOWERED EXPECTATIONS 42

5.1 Cooperative Reachability . 45
5.2 Finding Policies . 47
5.3 Discussion of Results . 48

5.3.1 Right Turn . 49
5.3.2 Bear Brawl . 53
5.3.3 Other Observations . 55

6 CONCLUSION AND RELATED WORK 56

6.1 Related Work . 56
6.2 Future Work . 59

6.2.1 Producing a Program from a Policy Table 59
6.2.2 Using forward Search with a heuristic evaluation

function . 60
6.2.3 Symbolic Game Theory 64
6.2.4 A Theory of Interesting Play 65

6.3 Closing Remarks . 66

BIBLIOGRAPHY . 68

vi

LIST OF ALGORITHMS

2.1 Transition function for Right Turn 6

2.2 Transition function for 1D1H1B 9

2.3 INTENDED : U× A 7→ N× N . 12

2.4 IMMOBILE : P(U)× U× ~A 7→ {False, True} 12

2.5 Successor Function . 13

3.1 Possible hero policy in 1D1H1B 24

3.2 Possible bear policy in 1D1H1B 24

4.1 Procedure for constructing ε-strategies 31

5.1 Thok’s lowered expectations strategy 51

6.1 Making a recursive game on the fly 63

vii

LIST OF TABLES

6.1 Example policy table for 1d1h1b 61

viii

LIST OF FIGURES

2.1 2D Hero vs. Bears . 14

5.1 Policy for Thok shown graphically. 43

5.2 Policy for Cal shown graphically. 44

5.3 Thok’s lowered expectations policy. 49

5.4 Thok’s lowered expectations pure policy. 50

5.5 Cal’s lowered expectations pure policy. 52

5.6 Bear Brawl hero lowered expectations policy sample. . . . 53

5.7 Bear Brawl hero lowered expectations policy sample. . . . 54

ix

ABSTRACT

From the early days of AI, computers have been programmed to play

games against human players. Most of the AI work has sought to build

world-champion programs to play turn-based games such as Chess and

Checkers, however computer games increasingly provide for entertaining

real-time play. In this dissertation, we present an extension of recursive

game theory, which can be used to analyze games involving simultaneous

movement. We include an algorithm which can be used to practically solve

recursive games, and present a proof of its correctness. We also define a

game theory of lowered expectations to deal with situations where game

theory currently fails to give players a definitive strategy, and demonstrate

its applicability using several example games.

x

Chapter 1

INTRODUCTION

From the early days of AI, computers have been programmed to

play games against human players [26, 27]. That continues to this day

[46, 40, 22, 9, 41, 29, 43, 30, 5, 47]. Most of the AI work has sought to

build world-champion programs to play turn-based games such as Chess

and Checkers [6, 40]. But since its beginnings in the late 1970s, com-

puter gaming has become more and more prevalent as a form of recre-

ation/entertainment. In 2009, it was reported that computer and video

games was a ten and a half billion dollar industry [13]. In contrast to the

turn-based two-player games that AI originally studied, the two-player and

multi-player games developed by the computer gaming industry increas-

ingly provide for simultaneous movement. Furthermore, these computer

games, while challenging, are also meant to be entertaining, which is to

say enjoyable, interesting.

Simultaneous movement was seldom used in games before the ad-

vent of computers because of the bookkeeping complexities it introduces.

But now that everyone has a computer, simultaneous movement games

are more common. They are more common because in a sense they are

more realistic; in war and business competition, the participants don’t

take turns, they act as soon as they know what they want to do. There is

work being done in the Artificial Intelligence community that involve this

more realistic action, but a) it is still in its early phases and b) it appears

1

to have ignored what classical game theory has to say about simultaneous

movement games [12, 8].

In this dissertation we examine a branch of recursive game theory

which can be used to analyze computer games. Recursive game theory[15,

36, 45, 7] deals with simultaneous movement games with many (possibly

looping) states, and we believe this often overlooked branch of game theory

to be incredibly applicable to modern computer games. This theory gives

us an idea of how a good AI can play, and as such we’d like to know what

it has to say before designing new computer game AIs. We also take it one

step further by defining the game theory of lowered expectations, which

allows a player to determine strategies in situations where traditional game

theory would have nothing to say.

In order for the reader to understand our contributions to recursive

game theory we must first provide some background on the theory and on

game theory in general. We also need some example games to informally

illustrate the kinds of games we’re interested in, as well as illustrate var-

ious points of our theory. The rest of this dissertation is structured as

follows: In Chapter 2 we describe the premise of several example games

which have properties found in modern games, as well as give a complete

formalization of these games. In Chapter 3 we briefly discuss the relevant

aspects of game theory in general and recursive game theory specifically

required to understand our contributions to the theory. We then describe

our contributions to recursive game theory in 4 and 5. In Chapter 4, we

introduce a class of recursive games we call Games of Speed and show how

there is a straightforward transformation between this class of games and

another already known class of games. We then describe an algorithm for

finding good strategies for both players of a recursive game, along with a

proof of its correctness. In Chapter 5, we define and analyze game theory

2

of lowered expectations. Finally, in Chapter 6 we suggest several paths for-

ward building on the work of this dissertation, as well as offer our closing

remarks.

3

Chapter 2

GAME COLLECTION

In this section we provide descriptions of several games used in this

proposal. The premise of each game is given, followed by a formalization

of the game.

2.1 Right Turn

Right Turn is a minor variation on the Hamstrung Squad Car game

first proposed in [20]. Right Turn has the property that the orc can’t win

when the game starts from certain states and the monkey plays optimally.

Nevertheless, when the game is at one of these states, the orc should prefer

some actions over others. Consideration of these preferences leads to our

Game Theory of Lowered Expectations in Chapter 5. In Section 2.1.1 we

describe the premise of the game. We then describe formally the rules of

the game in Section 2.1.2.

2.1.1 Premise

Thok Fump is a soldier in the High Orc Guard. Unfortunately today

his pet Capuchin monkey Lil’ Cal decided to run away whilst the two were

outside playing. To further complicate matters, today is right turn Friday!

That is, it’s against the law in Thok’s village to turn left (and it’s not a good

idea to break orc laws). On the bright side, Thok’s training has rendered

him an excellent sprinter (so he’s able to outrun Lil’ Cal). As an orc, Thok

isn’t very smart - so he needs our help to catch his Lil’ Cal.

4

2.1.2 Rules

The naive way to represent the state of this game would require five

parameters: two parameters to locate the position of the monkey, two

parameters to locate the position of the orc, and one parameter to show

the orc’s orientation (facing North, South, East, or West). The number

of parameters can be reduced to two by considering any states that can

be transformed into each other by translations and/or 90◦ rotations as the

same state. That state is represented by the single configuration where the

monkey is at the origin of the Cartesian plane and the orientation of the

orc is to be facing North. The only remaining parameters that are needed

to specify a state are then the coordinates of the orc relative to the monkey.

(This representation is similar to the one used by Rufus Isaacs[20].)

A State in Right Turn is a vector (x, y) such that x, y ∈ Z; and (x, y)

represents the position of the orc facing North on the Cartesian plane rel-

ative to the position of the monkey.

The following classes of states are terminal and are win states for

the orc:

(x, y) 3−− |x| ≤ 1 ∧ |y| ≤ 1 (2.1.1)

There are no win states for the monkey. The monkey’s only goal is

to keep the game going.

Informally, the game ends when the monkey is within arm’s reach of

the orc - that is, when the orc is in the monkey’s Moore neighborhood [19].

Possible actions at each state for the orc are to either move for-

ward two steps or to turn right and move forward two steps. These shall

henceforth be referred to as F and R, respectively. Possible actions for the

monkey in any state are to move North (N), South (S), East (E), or West

(W) one step.

5

Let α be the action chosen by the orc and β the action chosen by

the monkey. Then, for state γ = (x, y) the next state γ′ is obtained via

Algorithm 2.1.

In English: when the monkey moves, the result is that the orc is

displaced by one unit in the opposing direction. The orc, who is always

left facing North, will move North by two units when choosing to move

forward. When the orc chooses to turn right, he will move two units to the

East and the entire board is rotated counterclockwise 90 degrees around

the monkey (orienting the orc Northward again).

Algorithm 2.1 Transition function for Right Turn
(x′, y′)← (x, y)

if β = N then
y′ ← y′ − 1

else if β = S then
y′ ← y′ + 1

else if β = E then
x′ ← x′ − 1

else if β = W then
x′ ← x′ + 1

end if

if α = F then
y′ ← y′ + 2

else if α = R then
t← x′ + 2
x′ ← −y′
y′ ← t

end if

return (x′, y′)

6

2.2 Bear Brawl

Bear Brawl is a class of simple, perfect information games which

embody many of the basic concepts found in fantasy games played by hu-

mans. The premise of the game is explained in Section 2.2.1. In Section

2.2.2 we describe a simple instance of Bear Brawl which we will use to il-

lustrate our theory in the later sections, and in Section 2.2.3 we describe a

more complex instance which more closely resembles games that humans

play.

2.2.1 Premise

In an extortion attempt The Evil Wizard Bertram cast a devious spell

upon the kingdom of Quahogeroth. Unless King Stewie hands over the

entire contents of the royal treasury to Bertram, all of Quahogeroth will

remain under Bertram’s spell whereupon they will dance to Aqua’s 1997

single ”Barbie Girl” in perpetuity.

Distraught, King Stewie sought the help of a band of noble warriors

to seek out the magical antidote to Bertram’s spell. As it turns out, the

main ingredient to the antidote is a magical powder which can be harvested

from Phoolabairs Forest. Unfortunately, however, the bears indigenous to

the forest will guard the powder with their lives as they enjoy sniffing it to

get high.1

Can our heroes brave a forest of cracked out bears in order to save

Quahogeroth from an eternity of getting down to cheesy 90s techno? Will

the bears be able to successfully guard their precious mind-altering sub-

stance from outside looters? In the following chapters, we will suggest

1 Any resemblance between the magic powder and any real mind-altering
substance used by humans is purely coincidental.

7

how game theory, machine learning, and heuristic search can be used to

answer these questions and more.

2.2.2 1D Hero vs. Bear

In this section we introduce the rules of a variation of Bear Brawl we

refer to as the One-Dimensional one hero vs. one bear problem (1D1H1B).

This variation is played on a (possibly infinite) one-dimensional board

indexed by Z. The powder is always located at location 0. The game pro-

gresses as a series of rounds such that on each round both the hero and

the bear (independently) choose one of Move left, Move right, or Attack.

A state in 1D1H1B is a vector (u, v, x, y) such that u, v ∈ N, x, y ∈ Z;

and u represents the hit points of the hero, v the hit points of the bear, x

the location of the hero, and y the location of the bear.

The following classes of states are terminal and are win states for

the hero:

(u, v, 0, y) 3−− u, v > 0 ∧ y 6= 0 (2.2.1)

(u, 0, x, y) 3−− u > 0 (2.2.2)

The following states are terminal and are win states for the bear:

(0, v, x, y) (2.2.3)

Informally, The hero wins either when she2 obtains the powder (her

position is 0 and the bear’s is not), or when she kills the bear (the bear’s

2 Our hero in this game is a woman. The bear, however, is male. A big,
angry, tweaked male bear.

8

HP reaches 0). If at any point the hero dies (her HP reaches 0), the bear is

declared the victor.3

Possible actions at any state for either player are to move left, move

right, or attack. These shall henceforth be referred to as L, R, and A,

respectively.

Let α be the action chosen by the hero and β the action chosen by

the bear. Then, for state γ = (u, v, x, y) the next state γ′ is obtained via

Algorithm 2.2. In English, moving left or right will cause your location

Algorithm 2.2 Transition function for 1D1H1B
(u′, v′, x′, y′)← (u, v, x, y)

if α = L then
x′ ← x′ − 1

else if α = R then
x′ ← x′ + 1

end if

if β = L then
y′ ← y′ − 1

else if β = R then
y′ ← y′ + 1

end if

if α = A ∧ x′ = y′ then
v′ ← v′ − 1

end if

if β = A ∧ x′ = y′ then
u′ ← u′ − 1

end if

return (u′, v′, x′, y′)

to decrement or increment, respectively. Attacking when your opponent

3 Note that the bear may go down a martyr if he and the hero die at the
same time.

9

occupies the same location as yourself will cause your opponent to lose

one hit point. When resolving actions to determine the next state, moves

resolve before attacks - i.e. a player can walk into an attack or jump out

of the way of one.

2.2.3 2D Heroes vs. Bears

In this section, we introduce the rules of a variation of Bear Brawl

we refer to as Generalized Two-Dimensional Bear Brawl (G2DBB).

This variation is played on a (possibly infinite) two-dimensional grid

with both axes indexed by N. A game of G2DBB can have any number

of Units, each of which is either a Hero or a Bear. On each round of the

game, a unit can either Move or Attack in one of the orthogonal directions.

On each round, the hero units (as a team) decide upon their actions si-

multaneously with and independently from the bear units (who are also a

team).

