
LC-SIM:

A SIMULATION FRAMEWORK FOR EVALUATING

LOCATION CONSISTENCY BASED CACHE PROTOCOLS

by

Pouya Fotouhi

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Computer
Engineering

Spring 2017

c© 2017 Pouya Fotouhi
All Rights Reserved

LC-SIM:

A SIMULATION FRAMEWORK FOR EVALUATING

LOCATION CONSISTENCY BASED CACHE PROTOCOLS

by

Pouya Fotouhi

Approved:
Guang R. Gao,Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education

ACKNOWLEDGMENTS

I would like to thank Professor Gao for giving me the opportunity of joining

CAPSL and multi-dimensional learning experience.

With special thanks to Dr. Stéphane Zuckerman for guiding me step by step

over the research, and my colleague Jose Monsalve Diaz for deep discussions and his

technical help.

Very special thanks to my wife Elnaz , and also my parents for their support

and love.

iii

TABLE OF CONTENTS

LIST OF FIGURES . vi
ABSTRACT . ix

Chapter

1 INTRODUCTION . 1

2 BACKGROUND . 4

2.1 An Introduction to Memory Consistency Models 5

2.1.1 Uniform Memory Consistency Models 6

2.1.1.1 Sequential Consistency 7
2.1.1.2 Total Store Ordering 8
2.1.1.3 Coherence . 10

2.1.2 Hybrid Memory Consistency Models 10

2.1.2.1 Weak Ordering (Weak Consistency) 11
2.1.2.2 Release Consistency 11
2.1.2.3 Location Consistency 12

2.2 Cache Coherence . 14

2.2.1 MSI . 16
2.2.2 MESI . 17
2.2.3 MOESI . 18

3 THE PROBLEM WITH COHERENCE 22

iv

4 LC-CACHE: TOWARD A SCALABLE CACHE PROTOCOL
FOR EXASCALE SYSTEMS . 23

4.1 LC-Cache Protocol . 23
4.2 Weaknesses of LC Cache . 29

5 LCCSIM: A SIMULATION FRAMEWORK TO COMPARE
CACHE PROTOCOLS . 32

5.1 Implementation details . 32
5.2 Simulator features . 33
5.3 Limitations of LCCSim . 39

6 EXPERIMENTAL RESULTS . 41

6.1 Private Accesses . 42
6.2 Shared accesses - Non-synchronizing 45
6.3 Shared accesses - Synchronizing . 49
6.4 Combined accesses . 52

7 RELATED WORK . 55

8 CONCLUSION AND FUTURE WORK 57

REFERENCES . 58

v

LIST OF FIGURES

2.1 Motivating example for memory consistency models 5

2.2 One possible execution trace of the example presented in fig 2.1 . . 6

2.3 A simple example for uniform consistency models. The question is to
see if a model allows both r1 and r2 to be equal to 0. 8

2.4 One possible order of accesses in a system using TSO 9

2.5 A valid trace of accesses under coherence 10

2.6 State diagram for MSI cache coherence protocol 17

2.7 Operation of MSI protocol . 17

2.8 State diagram for MESI cache coherence protocol 19

2.9 Operation of MESI protocol . 19

2.10 State diagram for MOESI cache coherence protocol 20

2.11 Operation of MOESI protocol . 21

4.1 State transitions - LC cache protocol 24

4.2 Atomic increments on shared location x 26

4.3 Single producer with multiple asynchronous consumers 27

4.4 An example to highlight the difference between LC and RC 29

4.5 State transitions and values after each instruction in figure 4.4.
LP1 = 1(D) means the value of location L in processor P1 is equal
to 1 and is in state D. LMM refers to the value of location L in main
memory. 31

vi

5.1 Transitions in MSI protocol . 34

5.2 Transitions in MESI protocol . 35

5.3 Transitions in MOESI protocol . 36

5.4 Transitions in MOESI protocol - Cont’d 37

5.5 Control messages in LCCSim . 39

6.1 Experiment details . 41

6.2 Private accesses - Total access latency over number of cores 42

6.3 Private accesses - Traffic on-chip over number of cores 43

6.4 Private accesses - Total access latency over ratio of write operations 43

6.5 Private accesses - Traffic on-chip over ratio of write operations . . . 43

6.6 Private accesses - Total access latency over number of locations . . 44

6.7 Private accesses - Traffic on-chip over number of locations 44

6.8 Non-synchronizing shared accesses - Total access latency over number
of cores . 45

6.9 Non-synchronizing shared accesses - Traffic on-chip over number of
cores . 46

6.10 Non-synchronizing shared accesses - Total access latency over ratio of
write operations . 47

6.11 Non-synchronizing shared accesses - Traffic on-chip over ratio of write
operations . 47

6.12 Non-synchronizing shared accesses - Total access latency over number
of locations . 48

6.13 Non-synchronizing shared accesses - Traffic on-chip over number of
locations . 48

vii

6.14 Non-synchronizing shared accesses - Total access latency for 256
locations . 49

6.15 Synchronizing shared accesses - Total access latency over number of
cores . 49

6.16 Synchronizing shared accesses - Traffic on-chip over number of cores 50

6.17 Synchronizing shared accesses - Total access latency over ratio of
write operations . 50

6.18 Synchronizing shared accesses - Traffic on-chip over ratio of write
operations . 51

6.19 Synchronizing shared accesses - Total access latency over number of
locations . 51

6.20 Synchronizing shared accesses - Traffic on-chip over number of
locations . 52

6.21 Combined accesses - Total access latency over number of cores . . . 53

6.22 Combined accesses - Traffic on-chip over number of cores 53

6.23 Combined accesses - Total access latency over ratio of write
operations . 54

6.24 Combined accesses - Traffic on-chip over ratio of write operations . 54

viii

ABSTRACT

New high-performance processors tend to shift from multi to many cores. More-

over, shared memory has turned to dominant paradigm for mainstream multicore pro-

cessors. As memory wall issue loomed over architecture design, most modern computer

systems have several layers in their memory hierarchy. Among many, caches has be-

come everlasting components of memory hierarchies as they significantly reduce access

time by taking the advantage of locality.

Major processor vendors usually rely on cache coherence, and implement a vari-

ant of MESI, e.g., MOESI for AMD, to help reduce inter-chip traffic on the fast in-

terconnection network. Supposedly, maintaining coherence should help with keeping

parallel and concurrent programmers happy, all the while providing them with a well-

known cache behavior for shared memory. This thesis challenge the assumption that

Coherence is well-suited for large-scale many core processors. Seeking an alternative

for coherence, LC cache protocol is extensively investigated.

LC-Cache is a cache protocol weaker than Coherence, but which preserves

causality. It relies on the Location Consistency (LC) model. The basic philosophy

behind LC is to maintain a unique view of memory only if there is a reason to. Other

ordinary memory accesses may be observed in any order by the other processors of the

computer system.

The motivation to stand against cache coherence, relies on underestimated lim-

itations implied on system design by coherence. Observations presented in this thesis,

demonstrates that coherence eliminates the possibility of having a directory based pro-

tocol in practice since size of such directory grows linearly with number of cores. In

addition, coherence adds implicit latency in many cases to the protocol.

ix

This thesis presents LCCSim, a simulation framework to compare cache proto-

col based on location consistency against cache coherence protocols. A comparative

analysis between the MESI and MOESI coherence protocols is provided, and pit them

against LC-Cache. Both MESI and MOESI consistently generate more on-chip traffic

compared to LC cache since transitions in LC cache are done locally. However, LC

cache degrades total latency of accesses as it does not take the advantage of cache to

cache forwarding. Additionally, LC cache cannot be considered a true implementation

based on LC since it does not behave according to the memory model. The following

summarizes the contributions of this thesis:

• Detailed specification of LC cache protocol, covering the missing aspects in the
original paper.

• A simulation framework to compare cache protocols based on LC against cache
coherence protocols.

• Extensive analysis of LC cache protocol, leading to discovery of several weak-
nesses.

• Demonstrating features for an efficient cache protocol, truly based on location
consistency.

x

Chapter 1

INTRODUCTION

Traditionally in computer systems, speedup used to be gained through advances

in miniaturization process and increase in the clock rate of processors. After a while,

mainstream chip manufactures faced a challenged which had been speculated before.

On one hand, feature size in the fabrication process were reaching the borders of

quantum physics and on the other hand, due to the high frequencies where chips were

processing at, power and energy consumption turned into serious concerns. To satisfy

the need for performance in the market, designers had no choice other than having

more than just one core on chip. But having multiple cores will rise several challenges.

An important issue to tackle was the need for communication between the cores.

In other words, in order to hire the computation power of several cores concurrently

a medium for communication was necessary. To address that, two solutions was pro-

posed. One offered communication through messages between cores. MPI program

execution model[15] is inspired by the idea of message passing between cores. Another

solution was to share data among the cores and there are several program execution

models following this approach [10][22][9][7]. Comparing the ideas discussed above is

beyond the scope of this thesis and we refer to [12] for a detailed discussion. In a shared

memory based system, cores can share data using shared memory. However, since such

access can be made simultaneously, a set of rules needs to be defined to specify the

orderings in such cases.

Another problem to overcome for system architects, was the cover the huge gap

between the latency of accesses to main memory on one hand, and the time needed

processing the data on the other hand. This issue is often referred as memory wall

issue [34]. This gap has been increased as applications tend to require more space

1

to keep their data and having a bigger memory requires more time to decode the

address. Use of a memory hierarchy, with smaller sizes of memory as it get closer to

the processor, was the solution proposed. In addition, there are common features in

data access patterns where we can take the advantage of and the most important one

is called locality. Since the results of recent computations will often used in near future

(i.e. temporal locality), and it is likely to access the elements next to the element

which has just accessed (i.e. spatial locality), computer architects has proposed the

idea of caching the data.

When it comes to the presence of caches on a multi-core system using shared

memory, we can potentially have multiple copies of a location in different caches and we

need a mechanism to deal with such cases. That is, the cache protocol of the system.

It worth mentioning that a cache protocol is tightly coupled with memory consistency

model of the system since it affects the ordering in case of accesses to shared data.

