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ABSTRACT 

The drainage of a thin liquid film with an insoluble monolayer down a vertical wall is studied. Lubrication 

theory is used to develop a model where the film is pinned at the top with a given thickness and the film 

drains into a bath at the bottom. A nonlinear equation of state is used for the surface tension and the surface 

viscosity is a nonlinear function of the surfactant concentration; these are appropriate for some aqueous sys-

tems. The three partial differential equations are solved via discretization in space and then solving the re-

sulting differential algebraic system. Results are described for a wide range of parameters, and the conditions 

under which the free surface is immobilized are discussed. 

 
1. INTRODUCTION 

The drainage of a thin liquid film due to gravity has been studied in a variety of contexts; recent reviews have 

been given by Oron, Davis and Bankoff (1) and Chang (2). We will use the terminology from Oron et. al (1) to de-

scribe a film on a solid substrate as "bounded" and a film bounded only by its own free surfaces as “free”. In this 

work we are interested in the effect of surfactants on bounded film evolution. 

The flow down a vertical wall without heating has been studied, among others, by Joo, Davis and Bankoff (3), 

Joo and Davis (4) and Chang, Demekhin, and Kopelevich (5). Two-dimensional solutions are found to become un-

stable to three-dimensional waves in the films of infinite extent studied in those papers. The vertical film flow we 

study in two dimensions here is too short to allow the long wave solutions that they studied; however, it is possible 

that the solutions studied in this work will be unstable in three dimensions and we will study this in the near future.   
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Modified by numerous applications, including foam stabilization, we have been interested in the drainage of ver-

tically oriented free films with an insoluble surfactant present on the film's surface.  In those papers, we studied two-

dimensional films with a tangentially-immobile surface (6); with constant or linearized surface properties where the 

average surface tension is important (7) or is negligible (8); and with nonlinear surface properties (9). In those pa-

pers, lubrication theory is used to derive evolution equations for the film, and boundary conditions are applied at the 

top and bottom of the film. The bottom boundary conditions enforce the conditions for a static meniscus at a single 

point; this is a model for connecting the film to the bath. The models have the advantage of computing the evolution 

of the entire film while not computing the flow in the bath at the bottom. However, the bottom boundary conditions 

err on the side of enhancing the surfactant effects there under some conditions. The enhancement of any surfactant 

effects at the bottom of the film is minimized for the physically common case with nonlinear surface properties in 

the situations we have studied (9). 

Vertical free films draining into a bath have also been studied by Stein and coworkers in an effort to measure and 

explain the film shapes and the complex flows both in the middle and at the edge of a vertical film in a finite width 

window (10). They developed quasistatic equations for the free surface shape in their model. Nierstrasz and Frens 

(11,12) developed a model that focuses on the region that connects the film and the bath, and they do not compute a 

solution for the whole film. They also have discontinuities in the dependent variables' slopes within the computa-

tional domain. They speculate that competition between gravity and the Marangoni effect is responsible for complex 

flows observed at the film-bath junction, which may be called "peacock feathers" and occur only in vertical films 

(13). 

Bounded films on a vertical wall entering a bath have been studied by a number of workers; for example, in the 

context of coating flows, see Kheshgi, Kistler and Scriven (14) and the review by Smith (15). In Kheshgi et. al., 

falling films are studied with different end conditions; these end conditions represent different coating processes and 

the infinite bath surface that we consider is a special case of what they studied. They did not consider surfactant 

transport, however. The drag-out problem with surfactant was analyzed using matched asymptotic expansions by 

Park (16); he studied the case where the film is dragged vertically out of the bath whereas we are interested in the 

case where the film flows down a stationary wall into the bath. The case where a film flows down the slightly in-

clined wall into a bath with evaporation was studied by Hosoi and Bush (17). They found that there was an instabil-

ity transverse to the flow into the bath that was due to evaporation.   
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The nonlinear surface properties used in Naire et. al. (9) were based on measurements by Lopez and Hirsa (18) 

for hemicyanine dye, which forms an insoluble monolayer on water. The surface tension is essentially constant for 

low surface concentration of surfactant, and then it rapidly decreases about 10% in magnitude near the concentration 

where a phase transition occurs. The surface shear viscosity has an exponential dependence on the surface concen-

tration in the same interval. The incorporation of those properties causes more localized variation in the surface ve-

locity and film shape than would otherwise be seen. This localization should be observable in experiment.  