Formally, a unit u is a tuple (s, (x, y), z) 3−− s ∈ {HERO,BEAR} ∧

x, y, z ∈ N We use U to denote the set of all possible Units. A hero h is

a unit such that s(h) = HERO, and likewise a bear b is a unit such that

s(b) = BEAR. For any unit u, the pair (x(u), y(u)) denotes u’s position on

the board, and z(u) denotes u’s hit points.

An action in G2DBB is a tuple (a, d) 3−− a ∈ {Move, Attack} ∧ d ∈

{North, South, West, East}. We use A to denote the set of all possible actions;

and ~A to denote the set of all vectors of actions indexed by U.

A state S in G2DBB is a tuple (U, x, y) where U ⊂ U 6= ∅ is the set of

units in the game, and (∀u ∈ U)¬(∃v ∈ U)[x(u) = x(v) ∧ y(u) = y(v) ∧ u 6= v]

(in English, no two distinct units may occupy the same location); and the

pair (x(S), y(S)) denotes the location of the powder. We use S to denote the

10

entire state space for the game. The following class of states are terminal

and are win states for the heroes:

(U, x, y) 3−− (∀u ∈ U 6= ∅)(s(u) = HERO)

∨ (∃u ∈ U)[(x(u) = x) ∧ (y(u) = y) ∧ (s(u) = HERO)]
(2.2.4)

The following class of states are terminal and are win states for the bears:

(U, x, y) 3−− ¬(∃u ∈ U)(s(u) = HERO) (2.2.5)

Informally, the heroes win either when one of them obtains the pow-

der (a hero’s location is the same as the powder’s) or when there are no

bears (as we’ll later see, a unit is removed from the game when its hit

points are reduced to 0). If at any point there are no heroes left, the bears

win.

The Successor Function F : S× ~A 7→ S is defined in Algorithm 2.5. In

English, moves are resolved first. A unit can move to its desired square

iff that square is not inhabited by a unit who won’t/can’t move this round

and there is not another unit who wishes to move to that square on this

round. After all units who can and wish to move have, attacks are resolved.

When a unit attacks a square, if a unit on the opposing team is occupying

that square, the occupying unit loses one hit point. If a unit’s HP drops to

0, then that unit dies and is removed from the game.

Algorithms 2.3 and 2.4 were extracted from Algorithm 2.5 for pur-

poses of clarity. Algorithm 2.3 gives the location unit u intends to be in

the following round given that u’s action is a. Algorithm 2.4 determines

whether or not a unit u intends to move and is not blocked from doing so

by any other unit in U given that the actions of the units in U are ~a.

11

Algorithm 2.3 INTENDED : U× A 7→ N× N
function INTENDED(u, a)

if a = (Move, North) then
return (x(u), y(u) + 1)

else if a = (Move, South) then
return (x(u), y(u)− 1)

else if a = (Move, East) then
return (x(u) + 1, y(u))

else if a = (Move, West) then
return (x(u)− 1, y(u))

else
return (x(u), y(u))

end if
end function

Algorithm 2.4 IMMOBILE : P(U)× U× ~A 7→ {False, True}
function IMMOBILE(U, u,~a)

if a(~a[u]) 6= Move then
return True

else if (∃v ∈ U)[INTENDED(u,~a[u]) = INTENDED(v,~a[v]) ∧ v 6= u] then
return True

else if (∃v ∈ U)[INTENDED(u,~a[u]) = (x(v), y(v))] then
return IMMOBILE(U \ {u}, v,~a)

else
return False

end if
end function

12

Algorithm 2.5 Successor Function
function F(S,~a)

U ′ ← ∅

for all u ∈ U(S) do
if IMMOBILE(U(S), u,~a) then

U ′ ← U ′ ∪ {u}
else

U ′ ← U ′ ∪ {(s(u), INTENDED(u,~a[u]), z(u))}
end if

end for

for all u ∈ U ′ do
if a(~a[u]) = Attack then

x′ ← x(u)
y′ ← y(u)
if d(~a[u]) = North then

y′ ← y′ + 1
else if d(~a[u]) = South then

y′ ← y′ − 1
else if d(~a[u]) = East then

x′ ← x′ + 1
else if d(~a[u]) = West then

x′ ← x′ − 1
end if

if (∃v ∈ U ′)[(x(v), y(v)) = (x′, y′)) ∧ (s(u) 6= s(v))] then
U ′ ← U ′ \ {v} ∪ {(s(v), (x(v), y(v)), z(v)− 1)}

end if
end if

end for

for all u ∈ U ′ do
if z(u) ≤ 0 then

U ′ ← U ′ \ {u}
end if

end for

return (U ′, x(S), y(S))
end function

13

Figure 2.1: 2D Hero vs. Bears
One instance of the game we will use as an example involves one hero
(Lady Eve) vs. three bears. Being outnumbered, Eve will begin the game
with more HP than the bears. The starting location of Eve and those of
the bears are arbitrary, as is the location of the powder. In this figure, the
blue bear is at the same location as the powder.

14

Chapter 3

TWO-PLAYER, ZERO-SUM GAMES

In this section we will describe and discuss the background nec-

essary in understanding our approach to games. We will introduce the

concept of a two-player, zero-sum game and describe the formal frame-

work which we use to analyze and discuss this class of games. We be-

gin by stating the attributes which make a game a two-player, zero-sum

game. Then, in Section 3.1 we define matrix games and describe necessary

foundational theory in two-player zero-sum games. We then introduce the

concept of a recursive game in Section 3.3, which is the formalization of

two-player zero-sum games we use in our approach to games.

A two-player, zero-sum game is any game which satisfies the follow-

ing properties:

1. There are two (and only two) opposing factions (players) making deci-

sions which affect the outcome of the game.

2. At some point, the game is expected to terminate.

3. When the game ends, the two players are awarded a payoff. One

player’s gain is the other player’s loss - i.e. The sum of the players’

payoffs is 0.

Keeping these properties in mind, we will spend the remainder of

this chapter presenting a formal definition of two-player, zero-sum games.

15

3.1 Matrix Games

The theory in this section is derived from [34]. It deals with the

simplest kind of game, where the game is over after one round of play.

Most treatments of game theory start with this kind of game. For a more

in depth discussion of game theory and matrix games see [34], [44] or [28].

A matrix game Γ is an object with the structure:

Γ = (N,C, u) (3.1.1)

where N is the set {P1, P2} of players, C is a vector (C1, C2), where C1 and

C2 are the sets of available actions for player 1 and player 2, respectively,

and u is a function C1 × C2 7→ R which is the payoff function.1

As an example, consider the MacWiggins brothers, Sven and Olaf.

It’s a typical evening at the bar for these two. The alcohol has been flowing

freely, and they have again gotten into a heated argument over who has the

finest, most full bodied beard. These arguments over facial hair generally

culminate in fisticuffs, and tonight was no exception. Now Sven, who is

ambidextrous (and thus is capable of punching equally hard with either

arm), has Olaf up against the wall. Olaf, not knowing from which direction

his brother’s blow will come, has the option of dodging either left or right.

If Sven punches with his right hand and Olaf dodges to Sven’s right,

the punch will connect and Olaf will end up with a black eye. The outcome

will be very similar if Sven punches with his left hand and Olaf dodges to

Sven’s left. However, if Sven punches with his right hand and Olaf dodges

to the left or vice-versa, Sven will miss his brother and hit the wall, only to

end up with a broken hand.

1 N.B. that one of the players (generally 1) is the maximizing player with
the goal of maximizing u. The other player is the minimizing player with
the goal of minimizing u.

16

We can model the MacWigginses’ situation as the matrix game

({1, 2}, ({PL, PR}, {DL,DR}), u) where Sven is player 1, Olaf player 2, PL

and PR stand for punch left and punch right, respectively, DL and DR

stand for dodge left and dodge right, respectively, and u is defined by the

matrix in (3.1.2).


u DL DR

PL 1 −1

PR −1 1

 (3.1.2)

Note that, as the maximizing player, Sven’s most favorable outcomes

are (PL,DL) and (PR,DR) - exactly the outcomes in which his fist makes

contact with his brother’s skull. Olaf as the minimizing player prefers

(PL,DR) and (PR,DL) - which correspond to those outcomes in which

Sven ends up with bloody knuckles.

3.2 Solving Matrix Games

A strategy σi for player i is defined to be a probability distribution

over Ci - that is, σi : Ci 7→ {x ∈ R|0 ≤ x ≤ 1} and
∑

c∈Ci
σi(c) = 1. A strategy

σi is said to be pure if (∃c ∈ Ci)[(σi(c) = 1) ∧ (∀c′ ∈ Ci)(c
′ = c ∨ σi(c′) = 0)],

i.e. a pure strategy is one in which the player chooses a specific action

with 100% certainty. A strategy σi which is not a pure strategy is a mixed

strategy, in which the player i stochastically chooses his/her action using

the probability distribution defined by σi. Let ∆(Ci) be the set of all possible

strategies ranging over Ci.

Going back to our farmer siblings, (1, 0) would be the pure strategy

for Sven in which he always chooses to punch with his left hand. Olaf

could counter this strategy with the pure strategy (0, 1), in which case he

would always dodge to the right. An example mixed strategy for Sven is

17

(0.5, 0.5) - meaning he will choose to deliver a right hook with 50% proba-

bility, and a left hook the other 50%.

For a matrix game Γ, Let σ = (σ1, σ2), where σ1 and σ2 are strategies

for players 1 and 2, respectively, be a strategy profile. The utility u′(σ) of σ

is defined to be: ∑
c1∈C1

∑
c2∈C2

σ1(c1) · σ2(c2) · u(c1, c2) (3.2.1)

A strategy profile σ is a Nash equilibrium[35] iff

(∀τ ∈ ∆(C1))[u′(σ) ≥ u′((τ, σ2))] ∧ (∀τ ∈ ∆(C2))[u′(σ) ≤ u′((σ1, τ))] (3.2.2)

That is, neither player could increase her/his expected payoff by

unilaterally deviating from her/his strategy as specified by σ.2

To find a Nash equilibrium σ for a game Γ, one must solve the fol-

lowing pair of dual optimization problems:

maximize v subject to:

(∀c2 ∈ C2)

(
v ≤

∑
c1∈C1

u(c1, c2) · xc1

)
∑
c1∈C1

xc1 = 1

(∀c1 ∈ C1)(xc1 ≥ 0)

(3.2.3)

2 Note that equation (3.2.2) is the definition of a Nash equilibrium when
player 1 is the maximizing player and player 2 the minimizing. If the oppo-
site case is true, the inequalities in (3.2.2) must be reversed.

18

and

minimize w subject to:

(∀c1 ∈ C1)

(
w ≥

∑
c2∈C2

u(c1, c2) · yc2

)
∑
c2∈C2

yc2 = 1

(∀c2 ∈ C2)(yc2 ≥ 0)

(3.2.4)

The resulting vectors (xc1|c1 ∈ C1) of (3.2.3) and (yc2|c2 ∈ C2) of (3.2.4)

give us σ1 and σ2, respectively, of σ. This result, including the fact that

v = w is the foundation of two-player zero-sum game theory. For more

information on optimization, solving optimization problems using linear

programming, and linear programming as it relates to matrix games see

[49]. A very good discussion on matrix games as linear programming prob-

lems is also in [44].

The fundamental theorem about about two-person zero-sum matrix

games is that they all have Nash equilibria, and if there is more than one

Nash equilibrium for a game, the value of the game is the same for each

Nash equilibrium [4, 28, 34, 44]. For any game Γ, let N (Γ) be some Nash

equilibrium for Γ, and let V(Γ) be u′(N (Γ)) or the value of Γ. In practice N

and V are computed together. As it turns out, in the case of the MacWig-

ginses, ((0.5, 0.5), (0.5, 0.5)) is the only Nash equilibrium profile. Both Sven

and Olaf should choose randomly between their possible actions, and the

value of the game is 0.

3.3 Recursive Games

Recursive games were originally postulated by Everett in [15].

19

A recursive game <Γ is defined as follows:

<Γ = (Γ,ΓT , N, CΩ, C, f, p) (3.3.1)

Where N is as defined in equation (3.1.1); Γ is a (possibly infinite) set

of states; ΓT ⊂ Γ is a set of terminal states; CΩ is a tuple (CΩ
1 , C

Ω
2) where CΩ

1

and CΩ
2 are the sets of all available actions for player 1 and 2, respectively;

C is a tuple (C1, C2) such that Ci for i ∈ {1, 2} is a function Γ 7→ P(CΩ
i) which

gives the set of available actions for player i in a given state; f is a partial

function Γ \ ΓT × CΩ
1 × CΩ

2 7→ Γ which is the transition function and satisfies

the property (∀γ ∈ Γ \ ΓT)(∀c1 ∈ C1(γ))(∀c2 ∈ C2(γ))(f(γ, c1, c2) ∈ Γ);3 and p is

a function ΓT 7→ R which is the payoff function.

For a small example, let’s consider the sister rogues Guan Damei

and Guan Xiaomei.4 Damei is an exceptionally talented archer, whereas

Xiaomei prefers daggers and is a master of stealth. The sisters regularly

hold practice sessions to keep up their position as the two best rogues in

the land. In this particular session, Damei has only one arrow left to fire.