Major processor vendors often rely on cache coherence, and implement a variant

of MESI, e.g., MOESI for AMD. Supposedly, maintaining coherence should help with

keeping parallel and concurrent programmers happy, all the while providing them with

a well-known cache behavior for shared memory. This thesis challenge the assumption

that Coherence is well-suited for large-scale many core processors. Seeking an alterna-

tive for cache coherence protocols, LC cache protocol is extensively investigated.

LC-Cache is a cache protocol weaker than coherence, but which preserves causal-

ity. It relies on the Location Consistency (LC) model. The basic philosophy behind

LC is to maintain a unique view of memory only if there is a reason to. Other ordinary

memory accesses may be observed in any order by the other processors of the computer

system.

This thesis also presents LCCSim, a simulation framework to compare cache

protocol based on location consistency against cache coherence protocols. A compar-

ative analysis between the MESI and MOESI coherence protocols is provided, and pit

them against LC-Cache. Both MESI and MOESI consistently generate more on-chip

traffic compared to LC cache since transitions in LC cache are done locally. However,

2

LC cache degrades total latency of accesses as it does not take the advantage of cache to

cache forwarding. Additionally, LC cache cannot be considered a true implementation

based on LC since it does not behave according to the memory model. The following

summarizes the contributions of this thesis:

• Detailed specification of LC cache protocol, covering the missing aspects in the
original paper.

• A simulation framework to compare cache protocols based on LC against cache
coherence protocols.

• Extensive analysis of LC cache protocol, leading to discovery of several weak-
nesses.

• Demonstrating features for an efficient cache protocol, truly based on location
consistency.

The organization of this paper is as follows. Chapter 2 presents a brief discus-

sion on memory consistency models and cache coherence protocols as the background

required. The motivation of this thesis and problem formulation is presented in chap-

ter 3. LC cache protocol is discussed in chapter 4, and the simulation framework is

described in chapter 5. Experimental setup and results of experiments are presented

in chapter 6. Lastly, the related work is presented in chapter 7 followed by conclusions

of this thesis discussed in chapter 8.

3

Chapter 2

BACKGROUND

Most computer systems and multicore chips provide hardware support for shared

memory. While defining correct behavior for a shared memory system may look simple

at first glance, there would be several corner cases and challenges for an implementation

of such behavior. In a shared memory system, addressing mode and consistency model

together form the memory model of system. A memory model defines what correctness

means for a shared memory system.

In this thesis, I discuss memory consistency model aspect of a memory model.

For the rest of this thesis, a memory consistency model may be referred as memory

model or consistency model.

Shared memory has turned to dominant paradigm for mainstream multicore

processors. Meanwhile, due to the large gap between the latency of processor and

main memory (also known as memory wall issue), most modern computer systems

have several layers in their memory hierarchy. In addition, the performance of system

can be improved by taking the advantage of locality[14]. Therefore, caches has become

everlasting components of most computer systems.

However, the complexity of cache design increases in a shared memory system.

Since several processors may access a shared location at the same time, cache protocols

need to be coupled with proper mechanisms in order to maintain a coherent value for

the shared locations if necessary. This problem is known as cache coherence.

It worth mentioning that the problem of coherence can potentially exist even in

the absence of shared memory. The best example to provide would be false-sharing.

False-sharing is the case where two private locations X and Y are mapped into one

4

cacheline, and X is being accessed by processor P1 and Y is accessed by P2. While

locations X and Y are not truly shared between P1 and P2, one may illegally over write

(and discard) the value produced by the other one.

Cache coherence can be considered as part of memory consistency models of a

system. It will indeed affect the coherence protocol, and also imposes many constrains

on the hardware implementation of the system. It worth keeping in mind that cache

coherence and consistency model of the system are tightly tied concepts. But they are

often considered as two separate issues as a divide-and-conquer strategy.

The reset of this chapter goes as follows. Section 2.1 presents a brief survey of

consistency models. Cache coherence, the techniques for implementing coherence, and

a few protocols as examples are discussed in section 2.2.

2.1 An Introduction to Memory Consistency Models

Memory consistency model implies rules on ordering of the accesses (i.e. loads

and stores) to a given location. In other words, memory consistency model defines the

correct behavior of a shared memory system. To illustrate why correct behavior must

be defined, consider the example shown in figure 2.1. As can be seen, P1 updates the

value of location x to 1 and then writes 1 to location y. P2 busy waits until the value of

location y is 0, and the tries to load the value of location x into r1. Most programmers

expect the value of r1 to be 1 after this execution, but running this snippet of code on

most of modern computer can potentially make r1 equal to 0.

Figure 2.1: Motivating example for memory consistency models

Instruction reordering is the main reason for such behavior. Nowadays, in-

struction reordering is used by compilers at compile time, and also by out-of-order

5

processors at execution time. The goal is to lower the total time of execution, pro-

vide more flexibility for scheduling, and avoid as many stalls as possible within the

processor’s pipeline. However, in the example shown in figure 2.1, since there is no

data dependency between two write operations in P1, these two instructions can be

reordered leading to an execution trace similar to the trace shown in figure 2.2.

Figure 2.2: One possible execution trace of the example presented in fig 2.1

The memory model of the system, can create (or prevent) many opportuni-

ties for optimizations. Over the past decades, several models has been introduced in

academia and industry [1]. In this section I divide consistency models to following two

categories, uniform and hybrid. This classification relies on types of accesses to shared

location in a memory model. In subsection 2.1.1, Sequential Consistency [21], Total

Store Ordering [32], and Coherence [18] are discussed as a few examples of unified

memory consistency models. Subsection 2.1.2 includes Weak Ordering [4][13], Release

Consistency [4], and Location Consistency [16][17] as examples of hybrid memory con-

sistency models.

2.1.1 Uniform Memory Consistency Models

As I discussed memory models can be divided into two categories, unified and

hybrid models. To have a better understanding of this classification, types of memory

accesses should be discussed.

In a shared memory system, memory accesses are either private accesses or

shared ones. Private accesses are read and write operations performed on private

(i.e. not shared) memory locations. On the other hand, read and write operations

6

performed on shared location are considered shared accesses. Shared accesses to a given

location can be either competing (i.e. racy) or non-competing[26]. A pair of accesses

is considered competing if the ordering of two accesses is not defined, and at least on of

them is a write operation. For instance, accesses to shared locations within a critical

section are non-competing since ordering for them is guaranteed by mutual exclusion.

A competing access can be synchronizing or non-synchronizing. Synchronizing accesses

are those use to enforce ordering. For instance, a synchronizing access may delay the

access and wait for all previous accesses to finish. However, not all competing accesses

are synchronizing. Non-synchronizing accesses, defined as competing accesses without

ordering constrains imposed, can be found in chaotic relaxation algorithms.

Uniform memory models are models which do not distinguish access categories.

Three examples of such models are presented in the rest of this section.

2.1.1.1 Sequential Consistency

For most of the programmers, Sequential Consistency (SC) is considered the

most intuitive model. Lamport formalized SC [21] back in 1979. According to Lamport,

if ”the result of an execution is the same as if the operations had been executed in the

order specified by program” the such core is considered sequential. A multiprocessor

system is called sequentially consistent if ”the result of any execution is the same as

if the operations of all processors were executed in some sequential order, and the

operations of each individual processor in this sequence if the order specified by its

program”.

Going back to the example presented in figure 2.1, any possible execution of

such program in a system using SC will result 1 as the final value for r1. Storing value

0 in r1 is simply not possible since the program order in P1 should be respected and

therefore, the write operation on x should always preformed before the write operation

on y.

To compare sequential consistency with other uniform consistency models pre-

sented in this section, consider the accesses presented in figure 2.3. In this example,

7

P1 writes to location x then reads location y, and P2 writes to location y and reads

location x. The question is to see if a model allows both read operations, values in r1

and r2, to be equal to 0 under a valid set of accesses.

Figure 2.3: A simple example for uniform consistency models. The question is to see
if a model allows both r1 and r2 to be equal to 0.

In a system with SC as its memory model, r1 and r2 can not be equal to zero at

the same time after execution of the example shown in figure 2.3. SC does not allow

reordering of memory accesses. If any of read operations returns 0, it implies that the

preceding write is observed by memory and return value for the other read operation

should be 1. Therefore, at most one of the read operations can return 0.

Sequential consistency is considered intuitive for most programmers. But from a

design prospective, it impose several restrictions and limitations. In particular, obeying

the program order for all memory accesses prohibits reordering of instructions even in

the absence of data dependencies. Instruction reordering is the key to many compiler

optimizations nowadays, and also a presumed fact for out-of-order processors. In addi-

tion, the fact that SC requires all memory accesses from all processors to be observed

by all processor in a particular order, significantly limits the scalability of this model.

Therefore, SC is often assumed stronger than needed and expensive to implement for

modern processor’s design.

2.1.1.2 Total Store Ordering

According to the manual for SPARC-V8 provided by designer in 1992 [32],

the standard memory model is called Total Store Ordering (TSO) and all SPARC

implementations must provide at least the TSO model.

8

Total Store Ordering guarantees that the store (S), FLUSH (F), and atomic load-

store([L,S]) instructions of all processors appear to be executed by memory serially in a

single order called the memory order. Furthermore, the sequence of these instructions

in the memory order for a given processor is identical to the sequence in which they were

issued by the processor. Intuitively, each processor interacts with memory (assuming

a single port memory) through a port followed by a switch (a multiplexer). Every port

consists of a First Input First Output (FIFO) store buffer and a load line. Restrictions

of memory model applied through signals between ports of processors.

TSO, likewise SC, does not allow reordering for two consecutive load or store

operations, and a load operation followed by a store. But it allows reordering of a store

operation followed by a load operation (obviously, in the absence of data dependencies).

Therefore, for the set of accesses in figure2.3, TSO allows both r1 and r2 to be equal to

0. Read operations can be reordered, and executed before the write operation in each

processor. Such reordering can allow both read operations to return the initial value

for location x and y. One valid order of accesses under TSO is shown in figure 2.4.

Figure 2.4: One possible order of accesses in a system using TSO

SC and TSO are fairly close models, especially compared with more relaxed con-

sistency models. However, TSO offers better performance compared to SC. This perfor-

mance gap can covered in speculative processors. Any valid execution/implementation

using SC, is a subset of valid executions/implementations using TSO. SPARC also pro-

vided two other memory models in their next generation called Partial Store Ordering

(PSO) and Relaxed Memory Ordering (RMO). An interested reader may refer to [33]

for detailed specifications of each protocol.