Toward that end, we now wish to combine the mathematics of these previous works with the detailed interfacial 

property measurements reported in Lopez and Hirsa (18). We develop a model that is general enough to handle 

many equations of state, including those of the type mentioned above. Lubrication theory is used to derive equations 

that govern the film evolution in two dimensions; the equations will determine the location of the film surface, the 

surface concentration of the insoluble surfactant, and the surface velocity along the film. The parameters  that are 

representative for a class of surfactants like hemicyanine will be used, and the effect of varying some of the parame-

ters studied.  

 

2. FORMULATION 

2.1. Dimensional Problem 

A two-dimensional thin liquid film draining down a rigid vertical wall is modeled (see Figure 1). The Cartesian 

coordinate system is considered such that x  is along the film thickness and z  is along the gravity vector, so 

, where k is the unit vector along g=g k z  and  is the gravity constant (the bar over variables indicates dimen-

sional). The free surface of the film is defined by 

g

( ,x h z t= )  and it is assumed a constant at the top of the film, 

( )0,h t 0h= . The hydrodynamics of the film is governed by the incompressible Navier-Stokes equations 

 0∇ ⋅ =v , [1] 

 2 p g
t

ρ µ
∂ + ⋅∇ = ∇ − ∇ + ∂ 

v v v v kρ , [2] 

where [1] is the continuity equation and [2] is the vector momentum equation. Here ( ,u w=v )  is the velocity vec-

tor,  and  are the density and dynamic shear viscosity of the bulk liquid, respectively, and ρ µ p  is the pressure. 

The boundary conditions applied on the above equations is the no-slip and no-flux condition at the wall defined by 
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 0, at 0u w x= = =  [3] 

Also the kinematic boundary condition on the free surface defines the instantaneous location of the surface as 

 hu w
t z

∂ ∂
= +

∂ ∂
h  [4] 

Based on the Boussinesq-Scriven surface stress model (19,20) the normal stress boundary condition at the free 

surface, for a one-dimensional interface, is given by Edwards et al. (21) and Slattery (22) 

 ( )2 2 s s
sσ κ µ− ⋅ ⋅ = + + ∇ ⋅n nT H H v . [5] 

Here, n  is the unit outward surface normal vector, :s= I bH  is the mean curvature of the free surface, 

s = −I I nn  is the spatial idem factor, s= −∇b n  is the surface curvature dyadic, s∇  denotes the surface gradient 

operator, σ  is the surface tension, κ  and  are the surface dilatational and shear viscosity, respectively, and s sµ

a= −T T T  denotes the jump in the stress tensor across the free surface, where aT  is the stress tensor in the gas 

(air) phase and is assumed to be zero in this model. T  is defined by 

 ( tp µ= − + ∇ + ∇I vT )v . [6] 

The tangential stress boundary condition for a one-dimensional interface with variable surface viscosities, based 

on the above model, is defined as follows (21,22) 

 ( ) ( )s s s s
s s s sσ κ µ κ µ− ⋅ ⋅ = ⋅∇ + + ⋅∇ ∇ ⋅ + ⋅∇ + ∇ ⋅t n t t v tT s v , [7] 

where t  is the unit tangent vector along the free surface. The last term in [7] accounts for the possibly strong vari-

ability of the surface viscosities with surfactant surface concentration. The surface differentiation operators follow 

Scriven (20), Stone (23) and Wong et al. (24).  

The concentration of the insoluble surfactant on the free surface is governed by the following advection-

diffusion equation (20,23) 

 ( ) 2
s st

∂Γ
+ ∇ ⋅ Γ = ∇ Γ

∂
v D s , [8] 

where ( ,z tΓ = Γ )  is the surface concentration of the insoluble monolayer of surfactant; and D  is the surface dif-

fusivity. 

s
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2.2. Surface Properties 

The surface tension, for a fluid containing a dilute insoluble surfactant, is no longer a constant value. There are a 

number of mathematical models presented for the surface tension in the presence of different surfactants. Lopez and 

Hirsa (18) introduced the following expression for hemicyanine, an insoluble monolayer used in several experi-

ments, 

 ( ) ( ),m Fσ σ β αΓ = + Γ , [9] 