If she fires it while her sister is hiding, she’ll be a sitting duck for Xiaomei

to knife in the back at her leisure. However, Xaiomei can pop out of stealth

at any moment and surprise stab her sister. It’s only when Damei chooses

to fire her arrow at the same time her sister drops stealth that she’ll come

out on top (not even Xiaomei is fast enough to avoid Damei’s perfect aim).5

3 In Everett’s original formulation, the transition function mapped to a
probability distribution over next states. We wanted to study games that
were as deterministic as possible, so we simplified the definition of recur-
sive game such that there is only one next state for each choice of the
players.

4 ”Big Sister” and ”Little Sister”, respectively.

5 To be clear, the sisters use prop weapons during training - the only harm
done to the loser is to her pride.

20

We can model this particular session as the recursive game

({S,D,X}, {D,X}, ({W,R}, {W,F}), (C1, C2), f, p) where S denotes the start of

the session, D the situation where Xiaomei is pierced by the arrow, and

X the situation where Damei gets knifed. Being designated as player 1,

Xiaomei’s available actions are to wait (W) or run (R). Likewise, Damei’s

available actions are to wait or to fire (F). C1 is the function which gives

the set {W,R} on any input and C2 the function which returns {W,F} on

any input. S being the only value possible as the first argument of f , the

matrix in (3.3.2) defines f . 
S W F

W S X

R X D

 (3.3.2)

p is defined in (3.3.3).

p(x) =

 1 if x = X

−1 if x = D
(3.3.3)

3.4 Value of Recursive Games

In recursive games, the value of each game state is dependent on the

values of the other game states. Given a game RΓ as specified in (3.3.1),

an assignment vector ~v of values to the game states in Γ, and a game state

γ in Γ \ ΓT , we can define matrix game G(γ,~v) to be

G(γ,~v) = (N, (C1(γ), C2(γ)), λx, y.~v[f(γ, x, y)]) (3.4.1)

The matrix defining the utility function for this game is the matrix defining

transitions from γ (represented by the function f with γ as the first argu-

ment) with each element (a game state in Γ) replaced by the value assigned

to the element by ~v. This game has a value as discussed in Section 3.2.

Since G is defined on the non-terminal states and the payoff function p is

21

defined on the terminal states, we can compute what the game value of

each state must be assuming that the games states have been assigned

the values specified by ~v. Let F (~v) be the result of that computation. For γ

in Γ,

F (~v)[γ] =

 p(γ) if γ ∈ ΓT

V(G(γ,~v)) otherwise
(3.4.2)

The only way that a value assignment ~v makes sense as a vector of

game values for the game states in Γ is for it to be a fixed point of F , that

is, the equation

~v = F (~v) (3.4.3)

must be satisfied. It turns out that this equation always has a solution,

but unfortunately, it can have many solutions.

In [15], Everett proved that every recursive game <Γ has a unique

associated vector ~v∗ indexed by Γ that not only is a fixed point of (3.4.3),

but satisfies other desirable properties. He called ~v∗ the critical vector for

<Γ. He further proved that knowing ~v∗ is not enough in general to find a

strategy such that the expected payoff matches the values in ~v∗. However,

he did prove that for any ε > 0 there is a strategy profile σε such that for all

γ ∈ Γ, the expected value of the game at γ is within ±ε of ~v∗[γ] for any player

who plays their respective strategy in σε. In other words, players can find

strategies which will get them arbitrarily close to the value of the game,

but cannot achieve an expected payoff equal to the value of the game in

general. Such strategies are called ε strategies.

In the case of the Guan sisters, the higher the probability with which

both Damei and Xiaomei choose to wait, the closer the expected value of

the game gets to 1 (a win for Xiaomei). However, in the case where both

rogues choose to wait 100% of the time, the game never ends and therefore

neither woman wins (so the value of the game is effectively 0).

22

3.5 1D Hero vs. Bear as a Recursive Game

All of the games defined in Chapter 2 can be formalized as recursive

games. As an example, 1D1H1B as a recursive game is:

(Γ,ΓT , {h, b}, ({L,R,A}, {L,R,A}), (C,C), f, p) (3.5.1)

where Γ is the set of all tuples of the form (u, v, x, y) 3−− u, v ∈ N ∧ x, y ∈ Z,

ΓT is the set of all states in Γ matching the descriptions in (2.2.1), (2.2.2),

and (2.2.3), C is a function which returns {L,R,A} on any input, f is the

function defined by algorithm 2.2, and the payoff function p is defined as

such:

p(γ) =

 1 if γ is a win for the hero

−1 otherwise
(3.5.2)

We have determined that the game value vector ~v for this game is

~v[(u, v, x, y)] =

 1 if |x| < |y| ∨ (|x| = |y| ∧ u > v) ∨ (|x| > |y| ∧ u > v + 1)

−1 otherwise
(3.5.3)

Possible policies for this game (in general, games can have more than one

optimal strategy profile for each game state) are shown in Algorithms 3.1

and 3.2.

23

Algorithm 3.1 Possible hero policy in 1D1H1B
function HEROACT((u, v, x, y))

if 0 = |x| = |y| ∧ u > v then
return A

else if 0 < |x| < |y| then
return R if x < 0 else L

else if 0 < |x| = |y| ∧ u > v then
return R if x < 0 else L

else if |y| < |x| ∧ u > v + 1 then
return R if x < 0 else L

else
return R if x ≥ y else L

end if
end function

Algorithm 3.2 Possible bear policy in 1D1H1B
function BEARACT((u, v, x, y))

if 0 = |y| = |x| ∧ v ≥ u then
return A

else if 0 = |y| < |x| ∧ v ≥ u− 1 then
return A

else if 0 < |y| = |x| ∧ v ≥ u then
return R if y < 0 else L

else if 0 < |y| < |x| ∧ v ≥ u− 1 then
return R if y < 0 else L

else
return R if y ≥ x else L

end if
end function

24

Chapter 4

GAMES OF SPEED AND SURVIVAL

So far we’ve been talking about how to extract a policy for playing

to win. In fact, game theory is entirely premised upon the idea that all

players are playing to win. However, our end goal is not necessarily to

create an AI opponent who plays to win, but rather one who plays to make

the game entertaining for the human player. One way to do this is for

the computer to keep the game going by simply thwarting the human’s

attempt at winning. [44, 47]

This goal suggests a type of game analysis that is inspired by Ru-

fus Isaacs’ differential game theory [20], specifically his analysis of what

he called discrete differential games. Discrete differential games are very

similar to recursive games in that they consist of multiple states in which

some are terminal. However, these games are limited in that only one

of the players has a choice of action at any given state. Isaacs’ method

for solving these games involves assigning a payoff value of 0 to states in

which player 1 wins the game. He then works backward from terminal

states, assigning a value of 1 to states which are exactly 1 move away from

some terminal, 2 to those which are 2 moves away, and so on and so forth.

The end result is that the value of the game at any given state γ is the time

(in combined actions for players 1 and 2) which it will take for player 1 to

win the game. We shall extend this method of analysis for recursive games

25

thusly. For a given recursive game <Γ, we define p on terminal state γ to

be

p(γ) =

 0 if γ is a win for player 1

∞ otherwise
(4.0.1)

Since this implies that player 1 is now the minimizing player, we shall

define a new value function V ′ on any matrix game Γ to be

V ′(Γ) = −V((N, (C1, C2), λx, y.− u(x, y))) (4.0.2)

This computes the minimized value of the matrix game for player 1 by

first reversing the direction of payoffs, maximizing the payoff to player 1 in

the usual manner, and then reversing the direction of payoff again. The

vector of game values for states of the game will then be a fixed point of

the function

T (~v)[γ] =

 p(γ) if γ ∈ ΓT

1 + V ′(G(γ,~v)) otherwise
(4.0.3)

Rather than representing an exact number of simultaneous rounds re-

quired for player 1 to achieve a win, the value of the game at a state γ is

the expected number of rounds it will take player 1 to win the game play-

ing forward from γ. Note that by using this definition for the value of the

game, player 2 will value playing the game forever equally to winning.

It should quickly become apparent, though, that games with payoffs

of ∞ are difficult to analyze due to the way infinity propagates/dominates

in arithmetic. Hence, we would rather define p as

p(γ) =

 0 if γ is a win for player 1

K otherwise
(4.0.4)

for some arbitrary integer K so large that it may be considered a good ap-

proximation of infinity. Using arbitrarily large values in place of infinity in

games is not a new concept [4]; however, our focus in doing so is different.

26

While Başar and Olsder were concerned with games that are played for

only a finite number of rounds and assumes that all games are played for

K rounds, for us K is simply a very large number that the players may not

know in advance. The players must play as if the game may never end,

though player 1 will try to end the game by winning.

We can further normalize the analysis by introducing a step offset

δ = 1
K

and using the following function to describe the value of the game

T (~v)[γ] =

 p(γ) if γ ∈ ΓT

min(1, δ + V ′(G(γ,~v))) otherwise
(4.0.5)

If we also use p such that

p(γ) =

 0 if γ is a win for player 1

1 otherwise
(4.0.6)

we now get a game where the value at any state γ is in the range [0, 1].

We call these games Games of Speed - as the structure of such games

encourages player 1 to hurry up and win, and conversely player 2 to do

everything possible to slow player 1 down.

Using a term to discount the expected value of the game based on

how far the game is from a terminal state is nothing new. In [45], the

authors introduced a 0 < β < 1 term they called a discount factor which

they used to scale values yielded by F . However, as we shall see in Section

4.2 the use of the δ step offset as a by product of defining Games of Speed

is crucial to the algorithm for finding strategies for both players.

We would like a formalization more closely related to the original

games studied by Everett, where player 1 is the maximizing player. There

exists a class of games that has been studied in the literature called Games

27

of Survival (for player 2) [11]. The defining property of these games is the p

function:

p(γ) =

 1 if γ is a win for player 1

0 otherwise
(4.0.7)

A Game of Survival has the natural interpretation that the value of the

game at any state γ is the probability that player 1 will win going forward

from γ.

4.1 Equivalence between Games of Speed and Games of Survival

As it turns out, games of speed and games of survival are equivalent

formalizations.

Theorem 1. For every Game of Speed <Γ, there is a corresponding Game

of Survival <Γ′.

Proof. We will first make the strategy-preserving transformation of sub-

tracting from 1 the value of the game at each state. This, of course, will

change p in a game of speed to

p(γ) =

 1 if γ is a win for player 1

0 otherwise
(4.1.1)

which is precisely the definition of p in a Game of Survival. This also gives

us a new function for which to find a fixed point:

T ′(~v)[γ] =

 p(γ) if γ ∈ ΓT

max(0,V(G(γ,~v))− δ) otherwise
(4.1.2)

28

To see why the second case of T ′ is as above, let ~v be a fixed point

for T , and ~v′ be the vector which results from subtracting each element of

~v from 1. Then for any γ ∈ Γ \ ΓT ,

~v′[γ] = 1− ~v[γ]

= 1− T (~v)[γ]

= 1−min(1, δ + V ′(G(γ,~v)))

= max(0, 1− (δ + V ′(G(γ,~v))))

= max(0, 1− δ − V ′(G(γ,~v)))

= max(0, 1− V ′(G(γ,~v))− δ)

= max(0, 1 + V(G(γ,−~v))− δ)

= max(0,V(G(γ,~1− ~v))− δ)

= max(0,V(G(γ,~v′))− δ)

= T ′(~v′)[γ]

(4.1.3)

where ~1 is the vector of size |Γ| with all its elements set to 1. N.B. that

several lines of (4.1.3) follow from the definitions of G in (3.4.1) and V ′ in

(4.0.2).

Clearly analysis of the game of speed (4.0.5) and analysis of the cor-

responding game of survival (4.1.2) yield the same strategies. When this

step offset analysis of a game of survival is compared to the discount factor

analysis from [45] of the same game, it is clear that the strategies obtained

converge as δ goes to 0 and β goes to 1.

4.2 A Constructive Proof of the Existence of Epsilon Strategies

Most proofs of the existence of ε strategies require ~v∗ to be known

to get the strategy[15, 36, 45]. In [45], Thuijsman and Vrieze show a con-

structive proof of ε strategies, but this proof still relies upon the need to

know the value of ~v∗ to obtain strategies for the losing player. While Chat-

terjee et al do offer an algorithm for obtaining ε-strategies in [7], their

29

approach is not always sufficient for producing meaningful strategies in a

computer gaming context - see Section 6.1 for a discussion of why this is

the case.

In this section we present a constructive proof of ε strategies inspired

by techniques used by Orkin in [36], and show that in practice it is possible

to obtain strategies for both players without any a priori knowledge of ~v∗.

To make our analysis easier, we make use of the monus operator

(.−) : R×R, where x1
.− x2 = max(x1− x2, 0) for any x1, x2. A useful fact about

monus is:

Lemma 1.1. For any n, x, y ∈ N, (x .− ny) .− y = x .− (n+ 1)y.

Proof.