9

2.1.1.3 Coherence

Coherence [18], as a memory consistency model, can be seen as a location-

relative weakness of SC. As I discussed in section 2.1.1.1, sequential consistency re-

quired all processors to agree on some sequential order for execution of all memory

accesses. Whereas in coherence, accesses are required to be sequentially consistent on

a per-location basis. In other words, for each memory location x, there is a total order

of all the memory operations dealing with x and memory operations on x follow their

program order.

Coherence is significantly weaker compared to SC and TSO. It eliminates the

program order constrain imposed by SC and TSO on accesses to different locations in

memory. Clearly, a system obeying SC or TSO respects coherence but not vice versa.

In the context of example presented in figure 2.3, coherence allows r1 and r2 to be both

hold the value 0 after executing corresponding memory accesses. Figure 2.5 shows one

valid ordering under coherence.

Figure 2.5: A valid trace of accesses under coherence

Coherence also inspires cache protocols since it naturally fits within the subject.

Cache coherence protocols are later discussed in section 2.2.

2.1.2 Hybrid Memory Consistency Models

Contrary to uniform memory models, hybrid models distinguish different access

categories. In hybrid models, ordering constrains are defined depending of the category

of the access. For instance, one model may have strict rules for synchronizing accesses

while providing less restrictions for non-synchronizing memory operation.

Similar to the previous section, three examples of hybrid memory consistency

models are presented.

10

2.1.2.1 Weak Ordering (Weak Consistency)

Dubois et al proposed Weak ordering (WO) [13] in 1986. A system using WO

should implement the following.

• Accesses to synchronization locations are sequentially consistent.

• All previous memory accesses access to a synchronizing location in a processor
should be performed before another memory access is issued.

• No memory access is issued by a processor before an issued memory access to a
synchronizing variable has been performed.

Putting all together, synchronizing accesses in WO can be seen as memory fence

operations. In other words, no regular access can pass a synchronizing access (i.e. to

be reordered before or after, according to the program order). Moreover, synchronizing

accesses are sequentially consistent with respect to each other.

2.1.2.2 Release Consistency

As an improvement on WO, Gharachorloo et al proposed Release Consistency

(RC) [18] in 1990.Their approach was to impose fewer constrains on ordering memory

accesses by exploiting information about properties of shared-memory accesses. There-

fore, RC divides accesses to shared locations to acquire, release, and non-synchronizing

accesses. Acquire accesses are similar to synchronizing accesses in WO, except that

only future accesses are delayed upon an acquire. Likewise, a release operation works

similar to a synchronizing access in WO, but issuing is delayed until all previous ac-

cesses have been performed. To formally describe the model, a system follows RC

if:

• Before an ordinary Load/Store access is allowed to perform (become visible) with
respect to any other processor, all previous acquire accesses must be performed.

• Before a release access is allowed to perform with respect to any other processor,
all previous ordinary Load/Store accesses must be performed.

• Special accesses are sequentially consistent with respect to one another.

11

Gharachorloo et al proved that RC is equivalent to, and will produce same

results as, sequential consistency at least for a particular category of programs called

Properly-Labeled 1.

2.1.2.3 Location Consistency

In December 1999 Gao and Sarkar proposed a memory model called Location

Consistency (LC). In this model, ordering constrains are captured at location level on

a per location basis. For a given location, a set of valid values called value set is defined

for any read operation based on the state of that location. The state obtained through

Partially Ordered Multi-set (POMset) for every location. POMsets are updated upon

performing a write, acquire, or release operation. Due to importance of LC in this

thesis, this model is discussed further in detail.

A POMset, representing the state of location L, is defined as state(L) = (S,≺).

Where S is a multi-set and ≺⊆ S×S. An element in S is either an acquire, a release, or

a write operation. In order to compute the new POMset (Snew,≺new) after operation

e (either a release or a write operation) based on the old POMset (Sold,≺old), the

following rules should be applied.

Snew := Sold ∪ {e}

≺new:=≺old ∪{(x, e) | x ∈ Sold ∧ processorset(x) ∩ processorset(e) 6= ∅}

Where processorset(e) is defined as the set of processors involved in operation

e. Upon an acquire operation e, following rules is used to impose desired orderings.

Snew := Sold ∪ {e}

≺new:=≺old ∪{(x, e) | x ∈ Sold ∧ processorset(x) ∩ processorset(e) 6= ∅} ∪

{(e′, e) | e′ = mostrecentrelease(e) ∧ e′ 6= ∅}

Note that mostrecentrelease(e) is non-empty if location L is previously release

by some processor P . To obtain the value set V (e), the set of permissible values for

1 The definition of properly-labeled programs is beyond the scope of this thesis and
could be found in the original paper [18]

12

read operation e, first an extended POMset should be defined. An extended POMset

≺′ definition is as follows.

S ′ = S ∪ {e}

≺′=≺ ∪{(e′, e) | e′ ∈ S ∧ Pi ∈ processorset(e′)}

Now the value set V (e) can be defined as follows.

V (e) = {v | ∃w ∈ S ′ ∧ {condition1 ∨ condition2 = True}}

condition1 : w = write(Pi, v, L) ∧ w ≺′ e | {6 ∃w′ | w′ ≺′ e ∧ w ≺ w′}

condition2 : w = write(Pj, v, L) ∧ w 6≺′ e

Condition 1 defines set of most recent processor writes (MRPW)2. Condition 2

points to all the write operations from other processors without any specified orderings

related to read operation e. Intuitively, the value set V (e) for a read operation e on

location L by Pi contains one or more values from the following.

• The value of most recent write operation to location L by processor Pi.

• The value of most recent write operation to location L by some processor Pj if
and only if proper acquire and release operations are used.

• Any value produced by write operations (without any specified orderings, i.e.
racy write operations) on location L by processor Pj|j 6=i.

Note that in case of programs without data-race, where proper acquire and

release operations are used for accesses to shared memory, the value set V (e) only

contains one value (as is expected by most programmers).

In support of their work, authors proved weakness (the model is weaker than

RC), equivalence (it is equivalent to RC for data-race free programs), monotonic-

ity (same value set is valid for a more parallel version of the program), and non-

intrusiveness (reads would not affect the value set) for the LC model as four measures

of usefulness and robustness [17][16].

2 Refer to [17] for a detailed definition.

13

2.2 Cache Coherence

In a uniprocessor system, caches are functionally invisible for programmers. In

a shared memory system, several processors may accesses a shared location. Since each

processor can store a local copy of location in their caches, any updates on the local

copy potentially can lead to an incoherent access by other processors. As discussed in

section 2.1, the memory model of system is in charge of defining correct orderings in

case of concurrent memory accesses. Therefore, a cache protocol is required to apply

rules defined by the memory model of system. Such protocol should carefully follow

the memory consistency model of system, to avoid creating new functional behavior by

caches. In this section, cache coherence protocols are discussed. But it worth keeping

in mind that non-coherent protocols also exist, and they bring new trade-offs to design

space of a memory system.

Implementation details of caches are beyond the scope of this work since this

thesis aims the protocols. A cache coherence protocol is often seen as a finite state

machine. State transitions3 are defined depending on processor’s request. Whilst a

coherent protocol can have several states, the can be classified based on the following

measures.

• Read/Write Permissions The operations which a processor is allowed to per-
form on a location depends on the state of that location. Serving a read operation
is often straightforward since it does not impose any modifications and a valid
copy of location would server the purpose. On the other hand, a write operation
usually requires more considerations since it potentially can create incoherency.

• Dirty/Clean Data Each location in cache is a local copy of the original value
in main memory4. The value of this local copy can be either Clean or Dirty
compared to the original value. A local copy is considered dirty if it holds a
different value from the original copy, and it is considered clean if it contains a
value identical to the original copy.

3 This thesis does not discuss details of transient states, which can be found in [31].

4 Considering several layers in the memory hierarchy will not change such analysis,
and intentionally avoided to keep away the unnecessary complexity

14

Coherence can be maintained at different granularities, ranging form one byte

to several bytes. But most often the granularity of coherence is a cache line. Designing

a coherence protocol can be several different ways. Even a given state machine (i.e.

set of states and transitions) can lead to many different protocols. Among many design

options regarding a coherence protocol, there is a primary decision with major impact

on design. Coherence protocols can be divided into two classes: snooping and directory.

These classes are briefly discussed in the following.

• Snooping protocols In snooping protocols, cache controller broadcasts requests
to all other cache controllers. Other coherence controllers, repeatedly snooping
for coming requests, will take required actions upon receiving the request. Most
snooping protocols rely on an interconnection network (i.e. a shared medium)
which delivers messages in a total order.

• Directory protocols In directory protocols, a cache controller send requests
to directory which contains identities of sharers for each location. This way
the necessary communication can be done through point-to-point communication
with sharers.

Choosing between snooping and directory protocols is a design trade-off decision.

Snooping protocols are less complex to implement, but suffer from poor scalability

(as the number of cores increases) since broadcasting does not scale well. Directory

protocols provide a better scalability, but they have three main shortcomings. First,

implementing directories in hardware requires logic and the size of such directories

grows linearly as the number of cores increases. Second, directory protocols make many

two-hop transactions into three-hop transaction since they require an extra message to

be sent to directory. This will increase the latency of accesses. Third, the directory

will become the bottleneck of the system since it is the single point of contact for all

processors. These shortcomings are mitigated to some extend through use of dynamic

distributed directories [29][25].

As coherence is widely used in modern computer systems [25], the scalability

issue of cache coherence protocols remains a challenge for computer architects, at least

in near future. In the rest of this section, three examples of cache coherence protocols

are presented.

15

2.2.1 MSI

MSI is the first model discussed in this section and is considered as the base

model for other models discussed later. A cacheline in a system using MSI can have

any of the following states:

• Modified (M) A cacheline with state M contains dirty data and therefore can
not be evicted silently. Performing read and write operations on a cacheline with
state M results in a cache hit. No other processor is allowed to have a copy of a
cacheline in state M.