 , [10] ( ) ( ) (, tanh 1 ,F α α αΓ = Γ − <   )0

where  is a characteristic surface tension, mσ mΓ = Γ Γ

β

 is the nondimensional surfactant concentration, and Γ  is 

the reference surfactant concentration, and  and α  are a dimensional and a nondimensional fitting parameter, 

respectively. For the same surfactant, an analytical fit for the surface shear viscosity is also given by Lopez and 

Hirsa (18) 

m

 , [11] ( )( 1 exps s
mµ µ γ= − + Γ )

where  is the reference surface shear viscosity, and γ  is a nondimensional parameter. The surface dilatational 

viscosity is not yet been measure consistently with any two different experimental techniques (21) and it is usually 

modeled as a multiple of surface shear viscosity. A wide range for the ratio of 

s
mµ

s µ= s

))

θ κ  have been suggested in 

various works, e.g. 2:1 (25) to 2000:1 (26). However, we will consider this ratio as a variable and will discuss its 

effect in the parameter study of the results. Taking this ratio into account, equation [11] may be written as follows 

for the total surface viscosity 

 . [12] ( ) ( ) ((1 1 exps s s
mκ µ θ µ γ+ = + − + Γ

 

2.3. Nondimensional Problem 

The length scales for the nondimensionalization are based on the tangentially immobile unbounded film (27,28). 

Three scales are introduced 

 
1 2
3 3, , and =dWd D

g g
µ σ
ρ ρ

= = l D . [13] 
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Which are, respectively, the average initial film thickness, equilibrium meniscus radius, and the intermediate 

scale, and are also depicted in the schematic of the model (FIGURE 1). W  is the vertical velocity scale which is de-

fined from [13], having the value . Separation of scales occurs when the ratio of length scales is very small, i.e. d

2 1dδ = l � . 

Using the above length and velocity scales, the following nondimensional variables are introduced into the prob-

lem 

 2, , , ,x z W ux z t t u w
d WWδ

= = = = =
l l

w , and 
4

p
W

δ
µ

=
l p

4
x

4δ

. [14] 

Based on the above nondimensionalization, the motion equations inside the film are furnished as follows 

  [15] 0,x zu w+ =

  [16] ( ) ( )8 4 ,t x z xx zzu uu wu u u pδ δ δ+ + = + −R

 , [17] ( )4 1t x z xx zz zw uw ww w w pδ + + = + − +R

these the continuity equation and the momentum equation for x and z directions, respectively, and  is the Reynolds 

number, 

R

 Wρ
µ

=
l

R . [18] 

The nondimensional surfactant transport equation [8] will be given by 

 ( ) ( ) ( ) ( )22 2 2 2 21
t z zN h u w N h Nδ δ Γ + Γ + Γ = + Γ  

A A A A
P

2 


, [19] 

where the Peclet number is defined by 

 
s

W
=

l
P

D
. [20] 

Also, the following definitions are used in [19] 

 
22

1 ,
1

z

z

N h
x zhδ

∂ ∂
= ≡

∂ ∂+
A + . [21] 

The nondimensional kinematic boundary condition becomes 

 0 . [22] t zh u h w− + =
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For the sake of generality, the surface property functions will be rewritten based on [12] as follows in the inter-

facial stress components nondimensional formulation 

 , [23] ( ) ( ) (1s s s
mκ µ θ µ+ = + Ω Γ)

where  is a nondimensional function of surfactant concentration. The nondimensional normal component of 

the interfacial stress, is given by 

( )Ω Γ

 
( )

( ) ( )

22 4 4 4

6
3 4 4 2 2

2

,

x z z x z z

zz z z z

p N u h u w h w

N h F N h u w

δ δ δ

δ
δ δ δ

α

 − + − + + = 


+ + Ω Γ + 
 

M
S

C

  [24] 

where the following nondimensional groups are used 

 2 , ,m

m

m

W
W

σ

µ
δ

µ σ
Γ

∂ − ⋅Γ ∂Γ 
= =M C and 

( ) 21 s
m

W
θ µ

δ
+

=
l

S , [25] 

where these numbers are Marangoni, capillary, and modified Boussinesq, respectively. It should be noted that for 

our scaling, C . The nondimensional tangential component of interfacial stress can be written in nondimen-

sional form as 

6δ=

 
( ) ( )( )