(x .− ny) .− y = max(max(x− ny, 0)− y, 0)

= max(max(x− (n+ 1)y,−y), 0)

= max(x− (n+ 1)y,−y, 0)

= max(x− (n+ 1)y, 0)

= x .− (n+ 1)y

(4.2.1)

To further facilitate our analysis, we make use of the following defi-
nitions:

• For any <Γ, we define the vector ~v0 thusly:

(∀γ ∈ Γ)~v0[γ] =

{
p(γ) if γ ∈ ΓT

0 otherwise (4.2.2)

• For any function f whose range is a subset of its domain, we use f ◦n

to be the n-th iterate of f . That is, f ◦0(x)
def
= x and (∀n > 0)f ◦n(x)

def
=

(f ◦ f ◦n−1)(x).

• For any n ∈ N, ~vn
def
= F ◦n(~v0).

• For any constant c ∈ R, we define ~c to be the vector such that each
component of ~c is c. The dimensionality of such a vector shall be
inferred from its context.

30

• For any δ > 0, we define Fδ(~v) to be F (~v .− ~δ).

• For any δ > 0, we define ~vδ to be limn→∞ F
◦n
δ (~v0).

• For any n ∈ N, ~wn
def
= F ◦nδ (~v0). Here, δ is unbound. Its value will be

obtained from the context where such ~wn is used.1

• For any <Γ, we let ~σi be a strategy for one round of play for player i.
That is, for any γ ∈ Γ, ~σi[γ] denotes the strategy player i will play in
state γ. If a player plays according to the same strategy in each round
of a game, it is a stationary strategy.

• For any <Γ, we define Q(~σ1, ~σ2) to be a |Γ|×|Γ|matrix where Q(~σ1, ~σ2)[i, j] =∑
(x,y)∈Pij

(~σ1[i](x) · ~σ2[i](y)) and Pij = {(x, y) | f(i, x, y) = j}. That is,
Q(~σ1, ~σ2) is a matrix of probabilities where Q(~σ1, ~σ2)[i, j] is the proba-
bility of transitioning to state j when in state i, player 1 plays ~σ1, and
player 2 plays ~σ2. Note for i ∈ ΓT that Pij is empty, so Q(~σ1, ~σ2)[i, j] = 0.

Theorem 2. For any recursive game <Γ with finite Γ and all terminal pay-

offs in the range [0, 1], the vector ~v∗
def
= limn→∞ F

◦n(~v0) is the critical vector as

defined by Everett[15] and is the value of <Γ. Further, for any ε, ∃δ1 ∈ [0, 1],

∃k1 ∈ N such that component 1 of the output of Algorithm 4.1 is an ε-

strategy for player 1, and ∃δ2 ∈ [0, 1], k2 ∈ N such that component 2 of the

output of Algorithm 4.1 is an ε-strategy for player 2 when the game’s length

has an upper bound of some n.

Algorithm 4.1 Procedure for constructing ε-strategies
function FIND STRATEGY(<γ, δ, k)

~v ← ~v0

for all i ∈ N 3−− i < k do
~v ← F (~v .− δ)

end for

return [N (G(γ,~v)) | ∀γ ∈ Γ \ ΓT]
end function

1 N.B.: Undecorated ~v and ~w are frequently used to refer to arbitrary vec-
tors which may be unrelated to any iteration of F or Fδ, respectively.

31

Proof. First, we’ll define a partial ordering upon value vectors. For two

vectors ~v and ~w, we say that ~v ≤ ~w if and only if ∀(i ∈ |~v|)(~v[i] ≤ ~w[i]).

Further, we say that ~v < ~w if and only if ~v ≤ ~w ∧ ∃(i ∈ |~v|)(~v[i] < ~w[i]).

To continue the proof, Lemmas 2.1 thru 2.6 provide support for

Lemma 2.7 (along with Corollaries 2.7.1 and 2.7.2), Lemma 2.8, and Lemma

2.9. Corollary 2.7.1 shows the existence of ε strategies for player 1, while

Corollary 2.7.2 shows that Algorithm 4.1 will provide ε strategies for player

1. Likewise, Lemma 2.8 shows the existence of ε strategies for player 2, and

Lemma 2.9 shows that Algorithm 4.1 will provide ε strategies for player 2

given that the game ends within n rounds, where n is some arbitrarily large

integer.

Lemma 2.1. Given value vectors ~v and ~w, ~v ≤ ~w =⇒ F (~v) ≤ F (~w)

Proof. Let γ be an arbitrary state in Γ(<Γ). If G(γ,~v) = G(γ, ~w), then F (~v)[γ] =

F (~w)[γ]. Otherwise, let σv = (σv1 , σ
v
2) be a Nash equilibrium for G(γ,~v), and

likewise σw = (σw1 , σ
w
2) be a Nash equilibrium for G(γ, ~w). Then, F (~v)[γ] =

u′(σv, G(γ,~v)) ≤ u′((σv1 , σ
w
2), G(γ,~v)) ≤ u′((σv1 , σ

w
2), G(γ, ~w)) ≤ u′(σw, G(γ, ~w)) =

F (~w)[γ]. The middle inequality follows from the fact that the value of a

matrix game for a given combination of strategies for the two players in-

creases by a non-negative value if the elements of the matrix are increased

by non-negative values and the players do not change their strategies,

and the other equalities and inequalities follow from the definition of Nash

equilibrium.

Corollary 2.1.1. (∀δ > 0)(~vδ ≤ ~v∗)

Proof. We shall show that, for an arbitrary δ, ∀(n ∈ N)(F ◦nδ (~v0) ≤ F ◦n(~v0)) By

induction on n

• The case of n = 0 is trivially true.

32

• By the induction hypothesis, F ◦nδ (~v0) ≤ F ◦n(~v0). By Lemma 2.1, F ◦n+1
δ (~v0) =

Fδ(F
◦n
δ (~v0)) = F (F ◦nδ (~v0) .− ~δ) ≤ F (F ◦nδ (~v0)) ≤ F (F ◦n(~v0)) = F ◦n+1(~v0).

Corollary 2.1.2. (∀n ∈ N)(~vn ≤ ~vn+1)

Proof. By induction on n

• Since ~v0 is the smallest vector of game state values, ~v0 ≤ ~v1 is trivially
true.

• By the induction hypothesis, ~vn−1 ≤ ~vn. By Lemma 2.1, ~vn = F (~vn−1) ≤
F (~vn) = ~vn+1.

Lemma 2.2. For any matrix game Γ1 = (N,C, u1) with Γ2 = (N,C, u2 =

λx, y.u1(x, y)− δ), V(Γ2) = V(Γ1)− δ.

Proof. Given σ = (σ1, σ2), it should be obvious that u′(σ,Γ2) = u′(σ,Γ1) − δ.

Let σ = (σ1, σ2) be a Nash equilibrium for Γ2. Assume that σ is not a

Nash equilibrium for Γ1. Assume without loss of generality that player 1

can unilaterally deviate and increase their payoff. Therefore, there exists

a strategy τ for player 1 such that u′((τ, σ2),Γ1) > u′(σ,Γ1). Thus we can

say u′((τ, σ2),Γ2) = u′((τ, σ2),Γ1) − δ > u′(σ,Γ1) − δ = u′(σ,Γ2), which is a

contradiction. Therefore, σ must be a Nash equilibrium for Γ1. Thus we

can say that V(Γ2) = u′(σ,Γ2) = u′(σ,Γ1)− δ = V(Γ1)− δ.

Lemma 2.3. ~v∗ is a fixed point of F .

Proof. Let n be such that ~vn > ~v∗ − ~ε for some arbitrary ε > 0. Then, by

Corollary 2.1.2 and Lemmas 2.1 and 2.2, ~v∗ ≥ F (~vn) ≥ F (~v∗ −~ε) ≥ F (~v∗)−~ε,

from which follows that F (~v∗) ≤ ~v∗ + ~ε. Since ε can get arbitrarily close to

0, it must be the case that F (~v∗) ≤ ~v∗. Now assume that F (~v∗) < ~v∗. Let i

33

be such that vi > F (~v∗). By Lemma 2.1, F (~vi) ≤ F (~v∗). Thus we can say by

Corollary 2.1.2 that ~vi ≤ F (~vi) ≤ F (~v∗), which is a contradiction. Therefore,

~v∗ = F (~v∗).

Lemma 2.4. ~v∗ is the smallest non-negative fixed point of F .

Proof. Let ~w ≥ ~0 be an arbitrary fixed point of F . We will now show by

mathematical induction that (∀n ∈ N)[~vn ≤ ~w].

• The base case is trivially true; since the values corresponding to ter-
minal states are constant across all value vectors, and the value for
every non-terminal in ~v0 is 0, which is the smallest possible value.

• By the induction hypothesis, ~vn ≤ ~w. By Lemma 2.1, ~vn+1 = F (~vn) ≤
F (~w) = ~w.

Therefore, ~v∗ ≤ ~w.

By Lemmas 2.3 and 2.4, we assert that the limit ~v∗ of iterating F is

the critical vector for recursive game <Γ as defined by Everett [15].

Lemma 2.5. (∀i ≥ 0)(∀δ > 0)(~wi ≥ ~vi − i · ~δ)

Proof. Remember that (∀i)(~wi
def
= F ◦iδ (~v0)).

Proposition 2.5.1. For any δ, and any ~v, Fδ(~v) ≥ F (~v)− ~δ.

Proof. By Lemma 2.2 and the definition of F , we have that F (~v) − ~δ ≤

F (~v − ~δ). By Lemma 2.1, we have F (~v − ~δ) ≤ F (~v .− ~δ) = Fδ(~v).

Let γ be an arbitrary non-terminal state. Then, by induction on i:

• Consider the base case of iteration 1. In this case, by Proposition
2.5.1, ~w1[γ] = Fδ(~v0)[γ] ≥ F (~v0)[γ] − δ. But F (~v0)[γ] = ~v1[γ], so ~w1[γ] ≥
~v1[γ]− 1 · δ.

• By the induction hypothesis, ~wi[γ] ≥ ~vi[γ]− i · δ. Then, ~wi+1[γ] = F (~wi
.−

~δ)[γ] ≥ F (~vi − i · ~δ − ~δ)[γ] = F (~vi − (i + 1) · ~δ)[γ] by Lemma 2.1 and the
definition of (.−). Furthermore, F (~vi− (i+1) ·~δ)[γ] = F (~vi)[γ]− (i+1) · δ =
~vi+1[γ]− (i+ 1) · δ by Lemma 2.2. Therefore, ~wi+1[γ] ≥ ~vi+1[γ]− (i+ 1) · δ.

34

This, plus the fact that (∀γ ∈ ΓT)(~vi[γ] = ~wi[γ]) by the definition of F proves

the lemma.

Lemma 2.6. Given an ε > 0, there exists δ > 0 such that ~vδ ≥ ~v∗ − ~ε.

Proof. Let i ∈ N be such that ~vi ≥ ~v∗− 1
2
·~ε. Let δ be such that i · δ ≤ ε

2
. Then,

by Lemma 2.5 F ◦iδ (~v0)[γ] ≥ ~vi[γ] − i · δ ≥ ~vi[γ] − 1
2
· ~ε ≥ ~v∗ − 1

2
· ~ε − 1

2
· ~ε = ~v∗ − ~ε.

Since ~vδ ≥ F ◦iδ (~v0), it is also greater than or equal to ~v∗ − ~ε.

It is worth pointing out that Corollary 2.1.1 together with Lemma 2.6

allow us to say that for any ε > 0 there is a δ > 0 such that ~vδ lies between

~v∗ − ~ε and ~v∗.

Lemma 2.7. For any ε, given any vector ~w, δ > 0 3−− (~w ≥ ~v∗−~ε)∧(Fδ(~w) ≥ ~w),

the vector ~σ1 3−− (∀γ ∈ Γ \ ΓT)[~σ1[γ] = σ1(N (G(γ, ~w .− ~δ)))] is an ε strategy for

Player 1.

Proof. Let ~σ2 3−− (∀γ ∈ Γ \ ΓT)(~σ2[γ] = σ2(N (G(γ, ~w .− ~δ))). Then we can say

Fδ(~w) = ~v0 +Q(~σ1, ~σ2)(~w .−~δ). Therefore ~v0 +Q(~σ1. ~σ2)(~w .−~δ) ≥ ~w. By definition

of Nash equilibrium ~v0 +Q(~σ1, ~τ)(~w .−~δ) ≥ ~v0 +Q(~σ1, ~σ2)(~w .−~δ) where ~τ is some

arbitrary strategy for player 2. Hence ~v0 +Q(~σ1, ~τ)(~w .− ~δ) ≥ ~w for any τ .