• Shared (S) Data in a cacheline with state S is clean. One protocol may or may
not allow silent eviction of such line. A read request from processor results in a
cache hit. But performing a write operation requires a state transition from S to
M, in order to obtain the write permission. Other processors may have a copy of
a cacheline in state S.

• Invalid (I) An invalid cache line contains out-of-date information and it can be
silently evicted from cache. Obviously, both read and write operations result in
a cache miss and the line should be fetched from higher memory.

Figure 2.6 reflects the state machine for MSI. Arrows in black shows transition

upon read (PrRd) and write (PrWr) operations and required messages (GetM/GetS)

to be communicated. Red arrows on right side of figure shows the state transitions

upon receiving a messages. Note that this figure is intentionally simplified and imple-

mentation details of for snooping or directory protocols are not included.

To illustrate how MSI protocol works, an example of state transition is shown

in figure 2.7. Initially, both P1 and P2 have location5 x in their caches with state I.

Upon operation 1, P1 sends a read request (GetS) for location x and loads x with

state S. Performing operation 2 requires P1 to obtain write access for location x. A

write request (GetM) is issues by P1 and the state of line is changed to M afterwards.

The read operation on P2, instruction 3, requires the state of location x in P1 to be

downgraded to S by sending a read request (GetS) and P2 loads the location x with

5 Here, a location is assumed to be in the minimum size which coherence is maintained
at.

16

Figure 2.6: State diagram for MSI cache coherence protocol

state S. Upon instruction 4 in P1, a write request (GetM) is needed since P1 does not

have write permission for a cache line with state S.

Figure 2.7: Operation of MSI protocol

Among the communications needed for the example shown in figure 2.7, some

of can be eliminated by applying optimization on the protocol itself. Two of such

techniques are discussed in the rest of this section.

2.2.2 MESI

MESI [27] protocol can be seen as an improvement on MSI protocol. MESI

adds E state to MSI protocol to enable a processor to read and then write to a location

17

with a single coherence message. A cacheline in MESI protocol can be in one of the

following states.

• Modified (M) Similar to MSI protocol, a cacheline with state M contains dirty
data and therefore can not be evicted silently. Performing read and write opera-
tions on a cacheline with state M results in a cache hit. M is an exclusive state,
meaning that no other core is allowed to have a copy.

• Exclusive (E) Data in a cacheline in state E is clean. As for a cacheline in
state S, a read operation results in a cache hit. But unlike S state, a write
operation also results in a cache hit. Most implementations allow silent eviction
of a cacheline in state E. Similar to M state, E is an exclusive state as well.

• Shared (S) Like MSI, a cacheline with state S hold clean data. A read request
from processor results in a cache hit and a write operation requires a state tran-
sition from S to M, in order to obtain the write permission. Other processors are
allowed to have a copy of a cacheline in state S.

• Invalid (I) Data within an invalid line can not be used and should be replaced
upon both read and write operations.

Figure 2.8 shows the state machine for MESI protocol. State transition and

required messages upon read/write operations are shown in black while red arrows

show state transitions required based on the incoming messages.

To highlight the advantage of MESI over MSI, figure 2.9 shows state transitions

in a MESI cache protocol for the same instruction as used in figure 2.7. As can be

seen, the state of location x after performing instruction 2 is E. This will eliminate the

need for a communication upon performing instruction 3 since P1 has exclusive access

to location x.

2.2.3 MOESI

MOESI protocol improves MESI by enabling dirty-sharing of data by adding

the O state. This improvement can significantly affect the protocol in case of single-

producer-multiple-consumer access patterns. Each cacheline can have one of the fol-

lowing state in MOESI protocol.

• Modified (M) A cacheline in M state hold update data. The copy in maim
memory is stale and should be updated upon eviction. No other processors are
allowed to have a copy. Both read and write operations result in a cache hit.

18

Figure 2.8: State diagram for MESI cache coherence protocol

Figure 2.9: Operation of MESI protocol

• Owned (O) Data within a cacheline in state O is update. O state is similar to
S state, in the sense that it allows other processors to have a copy of the cache
line. But it is different since the copy in main memory is stale and should be
updated. Only one processor is allowed to be in state O and other processors
may have a copy of cacheline in state S. Both read and write operations result in
a cache hit, but a write operation requires invalidation of other copies.

• Exclusive (E) A cacheline in state E holds clean and update data. As for a
cacheline in state S, a read operation results in a cache hit. But unlike S state, a

19

write operation also results in a cache hit. The copy in memory is valid and no
other processor has a copy of cacheline.

• Shared (S) A cacheline in state S hold update data. Other processor may have
a copy of cacheline. The copy in memory is valid unless some other processor
has the cacheline in state O. Read operation results in a cache hit but a write
operation requires coherence messages.

• Invalid (I) Data within an invalid line can not be used and should be replaced
upon both read and write operations.

Similar to previous protocols, the state machine for MOESI protocol is shown

in figure 2.10. Arrows in black shows transition upon read (PrRd) and write (PrWr)

operations and required messages (GetM/GetE/GetS) to be communicated. Red ar-

rows on right side of figure shows the state transitions upon receiving a messages. Note

that this figure is intentionally simplified and implementation details of for snooping

or directory protocols are not included.

Figure 2.10: State diagram for MOESI cache coherence protocol

20

Figure 2.11 shows the state transitions in a MOESI cache protocol for the same

instruction of figure 2.7. Adding the O state improves the protocol by allowing P1

to perform instruction 4 without any coherence messages required since P1 has the

cacheline in state O.

Figure 2.11: Operation of MOESI protocol

21

Chapter 3

THE PROBLEM WITH COHERENCE

This thesis challenges the assumption that cache coherence protocols are well-

suited for large-scale multi or many core processors. The motivation to stand against

cache coherence, relies on underestimated limitations implied on system design by

coherence.

First, despite the existence of better, more refined, and efficient coherence proto-

cols such as MOESI, their implementation leads to significant amount of data transfers

both on and off chip. Moreover, they do not address the need for atomic operations

(such as compare-and-swap), which are crucial components of efficient lock-free data

structures, or building blocks to efficient locking mechanisms in operating systems and

runtime environments.

To design a cache coherence protocol for large-scale multi or many core proces-

sors, snooping protocols cannot be considered as snooping does not scale well. On the

other hand, the size of directory in a directory protocol grows linearly with the number

of cores. Lastly, cache coherence protocols impose implicit latency in many cases to

the accesses.

An alternative for cache coherence protocols, should ideally generate less traffic

on chip and require smaller size for a directory based protocol. To this end, LC cache

protocol were found as a good candidate. This protocol is illustrated in the following

chapter.

22

Chapter 4

LC-CACHE: TOWARD A SCALABLE CACHE PROTOCOL FOR
EXASCALE SYSTEMS

As discussed earlier in 2.1.2.3, Location Consistency is a interesting relax hybrid

memory model. However, since the need for caches is undeniable, a cache protocol

should be attached to the memory model. It is imperative since it enhance the synergy

between underlying hardware and the memory model of the system.

A cache protocol based on LC model would be different from other protocols

discussed in section 2.2 since it violates coherence. Other protocols maintain coherence

to respect the ”correctness” defined by memory model of the system. Like any other

consistency model, LC also provides semantics for a valid interleaving of the accesses

but as explained in section2.1.2.3, since LC defines a value set for every location, there

is no need for two distinct logical cores to agree on a single value for a given location.

In this section, location consistency cache protocol is discussed. The protocol

was proposed by Gao and Sarkar. For the rest of this chapter, it is assumed that each

cacheline represent one location in memory to avoid unnecessary discussions. A variety

of methods, like what proposed by Gao and Sarkar, can be used for multi-word cache

lines.

First the original model proposed by Gao and Sarkar followed by a brief discus-

sion on the weaknesses of their solution is presented.

4.1 LC-Cache Protocol

Gao and Sarkar presented Location Consistency (LC) memory model along with

an implementation for a cache protocol based on LC [17]. Protocol diagrams are

23

presented in figure 4.1 and they illustrate state transitions for Read and Write operation

as well as Acquire and Release operations.

Figure 4.1: State transitions - LC cache protocol

As can be seen, cache line X can have one of the following three states:

• Dirty (D)
The information within a cache line X in D state is valid. Line X will remain in
D state unless it gets evicted from cache or a Release operation is applied on X.
Both Read and Write operations accessing X will result in a hit.

• Clean (C)
A cache line X in state C, holds valid information. While both Read and Write
operations on X will result in a hit, the state of cache line will change form C to
D upon the Write operation on X. In addition, the state of cache line will change
from C to I by performing an Acquire operation on X. We refer to this action
as self-invalidation. Note that, in all cases, there is no need to update directory
or broadcast since protocol does not imply the need for exclusive ownership for
Write operations.

• Invalid (I)
An invalid cache line X contains information which is not valid. Contrary to
previous cases, both Read and Write operation accessing X will result in a miss
and the line should be fetched form higher level memory. Performing either an
acquire operation or a release operation on an invalid cacheline does not imply
any state transitions.

24

To explain the transitions between the states, the set of actions required upon

each operation is presented.

• Read
Reading a cache line in either D or C states will result in a hit. Performing a
Read operation on a cache line in state I will result in a miss and the line should
be fetched form higher level memory and stored in cache in state C.

• Write
Similar to Read operations, writing to a cache line in D or C states will result
in a hit. However, writing to an Invalid cache line (state I) will result in a miss.
Upon a miss, the line should be fetched form higher level memory and stored in
cache in state D.

• Acquire
To obtain the lock, an atomic operation is performed. Atomic operations are
supported by hardware in the current architectures and different implementations
of them are beyond the scope of this work. The state of cache line would not
change if it is in either D or I states. For cache lines in state C, however, a
self-invalidation should be performed to obtain a fresh value since the value can
possibly be updated by other processors.

• Release
Releasing a cache line in C or I states would not imply any state transitions while
releasing a dirty cache line requires updating the higher level memory (write-back)
and changing the state to clean.