( ) (

22 4 4 4

3 4 4 3 4

2 1z x z z z x

zz z z zz zz z z z z

N h u w h h w

N N h u h u w N h u w
z

δ δ δ

σ
δ δ δΓ

 − + − + = 
∂

− + Ω + + + Ω Γ +
∂

M S S )
 [26] 

In our model, using [9] for the variations of surface tension with surfactant concentration, the Marangoni number 

would be defined as 

 2

W
βα

δ
µ
−

=M . [27] 

 

2.4. Lubrication Theory 

The solution is expanded in the form of a regular perturbation expansion using δ  as the perturbation coefficient 

as follows 

4

 ( ) ( )( ) ( )( )0 4, , , , , , , , ,h p h p h pδΓ = Γ + Γ +v v v L
1  [28] 
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The above expansion is then substituted into the scaled equations. After dropping the superscripts, the leading 

order of equations may be written as 

 0 , [29] x zu w+ =

 0 , [30] xp= −

 0 1 . [31] xx zw p= − +

The boundary condition at the wall, , is 0x =

 0 , [32] u w= =

and the boundary conditions on the free surface of the film, , can be written as ( ,x h z t= )

  [33] 0,t zh u h w− + =

 2

1 1 0,zz z z x zw w w
N N

σΓΩ + Ω Γ − − Γ =S S M Γ  [34] 

 , [35] p η− =

where these equations are the leading order of kinematic, tangential stress, and normal stress boundary conditions, 

respectively. Here, η  is the film surface curvature, which is defined by 

 
( )

3
2

3

241
zz

zz

z

hN h
h

η
δ

= =
+

. [36] 

Using [31]-[33], the vertical component of velocity vector may be written as 

 ( ) ( ) ( )
2

, , 1 ,
2z
xw x z t z t xη= − + + A . [37] 

Here  is an unknown function so far. Now defining the vertical surface velocity as ( ,z tA )

), . [38] ( ) ( )(, , ,z t w h z t z tϖ =

It may now be expressed by the following equation based on [37] 

 ( ) ( ) ( )
2

, 1
2z
hz t z t hϖ η= − + + A , . [39] 

The governing equation for the surface velocity will be derived by substituting the above expression into [34] 

 ( ) ( )1
2 2

1 11z zz
V h

N h N
ϖ

ϖ η σ Γ
 + + − − Γ 
 

S 0z =M . [40] 
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Using the definition for surface velocity, the kinematic boundary condition [33] can be written as follows 

 ( )1 1 1
2 12t zh h h

z
ϖ η 3∂ + + +∂  

0 = . [41] 

These two equations are coupled with the surfactant transportation equation [19], which has the following form 

in the leading order 

 2 21 0t N N
z

ϖ
∂ Γ + Γ − Γ =∂  P

z

 . [42] 

Equations [40]-[42], are the three coupled differential equations which should be solved for this mathematical 

model along with the boundary conditions defined in the subsequent section. 

 

2.5. Boundary Conditions 

At the top of the film, i.e. , we assume that the film is fixed to a film holder, as used in the experiments. 

Also we assume that the no flux condition holds for the top of the film. In the experiments, this is accomplished by 

using a film holder made of inert material such as Teflon. These conditions may be summarized into 

0z =

 , , , and ϖ . [43] ( )0, 0h t = ( )0, 0zh t = ( )0, 0z tΓ = ( )0, 0t =

At the bottom of the film, i.e. , the film should be matched into the static meniscus which is governed by 

the Young-Laplace equation,  

z L=

 1 . [44] zη = −

The solution for a two-dimensional case is parameterized by ν , 

 2
2 24

2

1
z

z

h

h

ν
η

δ δ
= +

+
, [45] 

which is a constant in the first integral of [44]. The value of this parameter for an infinite bath, which holds for our 

case, is ν = . However, having a fixed initial condition for h  at the bottom of the film, we can define  using 

[45] by the equation 

2 z zzh

 ( )
1
2

324
2 24

12 1
1

z
zz z

z

hh h
h

δ
δ δ

  
 = + −
  +  

 . [46] 
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Imposing  and  at the end of the domain is an asymptotic “patch” because the solutions only agree at a sin-

gle point. In standard matched asymptotics, there is a finite region of overlap between the two solutions. The patch-

ing will conserve the amount of surfactant over the film region and it conserves surfactant over the entire fluid sur-

face (union of film and bath surfaces) as may be verified by a simple integration along the fluid surface. However, 

the surfactant concentration may jump across the patch point from the film side to the meniscus side. We choose to 

use this approach because this choice will accentuate any effect of surfactant build up at the bottom of the film as it 

is washed down during drainage. 

zh zzh

The other boundary conditions at the film end are no flux for both bulk phase and the surfactant, 

 , , [47] ( ), 0L tϖ = ( ),z L tΓ = 0

where L is the length of the film. This furnishes all the necessary boundary conditions that we need at the ends of the 

film. 