As such, ~v0 ≥ ~w−Q(~σ1, ~τ)(~w .−~δ). Let ~τ1, ~τ2, ~τ3, . . . be an infinite sequence

of strategies such that ~τi is played by player 2 on the ith round of play, Q0

be the identity matrix, and (∀i > 0)(Qi = Q(~σ1, ~τi)). It should be clear that

35

the expected value of the game if these strategies are followed for up to n

rounds is
∑n

i=0

∏i
j=0 Qj ~v0. Thus we can say:

n∑
i=0

i∏
j=0

Qj ~v0 ≥
n∑
i=0

i∏
j=0

Qj(~w −Qi+1(~w .− ~δ))

≥
n∑
i=0

(
i∏

j=0

Qj ~w −
i∏

j=0

QjQi+1(~w .− ~δ))

≥
n∑
i=0

(
i∏

j=0

Qj ~w −
i+1∏
j=0

Qj(~w
.− ~δ))

≥
n∑
i=0

i∏
j=0

Qj ~w −
n∑
i=0

i+1∏
j=0

Qj(~w
.− ~δ)

≥
n∑
i=0

i∏
j=0

Qj ~w −
n+1∑
i=1

i∏
j=0

Qj(~w
.− ~δ)

≥ ~w +
n∑
i=1

i∏
j=0

Qj ~w −
n∑
i=1

i∏
j=0

Qj(~w
.− ~δ)−

n+1∏
j=0

Qj(~w
.− ~δ)

≥ ~w +
n∑
i=1

i∏
j=0

Qj(~w − (~w .− ~δ))−
n+1∏
j=0

Qj(~w
.− ~δ)

≥ ~w +
n∑
i=1

i∏
j=0

Qj(~w − (~w .− ~δ))− η
n+1∏
j=0

Qj(~w − (~w .− ~δ))

(4.2.3)

Where

η = max(map(f, (~w .− ~δ), (~w − (~w .− ~δ)))) (4.2.4)

where

f(x, y) =

 0 if y = 0

x
y

otherwise
(4.2.5)

max(~v) is the maximal component of ~v - that is, (∀γ ∈ Γ)(~v[γ] ≤ max(~v)),

and (∀γ ∈ Γ)(map(f, v, w)[γ] = f(v[γ], w[γ])). The last inequality in (4.2.3) is

justified by the following proposition.

Proposition 2.7.1. η · (~w − (~w .− ~δ)) ≥ (~w .− ~δ)

Proof. Consider the following two cases:

1. η > 0: Let ~x = map(f, (~w .− ~δ), (~w− (~w .− ~δ))), and γ be such that η = ~x[γ].

It should be clear that η ·(~w−(~w .−~δ))[γ] = (~w .−~δ)[γ]. Then, by definition

of max, (∀g ∈ Γ)(η · (~w − (~w .− ~δ))[g] ≥ (~w .− ~δ)[g].

36

2. η = 0: Then, (∀γ ∈ Γ)(map(f, (~w .− ~δ), (~w − (~w .− ~δ)))[γ] = 0). As such,

(∀γ ∈ Γ)(~w .− ~δ = 0). To see why this is true for γ 3−− (~w − (~w .− ~δ))[γ] = 0,

consider that δ > 0 and that all components of ~w are at least 0. The

only value for ~w[γ] which satisfies (~w− (~w .− ~δ))[γ] = ~w[γ]− (~w[γ] .− δ) = 0

is 0. Thus ~w .− ~δ = ~0. Hence, η · (~w − (~w .− ~δ)) ≥ ~w .− ~δ.

Proposition 2.7.2. lim
n→∞

n∏
j=0

Qj(~w − (~w .− ~δ)) = 0

Proof. By (4.2.3), we have that

n∑
i=0

i∏
j=0

Qj ~v0 ≥ ~w +
n∑
i=1

i∏
j=0

Qj(~w − (~w .− ~δ))− η
n+1∏
j=0

Qj(~w − (~w .− ~δ))
n∑
i=0

i∏
j=0

Qj ~v0 − ~w + η
n+1∏
j=0

Qj(~w − (~w .− ~δ)) ≥
n∑
i=1

i∏
j=0

Qj(~w − (~w .− ~δ))
(4.2.6)

Since the
∑n

i=0

∏i
j=0Qj ~v0 term is the expected payoff after playing up to n

rounds of the game, and that payoff cannot be more than 1, it is upper

bounded by ~1. Likewise, ~w and ~w − (~w .− ~δ) are upper bounded by ~1. Since

the rows of the Q matrices are probability distributions, the product of Q

with a vector upper bounded by ~1 produces another vector upper bounded

by ~1. η cannot be larger than 1
δ
. So the left side of the second inequality

of (4.2.6) has an upper bound of δ+1
δ
· ~1, which means that the sum on the

right side of that inequality has the same upper bound. But that sum is

a sum of positive vectors, So the last term in that sum must be tending

toward ~0 as n gets arbitrarily large.

By Proposition 2.7.1, (
∑n

i=1

∏i
j=0Qj(~w−(~w .−~δ))−η

∏n+1
j=0 Qj(~w−(~w .−~δ)) ≤

(
∑n

i=1

∏i
j=0Qj(~w−(~w .−~δ))−

∏n+1
j=0 Qj(~w

.−~δ)). To show that (∃n)(
∑n

i=1

∏i
j=0 Qj(~w−

(~w .−~δ))−η
∏n+1

j=0 Qj(~w−(~w .−~δ)) ≥ 0) and subsequently that player 1’s expected

payoff is greater than or equal to ~v∗ − ~ε, consider that by Proposition 2.7.2

η
∏n

j=0Qj(~w−(~w .−~δ)) is getting arbitrarily close to 0 as n→∞, and is thus at

37

some point overtaken by
∑n

i=1

∏i
j=0Qj(~w − (~w .− ~δ)). Hence

∑n
i=0

∏i
j=0Qj ~v0 ≥

~w ≥ ~v∗ −~ε, which is sufficient to establish that σ1 is an ε strategy for player

1.

Corollary 2.7.1. For any ε > 0, there exists δ > 0 such that the vector

~σ1 3−− (∀γ ∈ Γ \ ΓT)[~σ1[γ] = σ1(N (G(γ, ~vδ .− ~δ))] is an ε strategy for Player 1.

Proof. By Lemmas 2.6 and 2.7, and by definition of Fδ.

Corollary 2.7.2. For any ε > 0, there exists δ > 0 and k ∈ N such that the

vector ~σ1 3−− (∀γ ∈ Γ\ΓT)[~σ1[γ] = σ1(N (G(γ, ~vk
.−~δ)))] is an ε strategy for Player

1.

Proof. Given ε > 0, choose δ > 0 such that ~vδ ≥ ~v∗ − 1
2
· ~ε, which exists by

Lemma 2.6. Choose k such that vk = F ◦kδ (~v0) ≥ ~vδ − 1
2
· ~ε, which exists by

definition of ~vδ. The corollary then follows by Lemmas 2.1 and 2.7.

Lemma 2.8. For any ε > 0, given some n ∈ N which is an upper bound on

the length (in rounds) of the game, there exists δ > 0 such that the vector

~σ2 3−− (∀γ ∈ Γ \ ΓT)[~σ2[γ] = σ2(N (G(γ, ~vδ .− ~δ))] is an ε strategy for Player 2.

Proof. Given ε > 0, by Lemma 2.6 there is a δ > 0 such that ~vδ ≥ ~v∗ − 1
2n
· ~ε.

Let ~σ1 3−− (∀γ ∈ Γ \ ΓT)[~σ1[γ] = σ1(N (G(γ, ~vδ .− ~δ))]. Then we can say

Fδ(~vδ) = ~v0 + Q(~σ1, ~σ2)(~vδ .− ~δ). Therefore, by definition of Nash equilibrium

~v0 + Q(~τ , ~σ2)(~vδ .− ~δ) ≤ ~vδ, where ~τ is some arbitrary strategy for player 1.

Since ~vδ < ~v∗, ~v0 +Q(~τ , ~σ2)(~vδ .− ~δ) ≤ ~v∗.

As such, ~v0 ≤ ~v∗ − Q(~τ , ~σ2)(~vδ .− ~δ). Let ~τ1, ~τ2, ~τ3, . . . be an infinite se-

quence of strategies such that ~τi is played by player 1 on the ith round of

play, Q0 be the identity matrix, and (∀i > 0)(Qi = Q(~σ1, ~τi)). It should be

38

clear that the expected value of the game if these strategies are followed

for up to n rounds is
∑n

i=0

∏i
j=0 Qj ~v0. Thus we can say:

n∑
i=0

i∏
j=0

Qj ~v0 ≤
n∑
i=0

i∏
j=0

Qj(~v∗ −Qi+1(~vδ .− ~δ))

≤
n∑
i=0

i∏
j=0

Qj ~v∗ −
n∑
i=0

i∏
j=0

QjQi+1(~vδ .− ~δ)

≤
n∑
i=0

i∏
j=0

Qj ~v∗ −
n+1∑
i=1

i∏
j=0

Qj(~vδ
.− ~δ)

≤ ~v∗ +
n∑
i=1

i∏
j=0

Qj ~v∗ −
n+1∑
i=1

i∏
j=0

Qj(~vδ
.− ~δ)

≤ ~v∗ +
n∑
i=1

i∏
j=0

Qj ~v∗ −
n∑
i=1

i∏
j=0

Qj(~vδ
.− ~δ)−

n+1∏
j=0

Qj(~vδ
.− ~δ)

≤ ~v∗ +
n∑
i=1

i∏
j=0

Qj(~v∗ − (~vδ .− ~δ))−
n+1∏
j=0

Qj(~vδ
.− ~δ)

≤ ~v∗ +
n∑
i=1

i∏
j=0

Qj(~v∗ − ~vδ + ~δ)−
n+1∏
j=0

Qj(~vδ
.− ~δ)

(4.2.7)

From (4.2.7) we can see that, for a given ε and a δ such that δ ≤ ε
2n

,

the expression ~v∗− ~vδ +~δ ≤ ε
n
·~1. Again, because the rows of the Q matrices

are probability distributions, the right-hand sides of the inequalities in

(4.2.7) are bounded by ~v∗+~ε. This means that σ2 is an ε strategy for player

2.

Lemma 2.8 still doesn’t give us quite what we want - determining

the strategies for both players requires that we know the value of ~vδ. Like

~v∗, we cannot in general determine ~vδ. However, we can do better!

Lemma 2.9. For any ε, given some n ∈ N which is an upper bound on the

length (in rounds) of the game, there exists δ > 0 and k ∈ N such that the

vector ~σ2 3−− (∀γ ∈ Γ \ ΓT)[~σ2[γ] = σ2(N (G(γ, ~vk
.− ~δ))] is an ε strategy for Player

2.

Proof. Given ε > 0 and n ∈ N, by Lemma 2.6 there is a δ > 0 such that
~vδ ≥ ~v∗ − 1

3n
· ~ε. Now choose k such that F ◦kδ (~v0) ≥ ~vδ − 1

3n
· ~ε. Using the

39

same logic from Lemma 2.8, we can say that ~v0 ≤ ~v∗ −Q(~τ , ~σ2)(~vk
.− ~δ) when

~τ is an arbitrary strategy played by player 1. Let ~τ1, ~τ2, ~τ3, . . . be an infinite

sequence of strategies such that ~τi is played by player 1 on the ith round

of play, Q0 be the identity matrix, and (∀i > 0)(Qi = Q(~σ1, ~τi)). It should be

clear that the expected value of the game if these strategies are followed

for up to n rounds is
∑n

i=0

∏i
j=0 Qj ~v0. Thus we can say:

n∑
i=0

i∏
j=0

Qj ~v0 ≤
n∑
i=0

i∏
j=0

Qj(~v∗ −Qi+1(~vk
.− ~δ))

≤
n∑
i=0

i∏
j=0

Qj ~v∗ −
n∑
i=0

i∏
j=0

QjQi+1(~vk
.− ~δ)

≤
n∑
i=0

i∏
j=0

Qj ~v∗ −
n+1∑
i=1

i∏
j=0

Qj(~vk
.− ~δ)

≤ ~v∗ +
n∑
i=1

i∏
j=0

Qj ~v∗ −
n+1∑
i=1

i∏
j=0

Qj(~vk
.− ~δ)

≤ ~v∗ +
n∑
i=1

i∏
j=0

Qj ~v∗ −
n∑
i=1

i∏
j=0

Qj(~vk
.− ~δ)−

n+1∏
j=0

Qj(~vk
.− ~δ)

≤ ~v∗ +
n∑
i=1

i∏
j=0

Qj(~v∗ − (~vk
.− ~δ))−

n+1∏
j=0

Qj(~vk
.− ~δ)

≤ ~v∗ +
n∑
i=1

i∏
j=0

Qj(~v∗ − ~vk + ~δ)−
n+1∏
j=0

Qj(~vk
.− ~δ)

≤ ~v∗ +
n∑
i=1

i∏
j=0

Qj((~v∗ − ~vδ) + (~vδ − ~vk) + ~δ)−
n+1∏
j=0

Qj(~vk
.− ~δ)

(4.2.8)

Similarly to Lemma 2.8, the terms (~v∗−~vδ), (~vδ− ~vk), and δ are each less than

or equal to ε
3n
·~1 and the rows of the Q matrices are probability distributions.

Therefore, the right-hand sides of the inequalities in (4.2.8) are bounded

by ~v∗ + ~ε.