To illustrate how the protocol works, first I divide memory accesses into three

categories and I will compare the proposed protocol with MESI protocol under each

category. Memory accesses are divided into the following categories:

• Regular accesses
Regular accesses are accesses to private locations (not shared with other pro-
cessors). In case of regular accesses, LC Cache protocol would behave similar
to MESI protocol, as an example of coherence protocols, form a performance
prospective. However, the proposed protocol would be cheaper in terms of logic
on chip and more efficient from an energy consumption point of view since it
does not require snoops to other processors or a directory to consult with upon
each access. In case of MESI, for private accesses, the cache line would be in
either E (assuming only read operations) or M (assuming both read and write
operations) state. Using LC Cache, the state of cache line would be either C
(only read operations) or D (both read and write operations).

25

Figure 4.2: Atomic increments on shared location x

Note that, going from E to M state in MESI can be done silently (i.e. there is no
need for a snoop or a consult with directory) but going form I to E state implies an
exclusive snoop request or a consult with directory based on the implementation
of the protocol. On the other hand, LC Cache will perform all state transition
silently and save some traffic on chip as well as the energy consumed by sending
those messages. Regarding the correctness of the program being executed, since
regular accesses are accesses to private locations, there is no need for further
explanations and program would behave exactly the same under both protocols.

• Synchronous accesses
Synchronous accesses are accesses to shared locations which has been labeled with
proper synchronization operations (i.e. acquire-release pairs). In other words,
memory accesses within critical sections are called synchronous. The ordering
of accesses to shared memory are defined by Memory Consistency Model of the
system. However, any Memory Consistency Model will agree that there should
be (at least) a total order on synchronous store operations for data race free
programs.

Note that in MESI, as an example of coherence protocols, synchronous accesses
are not differentiated from regular accesses. The total order on write operations
required by Memory Consistency Model is achieved through invalidations or up-
dates based on the implementation of the protocol. In addition, coherence does
not provide the semantics required for atomicity of accesses or creating critical
sections and it needs to be coupled with additional mechanisms. In practice, sys-
tem developers tried to create such support by proposing various solutions such
as Lock/Unlock for creating critical sections in programs, or atomic operations
such as fetch and increment or compare and swap for single atomic accesses. In
case of synchronous accesses, LC Cache would perform on par compared to co-
herence protocols from a performance viewpoint. The total order of writes is
maintained by write-backs upon release operation. The atomicity of access is
guaranteed through acquire operation.

To illustrate the state transitions in both cases, consider the example of figure 4.2
where three processors try to increment the shared location x atomically in the
order shown in figure 4.2. We assume that each processor has one level of private
cache with write-allocate and write-invalidate [14] policies.

26

– MESI
In case of MESI, atomic instructions are most often translated to Load-
Linked Store-Conditional operations for hardware in order to fit them in
pipelined processors. Load-Linked flag is used to guarantee the atomicity of
the access.

The first processor (P0) accessing location X will load the cacheline in state
E by sending a control message (a snoop request or a consult with directory)
and later on will write to the location X silently (with no control messages)
and changes the state of the cacheline to M. When the second processor
(P1) loads the cacheline, it will send one control message and triggers the
write-back of location X in P0s cache which causes an access to DRAM. By
the time the write-back is completed, P0 will have the cacheline in state
S. Then P1 will load a copy of location X from DRAM and will have it in
state S. Upon the write operation in P1, a control message is required to
invalidate the copy of location X in P0s cache. Similar steps will be taken
for the access by the third processor P2. Assuming that the cacheline X will
be evicted after the execution of the above example in P2, MESI implies
five control messages and six accesses to DRAM in total.

– LC Cache
In LC Cache, P0 will read the location X first and will have it with state C.
Note that in here, similar to MESI, I do not account for control messages
required for atomicity of the access. Upon the write operation, the state of
cacheline is changed to D and a write-back is performed on release operation.
After that, P1 acquires the location and loads the cacheline from DRAM
with state C. Upon write, the state of line is changed to D and no control
messages are required. Note that the copy in P0s cache is not invalidated
and P0 is allowed to keep his local copy. If the updated value is needed,
the access should be wrapped with an acquire-release pair. In that case, the
protocol guarantees that the updated value is loaded by preforming a self-
invalidation right after the acquire operation. Release operation in P1 will
trigger a write-back of location X to DRAM. Similar steps will be taken by
P2 accessing location X. In total, LC Cache will have six DRAM accesses,
like MESI, and no control messages. However, it implies that accesses to
shared location should be wrapped by acquire-release pairs.

Figure 4.3: Single producer with multiple asynchronous consumers

27

• Asynchronous accesses
Contrary to synchronous accesses, asynchronous accesses are accesses to share
locations which has not been labeled with proper synchronization operations.
These accesses are considered as data race in most cases while they can be valid
in relaxed algorithms [3]. For such accesses, MESI (and coherence in general),
provides unnecessary restrictions that programmer has not asked for. Those
restrictions, imply taking unnecessary actions which can affect the system form
a performance prospective as well as energy consumption.

I firmly believe that, hardware should prioritize energy consumption and perfor-
mance of the system by taking as few actions as possible. To illustrate, consider
the example of single producer with multiple asynchronous consumers shown in
figure 4.3. Processor P0 is incrementing the value of location x atomically while
two other cores, P1 and P2, are asynchronously reading the value of location x
twice. In a system using MESI protocol, upon write in P0 other copies of data
should be invalidated and then, a write-back should be performed and the cache-
line needs to be reloaded upon the next read operation. On the other hand, LC
would only perform one write back upon release operation, one access to DRAM
for read operation(s) in each core and no control messages.

To further explain, consider the example of figure 4.3, and let’s assume that the
atomic operation in P0 is executed between the two load operations in P1 and
P2. In case of MESI, the cache line is first loaded in P1s and P2’s caches in
state S. Then P1 fetches the line from DRAM with state S. Then, P0 performs
the write operation and it requires all other copies to be invalidated. Needless to
say, upon the next read operation on either P1 or P2, a write-back on P0s copy
should be performed and cacheline should be loaded form DRAM. In total, for
the example given in figure 4.3, 6 DRAM accesses and 7 control messages are
implied using MESI. In case of a system using LC cache, all the three cores will
load cacheline form DRAM with state C and make 3 DRAM accesses. After that,
upon write operation in P0, the state of cacheline in P0s cache become D and no
invalidation or control messages are required. Read operations in P1 and P2 will
result in hits. In total, LC implies 4 DRAM accesses and no control messages
for the given example. Note that, the correct value to be returned by accesses to
shared memory is determined by the memory model of the system. But in case of
asynchronous accesses, as discussed in [REFERENCE], programming languages
such as C++ [8] and Java [24] do not guarantee that the return value of racy
read operations in P1 and P2 will be the most updated value produced by P0.
Therefore, unlike what coherence does, there is no need for invalidating other
copies.

As discussed above, the potential for an efficient implementation of LC Cache

is undeniable. Coherence, as a memory consistency model, is extremely stronger than

28

memory consistency models currently used in programming languages like C++ and

Java. In other words, a cache protocol based on coherence implies more restriction

than what programmer asks for. In addition, lack of semantics for providing mutual

exclusion, or creating critical sections, in coherence further highlights the need for a

new cache protocol.

4.2 Weaknesses of LC Cache

The implementation of LC Cache proposed by Gao and Sarkar has several weak-

nesses. It would not take the advantage of cache to cache forwarding which has been

used in most cache protocols nowadays. Additionally, it does not behave differently

form a cache implementation based on Release Consistency [18] and most importantly,

it cannot be considered a true implementation base on LC since it does not behave as

LC expects. For instance, consider figure 4.4 which shows the example provided by

authors in [17] to illustrate how Location Consistency behaves differently compared to

Release Consistency.

Figure 4.4: An example to highlight the difference between LC and RC

The purpose of provided example is to see whether or not it is possible for

two consecutive read operations, r1 and r2, in thread0 to return different values. As

explained in [17], return values would be identical in a system using Release Consis-

tency under all possible scenarios but it is possible to have different values through

29

Location Consistency. However, the cache protocol presented in [17] would not behave

accordingly for the example presented.

Figure 4.5 shows the state transitions in a system using the original LC cache

protocol, upon each instruction of the example presented in figure 4.4. Two scenario are

considered in figure 4.5. The first one, shown in the second column, is the case where

location L remains in P1’s cache after the first write operation w1. In other words, L

would be not be evicted form cache between w1 and the acquire instruction in thread0.

The second scenario is the contrary case where L is evicted from P1’s cache after w1.

In the first scenario, the value of location L is 1 right before the acquire operation in

P1 and the state of L is D. Therefore, according to figure 4.1, performing the acquire

operation in P1 does not change the state of location L and the read operation r1 would

return the value 1. On the other hand, in the second scenario, P1 needs to obtain the

value of L since it has been evicted from its cache. Consequently, r1 will return 2 which

fetched from maim memory. In both cases, the value of location L in main memory

would be the same as the return value of r1 since performing a release operation on a

Dirty line requires updating the memory[17]. In other words, the value produce due

to the racy operation w1 is either covered by an eviction or will be propagated to the

main memory.

As I discussed, return values would be identical in any possible case under a

system using the implementation of LC cache proposed by Gao and Sarkar. This

is clearly against the motivation of having a cache protocol based on LC. I believe

such protocol should maintain a total order on writes (per location) for data race free

accesses. For programs with data races, such as the example provided in figure 4.4, the

protocol should let the process performing the racy access to preform operations locally,

but prevent the propagation of data produced to others due to the race condition.

30

Figure 4.5: State transitions and values after each instruction in figure 4.4. LP1 = 1(D)
means the value of location L in processor P1 is equal to 1 and is in state D. LMM

refers to the value of location L in main memory.

31

Chapter 5

LCCSIM: A SIMULATION FRAMEWORK TO COMPARE CACHE
PROTOCOLS

In this chapter, Location Consistency Cache Simulator (LCCSim) is presented.

In order to compare LC based cache protocols to well-known coherence protocols,

an analytic simulation framework has been developed in Python [28] programming

language. It aims simulation of cache behavior and it relies on traces of memory

accesses. Such traces can be obtained using any profiling tools such as Intel’s pin [23]

or simulators such as gem5 [6] but for the experiments presented in this thesis, they

were generated manually using the trace generator. Trace generator is also developed

in Python and it takes several arguments such as total number of instructions, number

of cores, the ratio of read and write operations, the total number of location being

accessed and so on. Using inputs, several scenarios were created in order to test the

simulator as well as comparing LC cache protocol with other coherence protocols.