N.B. that Corollary 2.7.1 and Lemma 2.8 suffice to prove the ex-

istence of ε-strategies, and that Corollary 2.7.2 and Lemma 2.9 together

prove the theorem.

There are several things worth noting here:

• When choosing a δ, making it less than ε
3n

is a necessary but not
sufficient condition for obtaining ε strategies. Also one cannot, in

40

general, know when they’ve reached an iteration k such that ~vδ − ~vk ≤
~ε
3n

for any given δ. In practice, the best heuristic is to choose the
smallest δ which won’t exacerbate numerical errors and to iterate
as much as time will afford. The above proof shows that doing so
will lead to sane strategies for both players, even if the ε for such
strategies cannot be known.

• For any game with an infinite state space, one must choose a finite
subset of the state space to solve using Algorithm 4.1.

• Player 2’s strategies hinge upon the game eventually ending (hence
the requirement for the upper bound on the rounds). In practice, all
games end so choosing an upper bound such that no game should
reasonably expect to last that long is sufficient.

41

Chapter 5

GAME THEORY OF LOWERED EXPECTATIONS

In a two-player, zero-sum game, all Nash equilibria are payoff equiv-

alent; so in theory a player should be indifferent as to which equilibrium

strategy to choose when more than one exists. However, there are cases

where one equilibrium strategy would be better than another in the case

of an opponent making a mistake. Such strategies are called subgame

perfect. Related to these situations are ones where it is impossible for a

player to win when his/her opponent is playing optimally. In other words,

the player will lose no matter what move (s)he makes, so there is no rea-

son to choose one move over another. Similarly, as we shall see shortly, it

is possible for the opponent to be able to win no matter what move (s)he

chooses - so again, there is no reason to choose one move over another.

If it doesn’t matter what the players do, the outcome of the game is the

same - the game loses its entertainment value. As such, in this section we

introduce the concept of Game Theory of Lowered Expectations, which is a

theory to help a player make the best of an uninteresting situation.

In an unwinnable situation, a player should still wish to choose

strategies which in some sense push the state of the game closer to a

winnable situation. As an example, we’ll consider Right Turn from section

2.1. As is illustrated in Figure 5.1, there are only certain positions from

which Thok is guaranteed to capture Lil’ Cal. If he’s not in one of those

squares, Lil’ Cal has a strategy which enables him to always get away.

However, it makes sense that Thok should want to stay as close to Lil’ Cal

42

Figure 5.1: Policy for Thok shown graphically. The red arrows indicate
what Thok should do when he finds himself in those squares.
In the square containing the two arrows of equal sizes, Thok
should choose roughly evenly between both options. In the
squares with the large forward and small right arrow, Thok
should employ an ε strategy - choosing forward with proba-
bility arbitrarily close to 1. Squares without arrows indicate
that nothing Thok does will lead to capture if Lil’ Cal plays his
cards right.

43

Figure 5.2: Policy for Lil’ Cal shown graphically. The blue arrows in-
dicate what Cal should do when Thok is in those squares.
In the squares containing the two arrows of equal sizes, Cal
should choose roughly evenly between both options. In the
squares with the large down arrow and small right/up arrow,
Cal should employ an ε strategy - choosing to move down with
probability arbitrarily close to 1. Squares without arrows in-
dicate that Cal can do whatever he wants when Thok is there
and still evade capture.

44

as possible regardless of whether or not he’s guaranteed to catch the mon-

key. Using just the definition of a Nash equilibrium and Algorithm 4.11,

Thok will be given no clue as to what he should do when not guaranteed a

capture. On top of this, when Thok and Lil’ Cal are further apart, Lil’ Cal

is given no clue as to what he should do either. The game would be more

interesting, and more challenging for Lil’ Cal, if he tried to stay as close as

possible to Thok in these situations.

Intuitively, then, a game is most interesting when both players have

to choose their moves carefully to achieve a desirable outcome. In the case

of our games of survival, this means that the interesting states of the game

are those for which the game value is greater than zero. It is these states

that require player 1 to play a Nash equilibrium policy in order to achieve

that game value, and for player 2 to play a Nash equilibrium policy to win

the game (if the game value from player 1’s point of view is less than 1)

or to keep the game going as long as possible. As we saw with Lil’ Cal,

there may be states where player 2 must still play a particular policy even

though the game value for that state is zero. But there may also be game

states where it doesn’t matter what policy player 2 follows; no matter what

moves the players choose, player 2 can still force a game value of zero from

the next state. Thus, the further a game state is from the ones that have

positive game values, the less interesting it is.

5.1 Cooperative Reachability

Thus we need to characterize these less interesting game states in

terms of how far they are from the more interesting states. If both players

want to get from a less interesting state to a more interesting state, they

1 For all results obtained from running Algorithm 4.1 in this chapter, the
values δ = 0.001 and k = 1000 were used.

45

will have to choose moves in a cooperative manner. Hence we define the

concept of Cooperative Reachability.

• The attractor set R0 ⊂ Γ is the set of states deemed most interesting.

• set Rn = {γ ∈ Γ | (∃c1 ∈ C1(γ))(∃c2 ∈ C2(γ))[f(γ, c1, c2) ∈ Rn−1]} ∪Rn−1

Thus the desired states can be cooperatively reached from a state in Rn in

n rounds of cooperative play.

How should the players decide on a policy when the game is in a

state γ in Rn? To answer this question, we propose that a ”cooperative”

non-zero sum game GC be analyzed. We define GC as follows:

Let n ≥ 1 be the unique positive number such that γ ∈ Rn \ Rn−1.

Then GC = (N, (C1(γ), C2(γ)), h) where

h(x, y) =

 1 if f(γ, x, y) ∈ Rn−1

0 otherwise
(5.1.1)

Note that in this game, both players’ payoff is h, rather than the

usual player 2’s payoff being −h. Since this is a non-zero sum game, find-

ing some Nash equilibrium for the game is not good enough. Because both

players receive the same payoff in any situation, they must both choose

policies that maximize h. We propose that this be done as follows:

Let r(h, x)
def
= {y | h(x, y) = 1} and likewise c(h, y)

def
= {x | h(x, y) = 1}.

Let rmin
def
= min

x
|r(h, x)|, rmax

def
= max

x
|r(h, x)|, cmin

def
= min

y
|c(h, y)|, and cmax

def
=

max
y
|c(h, y)|. If rmax > rmin, let D1 be the set {x | |r(h, x)| > rmin}, else D1

= the domain of the first argument of h. If cmax > cmin, let D2 be the set

{y | |c(h, y)| > cmin}, else D2 = the domain of the second argument of h.

Define function h′ : D1 × D2 7→ {0, 1} such that for x ∈ D1 and y ∈ D2,

h′(x, y) = h(x, y). This construction of a new utility function is repeated

on h′ and so on until rmax = rmin and cmax = cmin. In other words, if h

is represented by a matrix, the rows with the fewest 1s and the columns

46

with the fewest 1s are dropped simultaneously, until no more such rows

or columns can be dropped without making the matrix vanish completely.

The players should then choose randomly from the moves represented by

the remaining rows and columns.

5.2 Finding Policies

Using the above definitions, we will now describe several ways to

find better AI policies for both players when in a situation where the game

is unwinnable for one of the players. We will use Right Turn to illustrate

these methods, however it should be clear to the reader that they are gen-

erally applicable in games where such situations arise.

To find a policy for Lil’ Cal:

1. Solve the game using Algorithm 4.1, save the policy table obtained for

the monkey.

2. Let ~v be the vector obtained in Step 1. With attractor set {γ | ~v[γ] 6= 0},

for each n > 0 and γ ∈ Rn \ Rn−1, solve the cooperative game GC and

save the policy table for these states for the monkey.

These policy tables can be combined to produce behavior for Cal which will

lead to more interesting game play. For states in R0, Cal should play the

policy given by Algorithm 4.1. For states in R1 \ R0, Cal should stochasti-

cally choose between the policy given by Algorithm 4.1 and that given by

Step 2.2 For all other states, Cal should play the policy given by Step 2.

Following the above procedure will give the monkey the behavior of

moving toward the orc when they are far apart, prolonging the game as

2 The higher the frequency with which the monkey chooses the policy for
the original game, the more difficult it becomes for the orc to capture the
monkey.

47

long as possible when inside the orc’s winnable region, and sometimes

making a mistake at the border of the winnable region to allow the orc a

chance of victory. Thus, the set of interesting states (those with a positive

game value for player 1) has been increased to virtually the whole set of

states in the game. (Thok and Cal will move toward each other until a

state in R1 is reached, where the new game value is the same as the rate

at which Cal chooses to make a mistake.)

To find a policy for Thok:

1. Solve the game using Algorithm 4.1, save the policy table obtained for

the orc.

2. Let ~v be the vector obtained in Step 1. With attractor set {γ | ~v[γ] 6= 0},

for each n > 0 and γ ∈ Rn \ Rn−1, solve the cooperative game GC and

save the policy table for these states for the orc.

Combining these tables to produce a strategy for the orc is straightforward:

For states in R0, the orc should play the policy yielded in Step 1. For all

other states, he should play the policy given by Step 2.

The above procedure will give the orc the behavior of always mov-

ing toward the monkey, regardless of whether or not he has a chance of

victory. Clearly, the chance that the game winds up in the critical region

is higher than if the orc just does the random walk given in the original

policy.

5.3 Discussion of Results

We actually ran this on a few games. Namely Right Turn, 1D Hero

vs. Bear, and 2D Heroes vs. Bears (with one hero and one bear, on a 7× 7

grid, with the powder at location (4, 4)). We got some interesting results,

and we shall explain them somewhat here!

48

Figure 5.3: Thok’s policy according to Game Theory of Lowered Expecta-
tions. The squares with m denote ones in which Thok should
choose between both of his options with equal probability. In
most of these squares, the reality is that he can select either
action and still end up closer to the attractive region.

5.3.1 Right Turn

Figure 5.3 shows Thok’s policy in a 41 × 41 region surrounding R0.

The triangular sections of mixed strategies expanding out to the left and

right of R0 denote states in which, assuming cooperation from the monkey,

the orc will get closer to R0 no matter what he does. We can simplify

the policy by changing the action in these states to be what Thok should

choose in the surrounding states, as in Figure 5.4. With the exception of

49

Figure 5.4: Thok’s normalized lowered expectations policy. Note that
there is still a single state in which he should employ a mixed
strategy. This policy can be generalized/described more sim-
ply by Algorithm 5.1.

50

Algorithm 5.1 Thok’s lowered expectations strategy described algorithmi-
cally

function CHOOSE ACTION(γ)
if γ = (−9,−1) then

return RANDOM CHOICE((Forward, Right))
else if y(γ) ∈ N then

return Right
else if x(γ) 6∈ [−10, 2] ∧ y(γ) = −1 then

return Right
else if x(γ) > 4 ∧ y(γ) = −2 then

return Right
else

return Forward
end if

end function

(−9,−1)3, Thok can employ a pure strategy in every state outside of R0.

Algorithm 5.1 describes Thok’s policy in code. Interesting to note is that

this policy follows roughly the intuitive idea of ”if the monkey is in front of

the orc, he should move forward, otherwise he should turn right.”

Figure 5.5 shows Cal’s policy after simplifying states where it doesn’t

matter what the monkey does. Of note is that the simplification process

for Cal’s policy was a bit more complicated than for Thok’s, however the

process is still algorithmic. For each state in which Cal has more than one

choice of action:

1. Remove all actions which do not take Cal closer to the current loca-

tion of the orc.

2. Choose the first remaining action in order of precedence: Down, Left,

Right, Up. What is left is a policy which has Cal move toward the orc

when he’s far away.

3 This is because the reduced matrix for (−9,−1) still contains 0s. In such
situations, the ”correct” choice for player 1 hinges upon player 2’s choice
and vice-versa. Thus, a mixed strategy must still be employed.

51

Figure 5.5: Lil Cal’s normalized policy according to Game Theory of Low-
ered Expectations. The squares with light gray background
surrounding R0 correspond to states in R1. In these states,
Cal will be giving up the game if he chooses the action sug-
gested by this policy.

52

Figure 5.6: Eve’s policy on a 7 × 7 grid, with a bear and the powder at
location (4, 4), when Eve and the bear have the same amount
of HP remaining.

The states with a light gray background are those which are one step

away from R0 - these are states in which Cal will be throwing the game if

he follows the policy in Figure 5.5. An AI opponent playing the role of Cal

should stochastically choose between the policies in Figures 5.5 and 5.2.

The higher the probability with which the AI picks lowered expectations

policy, the easier it becomes for the orc to catch the monkey.

5.3.2 Bear Brawl

Figures 5.6 and 5.7 are a sampling of Eve’s lowered expectations

policy on a 7 × 7 grid with the powder located in the center. This policy

was generated according to the procedure laid out in Section 5.1, using

the states in which Eve has a winning policy according to Algorithm 4.1

(with δ = 0.001 and k = 1000) as R0. In both figures, a single bear remains

and guards the powder.

53

Figure 5.7: Eve’s policy on a 7 × 7 grid, with a bear and the powder at
location (4, 4), when the bear has more HP remaining than
Eve.

Figure 5.6 is the policy Eve should follow when she and the bear

have the same HP value (z(Eve) = z(bear) = n for some n ∈ N). Of note

are the squares with a Manhattan distance of 2 from the powder. On these

squares, Eve should stand her ground and attack in the direction of the

bear. Should the bear charge toward her, he’ll be running into Eve’s blade.

This will give Eve the advantage (or even the win, when n = 1). Should the

bear move in some other direction, Eve’s policy for the resulting state will

have her move closer to the powder.

Figure 5.7 is Eve’s policy if the bear has more HP than she (z(Eve) <

z(bear)). Here, the policy can be summarized as ”move toward the bear/pow-

der”.

We also generated policies for the 1 dimensional case. For both the

hero and the bear, the policy is quite simple - ”If at the powder, attack.

Otherwise, move toward the powder”. This matches intuition.

54

5.3.3 Other Observations

In some situations, there is more than one option for one or both

players that will result in the game getting closer to the attractive region. In

some cases, the reduced GC matrix contains only 1s. When this happens,

it is probably best to chose a pure strategy that fits into the pattern of

pure strategies already admitted for other states. An example of this is

the procedure we followed to generate the policy for Lil’ Cal showcased in

Figure 5.5. In the cases where the reduced GC matrix still contains some

0s, the players must still choose randomly from among the options. If they

choose pure strategies, they might choose moves that give one of these 0s,

and they will not get closer to the attractor set.

55

Chapter 6

CONCLUSION AND RELATED WORK

Computer games with simultaneous or real-time action are an inter-

esting topic of study in the fields of Game Theory and Artificial Intelligence.

In fact, these games exist at the confluence of these two fields. This dis-

sertation has explored what the existing literature has to say about solving

deterministic simultaneous action games with perfect information, as well

as offer several new contributions to this literature.

The rest of this chapter is divided into several sections: In Section

6.1 we briefly explore related work in the literature and outline the dif-

ferences between this work and ours, in Section 6.2 we discuss several

ways in which the work in this dissertation could be built upon in the

future, and in Section 6.3 we summarize the contributions made by this

dissertation and offer some concluding remarks.

6.1 Related Work

Despite the efforts of researchers such as Sue Epstein [14], who

takes an approach based on Cognitive Science in developing her game

player Hoyle, the most effective game playing programs so far are built

on game theoretic principles rather than on imitating human cognitive

processes[48].

Work has been done in the Reinforcement Learning community; for

example Gabor et al in [17] use an iterative learning process to develop

strategies for multi-state games. However, such methods tend to be very

56

slow since they have to play many games against an opponent and a state

will be visited no more than once in each game; in fact, only a small num-

ber of states are visited in each game, so it will take a long time for the

learned game state values to converge to the best values. Nevertheless, re-

inforcement learning work is relevant because the iteration formulas they

use resemble the iteration formulas discussed in this dissertation.

Traditional planning based on STRIPS [16] and the like in most cases

completely avoids an environment which changes in ways beyond the con-

trol of the planning agent. Even in more recent work such as [42], only

changes via forces of nature are considered - there are no other intelligent

decision makers changing the environment, let alone deliberately antago-

nist ones.

More recently, multi-agent planning systems have dealt with plan-

ning in adversarial situations - however, application of recursive game the-

ory in these systems is notably absent [12].

Daniel Andersson deals with turn-based recursive games [3], going

as far as showing an almost linear-time algorithm for constructing win-

ning strategies. He does not, however, deal with games of simultaneous

movement. The few other papers applying recursive game theory to games

also only deal with turn based games [29].

Every year, AAAI hosts a General Game Playing competition [18].

The goal is to develop an artificial intelligence which, once given the rules

of a game, will play the game. The class of games used in the competition

includes those which have simultaneous movement. While there are many

different approaches to constructing general game players [22, 9, 41, 43,

30, 25, 23, 5], use of recursive game theory appears to be completely ab-

sent.

57

Though some of the terminology used in our game theory of low-

ered expectations is inspired by that of reachability and safety games, the

focuses of these two theories are quite different. Reachability and safety

games are infinite games (in that they are expected never to terminate) in

which a player aims to drive the game to a certain set of states and remain

there (reachability games), or in which a player’s goal is to perpetually

avoid a particular set of states (safety games). These games are competi-

tive and are generally used to model systems in control theory[2], but have

also been applied to other domains[37]. They have also been described as

special cases of recursive games[7, 10]. In terms of what we have done,

games of survival are reachability games from the point of view of player

1, and safety games from the point of view of player 2. In game theory

of lowered expectations, the attractor set can be looked at as the unsafe

region of a safety game. As such, the goal for both players in game theory

of lowered expectations is to get the game out of the safety region.

The concurrent reachability games dealt with by Chatterjee et al in

[7] can be mapped directly into games of survival. The technique applied

in that paper, however, can produce strategies that will not necessarily

lead a player to a goal state in the games we’re interested in. For a simple,

illustrative example we consider a version of 1D1H1B where Eve must

reach the powder to win regardless of the state of the bear. In this instance

of the game, there are four locations: 0, 1, 2, 3, with the powder at location

0. The critical vector for this game when the bear is dead is ~v∗ = (1, 1, 1, 1),

and is the only vector within ε of itself for any ε < 1 in the sequence of

vectors defined by iterating F from ~v0 = (1, 0, 0, 0). Chaterjee et al rely upon

finding a vector F ◦i(~v0) within ε of the critical vector and using that to

obtain strategies. For this particular game, there is no indication that Eve

would be any better off moving left than moving right (e.g., when at location

58

2). However, using Algorithm 4.1 with δ = 0.1 and k = 3, the resulting vector

(1, 0.9, 0.8, 0.7) will produce the strategy that Eve should always move left.

6.2 Future Work

The work done in this dissertation opens several doors for new re-

search opportunities. In this section, we briefly describe several topics

that could be researched/worked on which would build upon or extend

the work done in this dissertation. This list is by no means exhaustive - it

merely contains those things to which we’ve given more than just perfunc-

tory thought.

6.2.1 Producing a Program from a Policy Table

When we initially started the research that eventually turned into

this dissertation, we had a goal of producing work useful to the computer

gaming industry. In order for this theory to be useful in creating interest-

ing and engaging AI opponents in real games, there need to exist software

systems which make use of it.

One possible system is that of an offline learner. Using recursive

game theory, we can obtain a program for playing the game in the form of

a policy table - that is, a mapping from each state in the game to a strategy

profile for that state. In practice, however, that table will be very large if at

all finite. In this section, we briefly describe a method for generating the

policy table for a finite, tractable portion of a game’s states to use as input

to a classification algorithm. As an example, see Table 6.1 for a (small)

sample policy table for 1D1H1B as formalized in Section 3.5.

The way in which this method defines the set of states to use in gen-

erating the policy table is inspired by the analysis of discrete differential

games in [20]. We start from some subset of the terminal states (possi-

bly all of them) and progressively work backward, adding states to the set

59

of states which are used as input to Algorithm 4.1 to generate the policy

table.

Once we have a policy table, we’d like to use it to generate a program

which is both more compact (the policy table, while finite and tractable,

may still be incredibly large for non-trivial games) and more general (we’d

like the AI to have some idea of what to do in states which don’t show up in

the table) while still being a recognizable program to a human. Classical AI

has dealt heavily with inducing generalized programs from examples, with

techniques such as decision tree induction and inductive logic programming.

Following is a list of algorithms which would be good candidates for use in

an offline planner:

1. OC1 [33]

2. C4.5/C5.0 [38]

3. Progol [32]

4. FOIDL [31]

OC1 and C5.0 are two leading decision tree induction systems, and

Progol and FOIDL are two leading inductive logic programming systems.

6.2.2 Using forward Search with a heuristic evaluation function

Another possible application is to allow the game agent to use Algo-

rithm 4.1 to make a decision on the fly about what to do next. Online plan-

ning has been studied in the literature. Examples include [5, 1, 6, 42, 47].

The system described in this section combines some of these available

techniques with the theory of recursive games to make decisions as they

are needed.

A recursive game would be generated using Algorithm 6.1, then

solved using Algorithm 4.1. The function h referenced in Algorithm 6.1

60

Table 6.1: Example policy table for 1d1h1b

State Policy
(1, 0, 0, 0) N/A
(2, 1, 0, 0) ((0, 0, 1), (0, 0, 1))
(3, 1, 1, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 2, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 3, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 4, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 5, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 6, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 7, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 8, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 9, 0) ((1, 0, 0), (0, 0, 1))
(3, 1, 2, 1) ((1, 0, 0), (1, 0, 0))
(3, 1, 3, 2) ((1, 0, 0), (1, 0, 0))
(3, 1, 4, 3) ((1, 0, 0), (1, 0, 0))
(3, 1, 5, 4) ((1, 0, 0), (1, 0, 0))
(3, 1, 6, 5) ((1, 0, 0), (1, 0, 0))
(3, 1, 7, 6) ((1, 0, 0), (1, 0, 0))
(3, 1, 8, 7) ((1, 0, 0), (1, 0, 0))
(3, 1, 9, 8) ((1, 0, 0), (1, 0, 0))

61

is some heuristic evaluation function which attempts to approximate the

value of the game at the state which is its argument. This h would also

be used to provide the values for the initial vector input to Algorithm 4.1.

Plenty of work has been done in constructing heuristic evaluation func-

tions for games [22, 9, 30, 25]. Ideally, h should be admissible (in the

classical sense).

We conjecture that for two distinct admissible heuristics h1 and h2,

the iterative process of Algorithm 4.1 would converge to the same vector

of game values whether it starts with an initial vector determined by h1

or by h2, and the vector obtained after k iterations will be closer to that

vector limit when starting from h1 than h2 when h1 dominates h2. So the

vector obtained by starting from h1 will be closer to the critical vector than

the vector obtained by starting from h2. This has to be tempered by the

fact that the iterations are being done over a small set of the games states

instead of all of them.

Unlike the traditional online algorithms that are used for games such

as Chess and Checkers, in this approach a graph is generated, not a tree.

The heuristic evaluation function is applied to all the nodes in the graph

and not just to the leaves of a tree. Iteration is needed to refine these

values as one pass may not be enough, where conversely it is enough in

the tree used for turn-based games. Furthermore, if a positive game value

is found for the current game state from which the graph was generated,

the policy obtained by Algorithm 4.1 is the policy that will be played. If

the game value turns out to be zero, our methodology for game theory of

lowered expectations will be applied to the states in the graph, and the

policy so derived for the current state will be played.

62

Algorithm 6.1 Making a recursive game on the fly. OverTimeLimit is ab-
stract, its implementation will place an upper bound on how long genGame
can execute.

function GENGAME(<Γ, γ)
Q← []
T ← {}
S ← {}
Push(Q, γ)

while ¬Empty(Q) ∧ ¬OverT imeLimit do
curr ← Pop(Q)

for all α ∈ C1(curr) do
for all β ∈ C2(curr) do

succ← f(curr, α, β)

if succ ∈ ΓT then
T ← T ∪ {succ}

else if ¬Contains(Q, succ) ∧ curr /∈ S then
Push(Q, succ)

end if
end for

end for

S ← S ∪ {curr}
end while

while ¬Empty(Q) do
curr ← Pop(Q)
T ← T ∪ {curr}

end while

return (S ∪ T, T,N,CΩ, C, f, λx.(p(x) if x ∈ ΓT else h(x)))
end function

63

6.2.3 Symbolic Game Theory

The systems proposed in both Sections 6.2.1 and 6.2.2 are both

limited by the size of the game they’re attempting to solve. The fact that

computational resources are still very limited in today’s world prevents

the theory presented in this dissertation from being generally applicable in

practice to the types of games that people play.

We wonder if a symbolic approach can be developed for solving games

with large state spaces. For many of the games we analyzed through the

course of this dissertation, we were able to (manually) divide the state

space into a small number of partitions and determine a policy to be fol-

lowed for each partition. The policies we came up with were very close to

those output by Algorithm 4.1 and the game theory of lowered expecta-

tions. For example, when thinking about the one hero one bear games, it

became obvious that for both players, whichever one is closer to the pow-

der, that player’s best strategy is to go towards the powder - and in the

case of the bear, to defend it once there. When this guarantees a win for

the bear, such as when both players have the same number of hit points,

the bear should occasionally move away from the powder to give the hero a

chance to win in accordance with our game theory of lowered expectations.

We saw this just by looking at the rules of the game, and not by manually

doing many simulations of game play or the iterations of Algorithm 4.1.

What we’d like to determine is if it’s possible to a) algorithmically divide a

game’s state space into a small number of partitions in general and b) ap-

ply game theory to these partitions using symbolic reasoning rather than

numeric reasoning.

64

6.2.4 A Theory of Interesting Play

The ultimate goal of any AI controlled agent in a computer game is

to make the game an engaging and enjoyable experience for the humans

playing it. This is reflected in our choice of games of speed for modeling

computer games. In a game of speed, the computer has as much incentive

to simply get in the human’s way of winning as it does to win the game

itself.