5.1 Implementation details

To avoid adding unnecessary complexity to the framework, LCCSim implements

on level of caches per each core all connected to one higher level of memory which is

simply called main memory. The size of each processor’s cache is 256 lines. Write-backs

to main memory are inserted into write buffers of size 16 cachelines (words). Write

buffers will merge two writes to the same location into one write operation within the

buffer. After the insertion of a write-back operation into write buffer, the write buffer

is flushed if it has reached the maximum fir its capacity.

Coherence protocols are all implemented as directory based protocols using one

central directory which is implemented using Python’s dictionaries. However, all the

32

existing techniques such as can be hired for an actual implementation of LC cache in

hardware. Implementations of all coherence protocols in LCCSim use write allocate

and write invalidate [14][19] policies. For the replacement policy in case of evictions

in caches, Least Recently Used (LRU) is implemented. Implementation detail for each

cache protocol, similar to the simple implementations discussed in [31], is as follows.

Note that in all figures used to explain details of coherence protocols, first action upon

request is shown in black text and arrows. Green arrows and text show the second

communication needed for each operation. Red arrows and messages reflect third part

of a coherence transaction.

• MSI Transitions depending on the current state of a cache line is shown in fig-
ure 5.1. Note that three cases in a directory protocol cause three step operations
as shown in figure 5.1b, 5.1c and 5.1e. Evicting a cacheline in state S can not be
done silently and requires a consult with directory. The response by directory in
figure 5.1a, and response from owner in figure 5.1b contains ac Ack count of zero.

• MESI Figure 5.2 shows state transitions for MESI directory cache coherence
protocol. Like MSI, figure 5.2b, 5.2c and 5.2f show three step transitions in
MESI protocol. Transition from E to M is done silently. A cacheline in state S
can not be evicted silently as shown in figure 5.2i.

• MOESI Transitions in MOESI protocol is shown in figure 5.3 and 5.4. Note the
sharing of dirty data shown in figure 5.4d and 5.3d. Similar to MSI and MESI,
transition form state E to state M is silent, evicting a cacheline in state S can not
be done silently and requires a consult with directory as shown in figure 5.4h.

5.2 Simulator features

As we discussed, LCCSim is designed to compare cache coherence protocols

to cache protocols based on Location Consistency. Therefore, it considers different

aspects of the systems influenced by those cache protocols. For that purpose, the

following measurements are made.

• Access time
In general, one of the aspects of the system which is affected directly by cache
protocol is the time it takes for the cache to satisfy the request from CPU. I call
this the access time which varies significantly if the access is either a hit or a
miss. In order to measure the access time, latencies for different actions needed

33

(a) I to M - No other sharer (b) I to M - Owned by some other processor

(c) I/S to M - with other sharer(s)

(d) I to S - No other sharer (e) I to S - Owned by some other processor

(f) M to I (g) S to I

Figure 5.1: Transitions in MSI protocol

34

(a) I to M - No other sharer (b) I to M - Owned by some other processor

(c) I/S to M - with other sharer(s) (d) I to E

(e) I to S - No other sharer (f) I to S - Owned by some other processor

(g) M to I (h) E to I (i) S to I

Figure 5.2: Transitions in MESI protocol

35

(a) I to M - No other sharer (b) I to M - Owned by some other processor

(c) I/S to M - with other sharer(s)

(d) I/S to M - Owned by some other processor

Figure 5.3: Transitions in MOESI protocol

36

(a) M to O (b) I to E

(c) I to S - No other sharer (d) I to S - Owned by some other processor

(e) M to I (f) O to I

(g) E to I (h) S to I

Figure 5.4: Transitions in MOESI protocol - Cont’d

37

to be defined. If the access is serviced by cache, i.e. a hit, the latency of such
access is equal to 1 cycles similar to what actually happens in real hardware.

For the accesses to main memory, i.e. a miss which needs to be serviced by
main memory, the latency is set to 50 cycles for each line. This is justified by
the fact that the latency of accesses to D-RAM is around 200 cycles nowadays
but every access usually fetches 4 lines from D-RAM. For data transfers between
caches, i.e. a miss which can be serviced by a copy in some other core’s cache,
the latency is set to 10 cycles. Latter represents accesses known as three-hop
accesses in directory protocols. For two-hop operation, where data is provided
by the directory, the latency of accesses is set to 5 cycles. These numbers where
chosen based on simple implementation of directory based protocols in gem5
simulator [6], but can be adjusted to reflect more realistic scenarios as explained
in section 5.3.

Total access time is calculated by accumulating the access time for each of the
instructions and reported at the end of a simulation.

• On-chip traffic
Another important factor affected by the cache protocol is the amount of traffic
on-chip generated because of the cache protocol. To take that into account,
following measures were implemented within the simulator.

– Data transfers
Some cache coherence protocols allow data transfers between caches in order
to lower the latency of access. The improvement is achieved by providing
the line through another processor’s cache rather than sending the request
to the main memory. However, as in most cases, this improvement is all
about a trade off.

The access time is improved since the latency of obtaining a copy from some
other core’s cache is lower compared to the latency of a request from main
memory. But on the other hand, this requires the data to be transfered
on-chip. In addition, directory protocols transfer data between directory
and cache controller in some cases1.

For data transfers, on-chip traffic is calculated by counting the number of
transfers and multiplying them to the size of a cacheline which is considered
64 Bytes.

– Control messages
Cache protocols, whether they are snoopy or directory based protocols, im-
ply control messages to be transfered on-chip. Those messages should be

1 Details of such cases are explained in section 5.1

38

transfered between processors for snoopy protocols, and between each pro-
cessor and directory for directory based protocols. Such messages also con-
tribute to the amount of traffic on chip.

Figure 5.5 shows the control messages counted by LCCSim and the size of
each messages in order to calculate the traffic on-chip. GetX, FWD-GetX,
PutX, Inv, and X-Ack messages contain the address of the location and
therefore 8 bytes would be large enough to fit the address in. Ack-Count
should contain a number up to the number of cores in system. Thus 2 bytes
can hold values for up to nearly 64 thousands of cores. Flush, FlushAll,
and Flush-Ack only need to contain the identifier of the core initiating the
request and 2 bytes can perfectly fit the identifier.

Figure 5.5: Control messages in LCCSim

5.3 Limitations of LCCSim

LCCSim has several limitations as the main purpose of its design is to investigate

and compare the behavior of cache protocols. That is, the affect of the protocols on

system and the state transitions for a given input rather than an accurate and detailed

39

simulation of caches. However, several improvements can be applied to improve the

quality of measurements.

One of the limitations is having a single level of cache instead of multiple levels.

Although a single level of caches may considered unrealistic but it does not affect the

fairness of comparisons, which is considered as the main goal for LCCSim’s design.

In addition, adding multiple levels of cache will amplify the effects of cache protocol

under investigation. Therefore, the result of comparisons are correct, reliable, and fair.

Another shortcoming of LCCSim is the way that processors are tiled. Currently,

all processor have the same latency for their access (to other processor’s cache as well

as the main memory). In a more realistic scenario, latencies should be modified so that

an actual configuration could be represented. For instance, in case of a 2D mesh with

one centralized directory, processors should have lower latencies for communicating

their neighboring processors and also different latencies for their communications with

directory based on their distance form directory. However, this will not hurt the main

purpose of LCCSim and all such shortcomings will be considered as part of the future

work as explained in section ??.

40

Chapter 6

EXPERIMENTAL RESULTS

LCCSim was discussed in details in chapter 5. This chapter presents the results

of experiments made in order to compare LC Cache protocol against cache coherence

protocols.

For all the experiments presented in this chapter, a random pattern of access is

used. In total, four scenarios were used for running experiments. Three main categories

according to the classification of memory accesses discussed earlier in section 2.1, and

a fourth scenario as combination of different access types. For each scenario, following

three sets of experiments were designed.

• Scaling over the number of Cores To observe scalability, cache protocols
were evaluated as core count were doubling up starting from 1, up to 512.

• Scaling over the ratio of write operations To reveal the effect of write
operations on cache protocols, ratio of write operations changed between %5 and
%50.

• Scaling over number of locations Total number of locations changed from 256
to 8196, in order to measure the effect of capacity misses on each cache protocol.

Figure 6.1 shows experiments details for each of the experiment sets described

above. Note that in all cases, LC Cache protocol does not generate any traffic on-chip

as explained in section 4.1.

Figure 6.1: Experiment details

41

6.1 Private Accesses

This section presents the results for scenario of private accesses. That is, an

access pattern without any sharing of data. Figure 6.2 shows the total latency of

access for each cache protocol as number of cores is increasing. As can be seen, total

latency of accesses is independent of number of cores in case of accesses to private

locations. In the absence of sharing, transitions in each cache are autonomous. Total

latency of accesses for MSI protocol is marginally higher compared to other protocols

since writing to a cacheline in state S requires a two-step communication with directory

as shown in figure 5.1a.

Figure 6.2: Private accesses - Total access latency over number of cores

On-chip traffic for cache protocols in case of private accesses is reported in

figure 6.3. Similar to total latency, on-chip traffic do not depend on number of cores in

case of private accesses. MSI protocol generates more on-chip traffic since a read-write

operation requires two consults with directory.

Figure 6.4 and 6.5 show total access latency and on-chip traffic as ratio of write

operations is increasing. Total latency increases as more write operations are performed

since number of write-back operations required upon capacity misses is increasing.

Similarly, traffic on-chip is increased since a data transfer to directory is required when

a cacheline in state M is evicted (as shown in figure 5.1f).

Scaling over number of locations is shown in figure 6.6 and 6.7. Cache size in

LCCSim is set to 256 lines. Therefore, for 256 locations all the memory location will be

42

Figure 6.3: Private accesses - Traffic on-chip over number of cores

Figure 6.4: Private accesses - Total access latency over ratio of write operations

Figure 6.5: Private accesses - Traffic on-chip over ratio of write operations

present in cache and both latency and traffic cause by accesses is significantly decreased.

As number of locations is increasing, latency and on-chip traffic is increased due to

43

reduction in locality of data. This effect is protocol independent, with the exception of

MSI protocol which requires two consults with directory for a read operation followed

by a write. As can be seen, this effect is amplified in accesses with higher locality (i.e.

lower miss rates).