However, that alone does not guarantee that play will be interest-

ing. How does one formalize a subjective concept such as interesting? Sid

Meier stated that a (good) game is ”a series of interesting choices”[39]. Fur-

ther, he defined three requirements a choice must satisfy to be considered

interesting[21]:

1. No single option is clearly better than the other options.

2. The options are not equally attractive.

3. The player must be able to make an informed choice.

In terms of recursive games, we say that state γ is very interesting

if all three of the above rules hold in γ. If rule 3 and one of rule 1 or 2

holds in γ, then γ is mildly interesting. We’d like to develop a theory for

identifying which regions of the game are mildly interesting and which are

very interesting, as well as strategies for keeping the game in or around

states which are interesting.

To some extent our game theory of lowered expectations is already

such a theory, but we would like to formalize the relationship between

interestingness and the rules of a game so that game designers will have

some guidance when crafting the rules of a new game. Such theory has

been treated informally in work such as [24]; we would like to see a more

formal treatment that would be useful to game designers.

65

6.3 Closing Remarks

The goal of this dissertation was to provide a theory for deterministic

simultaneous action games with perfect information. We firmly believe

that we have accomplished this goal, and as such will briefly reiterate the

components that went into it.

In Chapter 2 we introduced the Bear Brawl class of games. These

games have several of the properties exhibited by real games, yet are sim-

ple enough to use as examples for research into game AI. We also defined

a simultaneous action variant of the already interesting Hamstrung Squad

Car game. Throughout the dissertation, we drew attention to and exam-

ined several interesting properties of this variant.

In Chapter 4 we defined games of speed, and showed an equivalence

between them and games of survival, the latter of which have been studied

in the literature. Most importantly in Chapter 4 is the iterative algorithm

for obtaining sound strategies for both players in a game of survival, along

with the proof of its correctness. This original proof verifies once and for

all that in practice it is possible to compute strategies for both players in

a recursive game of survival, with no a priori knowledge of the value of the

game.

In Chapter 5, we drew attention to situations in recursive games

where one or both players are left with the uninteresting decision between

strategies which are all equally bad (or good). We defined game theory of

lowered expectations as a means for players in such positions to obtain

strategies which give those players a better chance at capitalizing upon

the mistakes of their opponents, to more quickly end the game, or bring it

to an interesting state.

It is our sincere hope that this dissertation will be of interest to re-

searchers in both the artificial intelligence and game theory communities;

66

that they will find it engaging and thought provoking, and that further re-

search will be built upon it. We also hope that software engineers in the

computer gaming industry will find the theory presented here as a useful

starting point into designing better AIs which will increase the immersive-

ness and entertainment value of the games that they build.

67

BIBLIOGRAPHY

[1] Philip E. Agre and David Chapman, Pengi: an implementation of a
theory of activity, Proceedings of the Sixth National Conference on
Artificial Intelligence (AAAI-87) (Kenneth D. Forbus and Howard E.
Shrobe, eds.), Morgan Kaufmann, 1987, pp. 268–272.

[2] Rajeev Alur, P. Madhusudan, and Wonhong Nam, Symbolic computa-
tional techniques for solving games, STTT 7 (2005), no. 2, 118–128.

[3] Daniel Andersson, Kristoffer A. Hansen, Peter B. Miltersen, and
Troels B. Sørensen, Simple Recursive Games, CoRR abs/0711.1055
(2007).

[4] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, 2nd
Ed., Academic, London, 1995.

[5] Y. Bjornsson and H. Finnsson, CadiaPlayer: A Simulation-Based Gen-
eral Game Player, Computational Intelligence and AI in Games, IEEE
Transactions on 1 (2009), no. 1, 4–15.

[6] Murray Campbell, A. Joseph Hoane, and Feng-hsiung Hsu, Deep
Blue, Artificial Intelligence 134 (2002), no. 1-2, 57–83.

[7] Krishnendu Chatterjee, Luca de Alfaro, and Thomas A. Henzinger,
Strategy improvement for concurrent reachability games, Third Inter-
national Conference on the Quantitative Evaluation of Systems (QEST
2006), 11-14 September 2006, Riverside, California, USA, 2006,
pp. 291–300.

[8] Daniel Chester, Review of Agent Cooperation within Adversarial
Teams in Dynamic Environment Key Issues and Development Trends,
http://www.computingreviews.com/review/review review.cfm?
review id=140684, November 2012.

[9] James Clune, Heuristic evaluation functions for general game playing,
Ph.D. thesis, University of California Los Angeles, 2008.

68

[10] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman, Concur-
rent reachability games, Theoretical Computer Science 386 (2007),
no. 3, 188–217.

[11] V. K. Domanskii, Game of survival, URL:
http://www.encyclopediaofmath.org/index.php?
title=Game of survival&oldid=33815, October 2014, Encyclopedia of
Mathematics.

[12] BartłomiejJózef Dzieńkowski and Urszula Markowska-Kaczmar,
Agent Cooperation within Adversarial Teams in Dynamic Environment
Key Issues and Development Trends, Transactions on Computational
Collective Intelligence VI (NgocThanh Nguyen, ed.), Lecture Notes
in Computer Science, vol. 7190, Springer Berlin Heidelberg, 2012,
pp. 146–169.

[13] Entertainment Software Rating Board, Video Game Industry Statis-
tics, http://www.esrb.org/about/video-game-industry-statistics.jsp,
2013.

[14] S. Epstein, For the right reasons: The FORR architecture for learning in
a skill domain, Cognitive Science 18 (1994), no. 3, 479–511.

[15] Hugh Everett, Recursive games, Annals of Mathematics Studies,
vol. 3, pp. 67–78, Princeton University Press, 41 William Street,
Princeton, New Jersey, USA, 08540-5237, 1957.

[16] Richard E. Fikes and Nils J. Nilsson, STRIPS: A new approach to the
application of theorem proving to problem solving, Artificial Intelligence
2 (1971), no. 3-4, 189–208.

[17] Zoltán Gábor, Zsolt Kalmár, and Csaba Szepesvári, Multi-criteria Re-
inforcement Learning, Proceedings of the Fifteenth International Con-
ference on Machine Learning (San Francisco, CA, USA), ICML ’98,
Morgan Kaufmann Publishers Inc., 1998, pp. 197–205.

[18] Michael Genesereth and Nathaniel Love, General game playing:
Overview of the AAAI competition, AI Magazine 26 (2005), 62–72.

[19] Andrew Ilachinski, Cellular Automata: A Discrete Universe, World Sci-
entific, Singapore, 2001.

[20] Rufus Isaacs, Differential Games, Wiley, Dover, Mineola, NY, 1965.

[21] Jesper Juul, Half-Real: Video Games Between Real Rules and Fictional
Worlds, The MIT Press, 2005.

69

[22] David M. Kaiser, Automatic feature extraction for autonomous general
game playing agents, Proceedings of the 6th international joint con-
ference on Autonomous agents and multiagent systems (New York,
NY, USA), AAMAS ’07, ACM, 2007, pp. 93:1–93:7.

[23] Tomoyuki Kaneko, Kazunori Yamaguchi, and Satoru Kawai, Abstract
Automatic Feature Construction and Optimization for General Game
Player, Game Programming Workshop, no. 14, October 2001, pp. 25–
32.

[24] Raph Koster, A Theory of Fun for Game Design, O’Reilly Media, De-
cember 2013.

[25] Gregory Kuhlmann, Kurt Dresner, and Peter Stone, Automatic heuris-
tic construction in a complete general game player, In Proceedings of
the Twenty-First National Conference on Artificial Intelligence, July
2006, pp. 1457–1462.

[26] D. N. L. Levy, H. J. Berliner, and E. O. Thorpe, Computer Games I,
Computer Games, Ishi Press, 2009.

[27] D. N. L. Levy, B. Wilcox, and E. O. Thorpe, Computer Games II, Com-
puter Games, Ishi Press, 2009.

[28] R. Duncan Luce and Howard Raiffa, Games and Decisions: Introduc-
tion and Critical Survey, Dover Publications, Dover, NY, 1957.

[29] Peter B. Miltersen, A near-optimal strategy for a heads-up no-limit
Texas Hold’em poker tournament, Autonomous Agents & Multia-
gent Systems/Agent Theories, Architectures, and Languages, 2007,
pp. 191–198.

[30] Makoto Miwa, Daisaku Yokoyama, and Takashi Chikayama, Auto-
matic Generation of Evaluation Features for Computer Game Play-
ers(Evaluation Function, Game Programming), Transactions of Infor-
mation Processing Society of Japan 48 (2007), no. 11, 3428–3437.

[31] R. J. Mooney and M. E. Califf, Induction of First-Order Decision Lists:
Results on Learning the Past Tense of English Verbs, Proceedings
of the 5th International Workshop on Inductive Logic Programming
(L. De Raedt, ed.), Department of Computer Science, Katholieke Uni-
versiteit Leuven, 1995, pp. 145–146.

[32] Stephen Muggleton, Inverse entailment and Progol, New Generation
Computing 13 (1995), no. 3-4, 245–286.

70

[33] Sreerama K. Murthy, Simon Kasif, and Steven Salzberg, A System for
Induction of Oblique Decision Trees, Journal of Artificial Intelligence
Research 2 (1994), 1–32.

[34] Roger B. Myerson, Game theory: analysis of conflict, Harvard Univer-
sity Press, 1997.

[35] John Nash, Non-Cooperative Games, The Annals of Mathematics 54
(1951), no. 2, 286–295.

[36] Michael Orkin, Recursive Matrix Games, Journal of Applied Probabil-
ity 9 (1972), no. 4, 813–820.

[37] Dominique Perrin and Jean-Éric Pin, Infinite words : automata, semi-
groups, logic and games, Pure and applied mathematics, Academic,
London, San Diego (Calif.), 2004.

[38] J. Ross Quinlan, C4.5: programs for machine learning, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1993.

[39] Andrew Rollings and Dave Morris, Game Architecture and Design: A
New Edition, New Riders Games, 2003.

[40] Jonathan Schaeffer, Neil Burch, Yngvi Bjornsson, Akihiro Kishimoto,
Martin Muller, Robert Lake, Paul Lu, and Steve Sutphen, Checkers Is
Solved, Science 317 (2007), no. 5844, 1518–1522.

[41] Stephan Schiffel and Michael Thielscher, M.: Fluxplayer: A successful
general game player, In: Proceedings of the AAAI National Conference
on Artificial Intelligence, AAAI Press, 2007, pp. 1191–1196.

[42] Marcel J. Schoppers, Representation and automatic synthesis of reac-
tion plans, Ph.D. thesis, Champaign, IL, USA, 1989.

[43] Michael Thielscher, Answer Set Programming for Single-Player Games
in General Game Playing, Proceedings of the 25th International
Conference on Logic Programming (Berlin, Heidelberg), ICLP ’09,
Springer-Verlag, 2009, pp. 327–341.

[44] L. C. Thomas, Games, Theory and Applications, Dover Books on Math-
ematics, Dover Publications, 1984.

[45] Frank Thuijsman and O. J. Vrieze, Note on recursive games, Game
Theory and Economic Applications (1992), 133–145.

71

[46] Ben G. Weber, Michael Mateas, and Arnav Jhala, Building Human-
Level AI for Real-Time Strategy Games, Proceedings of the AAAI Fall
Symposium on Advances in Cognitive Systems (San Francisco, Cali-
fornia), AAAI Press, AAAI Press, 2011.

[47] Marco Wijdeven, Game Trees in Realtime Games, http://ai-
depot.com/GameAI/GameTree.html, 2012.

[48] David E. Wilkins, Using Patterns and Plans in Chess, Artif. Intell. 14
(1980), 165–203.

[49] Wayne L. Winston and Munirpallam Venkataramanan, Introduction to
Mathematical Programming, Brooks/Cole, 2003.

72

	Table of Contents
	List of Algorithms
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Game Collection
	2.1 Right Turn
	2.1.1 Premise
	2.1.2 Rules

	2.2 Bear Brawl
	2.2.1 Premise
	2.2.2 1D Hero vs. Bear
	2.2.3 2D Heroes vs. Bears

	3 Two-Player, Zero-Sum Games
	3.1 Matrix Games
	3.2 Solving Matrix Games
	3.3 Recursive Games
	3.4 Value of Recursive Games
	3.5 1D Hero vs. Bear as a Recursive Game

	4 Games of Speed and Survival
	4.1 Equivalence between Games of Speed and Games of Survival
	4.2 A Constructive Proof of the Existence of Epsilon Strategies

	5 Game Theory of Lowered Expectations
	5.1 Cooperative Reachability
	5.2 Finding Policies
	5.3 Discussion of Results
	5.3.1 Right Turn
	5.3.2 Bear Brawl
	5.3.3 Other Observations

	6 Conclusion and Related Work
	6.1 Related Work
	6.2 Future Work
	6.2.1 Producing a Program from a Policy Table
	6.2.2 Using forward Search with a heuristic evaluation function
	6.2.3 Symbolic Game Theory
	6.2.4 A Theory of Interesting Play

	6.3 Closing Remarks

	Bibliography