Figure 6.6: Private accesses - Total access latency over number of locations

Figure 6.7: Private accesses - Traffic on-chip over number of locations

To summarize behavior of cache protocols in case of private accesses, coherence

protocols shown to have similar performance considering both latency and on-chip

traffic with a marginal overhead in case of MSI protocol. LC cache have the same total

access latency as coherence protocols while it does not generate any traffic on-chip as

discussed earlier in section 4.1.

44

6.2 Shared accesses - Non-synchronizing

The results for scenario of non-synchronizing shared accesses are presented in

this section. Note that all accesses in under this scenario are non-synchronizing (i.e.

racy). Figure 6.8 describes scaling of total latency of access for each cache protocols

as number of cores increases. For coherence protocols, the total latency of accesses

decreases by nearly 20% as number of cores doubles up. This improvement is achieved

through use of cache to cache forwarding. As number of cores increases, more locations

will be stored in caches and a request for those locations can be serviced through cache

to cache data transfers. Data transfers has lower latency of access compared to accesses

to main memory. In contrast with coherence protocols, LC does not take the advantage

of cache to cache data transfers. Therefore, using LC cache protocol, the total latency

of access remains unchanged as number of cores increases. This shortcoming of LC

cache is discussed in section 4.2.

Figure 6.8: Non-synchronizing shared accesses - Total access latency over number of
cores

Total traffic on chip generated by each protocol is shown in figure 6.9. The

trade-off done by coherence protocols can be observed clearly. As number of cores

grows, coherence protocols improve the total latency of accesses by using cache to

cache data transfers. That is, more on-chip traffic as number of cores is increasing.

One observation on figure 6.8 and 6.8 is that improvements on latency, and

45

increase in total traffic on chip, flattens as number of cores reaches to 64. This ob-

servation does not counter previous analysis. The total number of locations for this

scenario is 8192. Having 64 cores each with a cache size of 256 locations, the aggregated

size of caches would be twice as the size of input data. Therefore, after handling cold

misses, most accesses can be satisfied through cache to cache data transfers. In other

words, the improvement technique meets its upper-bound.

Figure 6.9: Non-synchronizing shared accesses - Traffic on-chip over number of cores

The impact of write operations on cache protocols is presented in figure 6.10

and 6.11. Total latency of accesses using LC cache protocol is significantly higher com-

pared to cache coherence protocols since it does not use local copies in other caches.

However, cache coherence protocols are more sensitive to write operations, since they

impose unnecessary orderings. Note that non-synchronizing accesses require no or-

derings and any possible orderings should be allowed. The total latency of accesses

increases by an average of %176 for coherent protocols and %41 for LC cache protocol.

Moreover, MOESI protocol provides lower latency of accesses as more write operations

are performed, since it allows sharing of dirty data.

With respect to on-chip traffic, MSI and MESI protocols generate %17 more

traffic on average as the ratio of write operations increases from %5 to %50 while

oc-chip traffic generated by MOESI protocol grows %4.

Results for scaling over number of locations is shown in figure 6.12 and 6.13. For

access on more than 512 locations, LC cache has significantly higher total latency of

46

Figure 6.10: Non-synchronizing shared accesses - Total access latency over ratio of
write operations

Figure 6.11: Non-synchronizing shared accesses - Traffic on-chip over ratio of write
operations

accesses compared to cache coherence protocols since it does not take the advantage of

cache to cache data transfers. MOESI protocol offers lower latency for accesses through

dirty data sharing, and less traffic on chip as it requires less updates to directory as

explained in section 2.2.3.

Data access patterns used for experiments intentionally have low locality in order

to evaluate each protocol in extreme cases. LC cache protocol have higher total latency

of access as it does not take the advantage of local copies in other caches. However,

LC cache protocol outperforms cache coherence protocols where the locality of accesses

is considerable. For instance, consider the case of 256 locations in figure 6.12 which

is presented in figure 6.14.LC cache protocol offers significantly lower access time by

47

Figure 6.12: Non-synchronizing shared accesses - Total access latency over number of
locations

Figure 6.13: Non-synchronizing shared accesses - Traffic on-chip over number of loca-
tions

avoiding unnecessary orderings in case of non-synchronizing accesses. For 256 locations,

all locations fit within one processor’s cache. Therefore the advantage of cache to cache

forwarding used by cache coherence protocols, is eliminated since all accesses will result

in cache hits after cold misses. In this scenario, the LC cache’s potential for scaling

can be observed.

To summarize the behavior of cache protocols for non-synchronizing accesses,

LC cache offers lower access latency compared to cache coherence protocols by avoiding

unnecessary orderings (implied in case of coherent protocols) where locality of accesses

is notable. However, as locality of accesses decreases, total latency of accesses for cache

coherence protocols slightly increases by taking the advantage of cache to cache data

48

Figure 6.14: Non-synchronizing shared accesses - Total access latency for 256 locations

transfers. On the other hand, the total latency of accesses grows drastically as locality

is decreasing proving the critical need for use of cache to cache forwarding in an efficient

implementation of LC cache.

6.3 Shared accesses - Synchronizing

This section presents results for synchronizing shared accesses. That is, all

accesses are made to shared locations, and write operations are performed as atomic

operations. Figure 6.15 shows scaling of total latency of access for each cache protocols

as number of cores increases. Similar to non-synchronizing accesses, cache coherence

protocols achieve lower latency of accesses as core count is increasing by taking the

advantage of cache to cache data transfers. LC cache protocol has higher total latency

for a single core experiments as it does not rely on a directory containing a copy of loca-

tions. Moreover, as number of cores increases, LC does not achieve any improvements

since it does not take the advantage of cache to cache data transfers.

Figure 6.15: Synchronizing shared accesses - Total access latency over number of cores

49

With respect to the total traffic on chip presented in figure 6.16, cache coher-

ence protocols have poor scalability for synchronizing shared accesses compared to

non-synchronizing accesses. Preforming atomic operations under coherence protocols

requires flushing write buffers on all other processor which leads to notable increase in

on-chip traffic.

Figure 6.16: Synchronizing shared accesses - Traffic on-chip over number of cores

As shown in figure 6.17 and 6.18, the impact of write operations on cache pro-

tocols for synchronizing shared accesses is similar to non-synchronizing accesses. How-

ever, in contrast to the case of non-synchronizing accesses, LC cache protocol and

cache coherence protocols would have similar sensitivity to write operation since the

orderings maintained by each protocol is identical to one another.

Figure 6.17: Synchronizing shared accesses - Total access latency over ratio of write
operations

50

Figure 6.18: Synchronizing shared accesses - Traffic on-chip over ratio of write opera-
tions

Scaling over number of locations for synchronizing accesses is shown in fig-

ure 6.19 and 6.20. As number of location being accessed increases, the latency of

accesses for LC cache protocol significantly increases since LC cache protocol does not

use cache to cache forwarding.

In case of 256 locations, where all locations fit within one processor’s cache, LC

cache protocol outperforms MSI and MESI protocols in terms of latency of accesses

and offers similar latency to MOESI protocol. In addition, LC cache protocol does not

generated any traffic of chip which makes it a good candidate for exa-scale systems.

Figure 6.19: Synchronizing shared accesses - Total access latency over number of loca-
tions

To summarize, LC cache protocol shown to have higher latency of accesses in

51

Figure 6.20: Synchronizing shared accesses - Traffic on-chip over number of locations

case of synchronizing accesses compared to cache coherence protocols. However, LC

cache protocol is shown to have the potential for scaling specially if the protocol coupled

with a forwarding mechanism.

6.4 Combined accesses

Previous scenarios consist of one single type of access for each, intentionally

designed to reveal extreme cases. In this section, a more realistic scenario is used by

combining different types of accesses. That is, %80 of accesses to private location and

%20 of accesses to shared locations. To achieve a fair comparison, all accesses to shared

locations are considered as synchronizing operations since LC cache benefits in case of

non-synchronizing accesses by avoiding any orderings.

Figure 6.21 illustrates the scaling of total access latency as number of cores

increases. Similar to previous cases, LC cache protocol has higher total latency of

accesses for a single core system since it does not rely on the copies in the directory.

Moreover, in contrast to cache coherence protocols, the latency of accesses does not

decreases as number of cores grows since it does not take the advantage of cache to cache

data transfers. However, the difference between the latency of accesses for LC cache

protocol and cache coherence protocols is smaller (compared to previous scenarios) in

case of combined accesses.

52

Figure 6.21: Combined accesses - Total access latency over number of cores

With respect to the total traffic on chip presented in figure 6.22, cache coherence

protocols have poor scalability for combined accesses similar to synchronizing shared

accesses. Preforming atomic operations under coherence protocols requires flushing

write buffers on all other processor which leads to notable increase in on-chip traffic.

Figure 6.22: Combined accesses - Traffic on-chip over number of cores

As shown in figure 6.23 and 6.24, the impact of write operations on cache proto-

cols for combined accesses is similar to previous shared accesses. However, in contrast

to the case of non-synchronizing accesses, LC cache protocol and cache coherence pro-

tocols would have similar sensitivity to write operation since the orderings maintained

by each protocol is identical to one another.

To summarize, the need for use of cache to cache forwarding in an efficient

53

Figure 6.23: Combined accesses - Total access latency over ratio of write operations

Figure 6.24: Combined accesses - Traffic on-chip over ratio of write operations

implementation of LC cache is undeniable. In addition, such protocol should care-

fully follow the semantics of the memory model to avoid non-deterministic behavior of

memory system.

54

Chapter 7

RELATED WORK

The idea of using relaxed memory models along with their cache implementa-

tions is not new. Keleher et al. proposed a technique for implementing RC called

Lazy Release Consistency (LRC) [20]. This model aims reducing both the number of

messages and amount of data exchanged between processors. In RC, according to the

definition, all ordinary Load/Store accesses must be performed before a release oper-

ation is allowed to be performed with respect to any other processor. Therefore, the

processor issuing the release operation should send an update to all other processors

acquiring the same memory location later in the program order upon every write.

In LRC, both the number of messages and data movements can be reduced by

merging all the updates into one message. Also, instead of broadcasting the updates

to all processor, LRC only sends updates to the next processor acquiring the location.

In other words, a processor acquiring a location should observe all the modifications

preceding the acquire operation. First improvement requires buffering the writes in

order to merge them all into a single message at the time of release. The second

proposed technique, requires tracking of the processor performing the preceding release

operation.

Bershad and Zekauskas proposed a framework for writing and executing shared

memory parallel programs on distributed shared memory multiprocessors called Mid-

way along with a memory model called Entry Consistency (EC) [5]. EC is similar to

LRC as updates in EC arrive at the acquiring processor like LRC. In contrast with

LRC, EC requires shared data to be associated with a synchronization variable. The

orderings are defined based on the accesses type(e.g. exclusive or non-exclusive). Adve

55

et al. compared implementations of LRC and EC for various workloads and concluded

that neither EC nor LRC consistently outperforms the other [2].

Several works aimed at determining the impact of cache coherence protocols

on computer systems. Schweizer et al. evaluated the effect of atomic operations on

many modern architectures [30]. They have illustrated that hardware implementa-

tions of atomic operations prevents instructions-level parallelism even in the absence

of dependencies between two instructions.

Martin et al. claim that on-chip hardware coherence scales well as number of

cores increases. They considered the effect of coherence on traffic, storage, latency,

inclusion property, and energy consumption of the system. For the analysis on traffic,

only the traffic generated in case of misses has been discussed while coherence incur

on-chip traffic in other cases. With respect to storage analysis, authors assumed a

hierarchal organization for processors with equal dimensions in depth and width. In

other words, they assumed that a hierarchal organization with N cores would have at

most log(N) cores at the lowest level. With this assumption, and with use of distributed

directories, O(log(N)) storage space is required at directory for each cacheline. Authors

concluded that the storage overhead for coherence protocols would not exceed %5 of the

total storage required by caches. While this conclusion is valid under the assumption

explained, the assumption may not be applicable to all future architectures.

Das et al. proposed use of dynamic directories in multi-core systems to reduce

power consumed by on-chip interconnect [11]. Schuchhardt et al evaluated the impact

of dynamic directories over the energy consumption of system as well performance [29].

Aiming at designing a scalable coherence protocol, Tardis was proposed by Yu

and Devadas [35]. Tardis relies on logical timestamps for memory orderings. It provides

better scalability by requiring O(log(N)) storage to keep track of N sharers. But it

implies overhead for storing the timestamps and incurs communication overhead in

some cases.

56

Chapter 8

CONCLUSION AND FUTURE WORK

Due to physical constrains in fabrication process, future architectures deemed

to be even more parallel. Traditional cache coherence protocols face many challenges

to scale to these architectures, and cache coherence soon becomes a luxury to afford.

As an alternative, LC cache protocol was investigated in this thesis.

The LC cache protocol guarantees that atomicity can be preserved when there

is a need for synchronized access to memory, while proposing a much weaker memory

consistency model than cache coherence and its most popular implementations (e.g.,

MESI, MOESI). However, LC cache protocol has several shortcomings. It does not

take the advantage of cache to cache forwarding, which has been used in most cache

protocols nowadays. Additionally, it cannot be considered a true implementation base

on LC since it does not behave as LC expects. Thu, the possibility of using such

protocol is eliminated since the cache protocol does not follow the memory model of

the system.

Future work includes designing a new cache protocol based on LC cache protocol.

Such protocol should provide support for cache to cache transfers, and also behave

according to what the memory model defines. The model should be added to LCCSim

in order to be compared with other protocols.

57

REFERENCES

[1] Sarita V. Adve and Hans-J. Boehm. Memory models: A case for rethinking parallel
languages and hardware. Commun. ACM, 53(8):90–101, August 2010.

[2] Sarita V. Adve, Alan L. Cox, Sandhya Dwarkadas, Ramakrishnan Rajamony, and
Willy Zwaenepoel. A comparison of entry consistency and lazy release consis-
tency implementations. In Proceedings of the 2Nd IEEE Symposium on High-
Performance Computer Architecture, HPCA ’96, pages 26–, Washington, DC,
USA, 1996. IEEE Computer Society.

[3] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models:
A tutorial. IEEE Computer, 29:66–76, 1995.

[4] Sarita V. Adve and Mark D. Hill. Weak ordering—a new definition.
SIGARCH Comput. Archit. News, 18(2SI):2–14, May 1990.

[5] Brian N Bershad and Matthew J Zekauskas. Midway: Shared memory paral-
lel programming with entry consistency for distributed memory multiprocessors.
1991.

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011.

[7] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime
system. SIGPLAN Not., 30(8):207–216, August 1995.

[8] Hans-J. Boehm and Sarita V. Adve. Foundations of the c++ concurrency memory
model. SIGPLAN Not., 43(6):68–78, June 2008.

[9] Zoran Budimlić, Vincent Cavé, Raghavan Raman, Jun Shirako, Saugnak Tacsirlar,
Jisheng Zhao, and Vivek Sarkar. The design and implementation of the habanero-
java parallel programming language. In Proceedings of the ACM International
Conference Companion on Object Oriented Programming Systems Languages and
Applications Companion, OOPSLA ’11, pages 185–186, New York, NY, USA,
2011. ACM.

58

[10] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard api for
shared-memory programming. IEEE Comput. Sci. Eng., 5(1):46–55, January 1998.

[11] Abhishek Das, Matt Schuchhardt, Nikos Hardavellas, Gokhan Memik, and Alok
Choudhary. Dynamic directories: A mechanism for reducing on-chip interconnect
power in multicores. In Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’12, pages 479–484, San Jose, CA, USA, 2012. EDA
Consortium.

[12] J. Diaz, C. Muoz-Caro, and A. Nio. A survey of parallel programming models
and tools in the multi and many-core era. IEEE Transactions on Parallel and
Distributed Systems, 23(8):1369–1386, Aug 2012.

[13] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiproces-
sors. SIGARCH Comput. Archit. News, 14(2):434–442, May 1986.

[14] Michel Dubois, Murali Annavaram, and Per Stenstrm. Parallel Computer Orga-
nization and Design. Cambridge University Press, New York, NY, USA, 2012.

[15] Message P Forum. Mpi: A message-passing interface standard. Technical report,
Knoxville, TN, USA, 1994.

[16] Guang R. Gao and Vivek Sarkar. Location consistency: Stepping beyond the
barriers of memory coherence and serializability. 1993.

[17] Guang R. Gao and Vivek Sarkar. Location consistency-a new memory model and
cache consistency protocol. IEEE Trans. Comput., 49(8):798–813, August 2000.

[18] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop
Gupta, and John Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. SIGARCH Comput. Archit. News, 18(2SI):15–26,
May 1990.

[19] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 5th edition, 2011.

[20] Pete Keleher, Alan L. Cox, and Willy Zwaenepoel. Lazy release consistency for
software distributed shared memory. SIGARCH Comput. Archit. News, 20(2):13–
21, April 1992.

[21] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput., 28(9):690–691, September 1979.

[22] Charles E. Leiserson. The cilk++ concurrency platform. In Proceedings of the
46th Annual Design Automation Conference, DAC ’09, pages 522–527, New York,
NY, USA, 2009. ACM.

59

[23] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. SIGPLAN Not.,
40(6):190–200, June 2005.

[24] Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model.
SIGPLAN Not., 40(1):378–391, January 2005.

[25] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. Why on-chip cache coher-
ence is here to stay. Commun. ACM, 55(7):78–89, July 2012.

[26] David Mosberger. Memory consistency models. SIGOPS Oper. Syst. Rev.,
27(1):18–26, January 1993.

[27] Mark S. Papamarcos and Janak H. Patel. A low-overhead coherence solution for
multiprocessors with private cache memories. SIGARCH Comput. Archit. News,
12(3):348–354, January 1984.

[28] Guido Rossum. Python reference manual. Technical report, Amsterdam, The
Netherlands, The Netherlands, 1995.

[29] Matthew Schuchhardt, Abhishek Das, Nikos Hardavellas, Gokhan Memik, and
Alok Choudhary. The impact of dynamic directories on multicore interconnects.
Computer, 46(10):32–39, October 2013.

[30] Hermann Schweizer, Maciej Besta, and Torsten Hoefler. Evaluating the cost of
atomic operations on modern architectures. In Proceedings of the 2015 Interna-
tional Conference on Parallel Architecture and Compilation (PACT), PACT ’15,
pages 445–456, Washington, DC, USA, 2015. IEEE Computer Society.

[31] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Con-
sistency and Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

[32] CORPORATE SPARC International, Inc. The SPARC Architecture Manual: Ver-
sion 8. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[33] CORPORATE SPARC International, Inc. The SPARC Architecture Manual (Ver-
sion 9). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[34] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the
obvious. SIGARCH Comput. Archit. News, 23(1):20–24, March 1995.

[35] Xiangyao Yu and Srinivas Devadas. Tardis: Time traveling coherence algorithm for
distributed shared memory. In Proceedings of the 2015 International Conference
on Parallel Architecture and Compilation (PACT), PACT ’15, pages 227–240,
Washington, DC, USA, 2015. IEEE Computer Society.

60

	Table of Contents
	List of Figures
	Abstract
	1 Introduction
	2 Background
	2.1 An Introduction to Memory Consistency Models
	2.1.1 Uniform Memory Consistency Models
	2.1.1.1 Sequential Consistency
	2.1.1.2 Total Store Ordering
	2.1.1.3 Coherence

	2.1.2 Hybrid Memory Consistency Models
	2.1.2.1 Weak Ordering (Weak Consistency)
	2.1.2.2 Release Consistency
	2.1.2.3 Location Consistency

	2.2 Cache Coherence
	2.2.1 MSI
	2.2.2 MESI
	2.2.3 MOESI

	3 The Problem With Coherence
	4 LC-Cache: Toward a scalable cache protocol for exascale systems
	4.1 LC-Cache Protocol
	4.2 Weaknesses of LC Cache

	5 LCCSim: A simulation framework to compare cache protocols
	5.1 Implementation details
	5.2 Simulator features
	5.3 Limitations of LCCSim

	6 Experimental Results
	6.1 Private Accesses
	6.2 Shared accesses - Non-synchronizing
	6.3 Shared accesses - Synchronizing
	6.4 Combined accesses

	7 Related Work
	8 Conclusion and future work
	References