2.6. Initial Conditions 

Linear initial conditions are assumed for the film shape and surfactant distribution. The following form is con-

sidered for the film surface 

 , [48] ( ) 00, 1 , 0h z s z z L= + ≤ ≤

where  is the initial slope. The initial surfactant concentration is chosen to be of the form 0s

 ( ) 0
ˆ0,

2
Lz zγ Γ = Γ + −

 

 , [49] 

where  is the average surfactant concentration and γ  is the initial surfactant gradient, i.e. Γ̂ 0 ( )0 top bottom LΓ − Γγ = . 

3. NUMERICAL SCHEME 

In order to numerically solve the system of nonlinear PDEs of [40]-[42], the spatial variable is discretized using 

a second-order accurate finite difference scheme and the temporal variable is left continuous. The resulting system 

may be written in the form of a system of differential-algebraic equations (DAEs) which is then solved by the pack-

age DASSL (29). 

In order to derive the DAE system, the following discretization in the spatial direction is employed. The kine-

matic boundary condition [41] is first written in terms of flux as follows 

 , [50] th = −Φ z
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where the flux is defined by 

 ( )1 1 1
2 12 zhϖ η 3Φ ≡ + + h . [51] 

The conservation of flux over the film region is assured by using the above form for the film evolution equation. 

Equation [51] is coupled with the surface velocity equation [40] and the surfactant transport equation [42] which the 

later is again written in terms of surfactant flux as follows 

 , [52] 2 0t zNΓ + Ψ =

where the surfactant flux is defined by 

 21
zNϖΨ ≡ Γ − Γ

P
 [53] 

Three dependent variables which are to be evaluated, namely h , ϖ , and Γ , are then discretized as , 

, and Γ =  based on grid points , , where  is the number of grid points. 

( ),i ih h z t=

( ,i iz tϖ ϖ= ) ) z( ,i iz tΓ iz i= ∆ 0= ,i K, M M

Up to third-order derivative of film thickness function is needed to calculate the curvature derivative term in [51]

, leading to the following finite difference formulation 

 
( )

2 1 1
3

2 2
2

i i i i
zzz

h h h hh
z

+ + −− + −
≈

∆
2−

8δ

, [54] 

which in turn produces the need for fictitious points h  and h . Based on a perturbation expansion of the bound-

ary condition [44] at the end of the film using  as the perturbation coefficient, the following explicit formulation 

for  may be derived 

1− 1M +

4δ

1h−

 , [55] ( ) ( ) ( )0 44
1 1 1h h h Oδ− − −= + +

where 

 ( ) ( )20
1 0 1

1 2 10 12 6
3

h z h h h−
= ∆ + − + − 2 3 ,h 

  [56] 

 ( ) ( )( )
( )

( )( ) ( )( 24 0 0 0
1 1 1 1 1 1 12

1 2
4
zh h h h h h h

z
− − − −

∆
= − − − + −

∆
)0h . [57] 

Also  and h  are derived based on the boundary conditions for  and  at the bottom of the computa-

tional domain resulting in 

1Mh + 2M + zzh zh
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 , [58] ( )2
1 1 2M Mh s z h h+ = ∆ + − 1M −

Mh+ , [59] 2 0 12 4 3M Mh s z h+ = − ∆ + −

where  and s  are the first and second-order derivatives at the bottom of the domain, respectively. Also, fictitious 

points are needed for the surfactant concentration where they are derived based on the top [43] and bottom [47] 

boundary conditions. At the bottom of the domain, one-sided difference approximations are used in order obtain flux 

derivatives as follows 

0s 1

 13 4
2

M M M
z z

−Φ − Φ + Φ
Φ ≈

∆
2−  [60] 

and the same procedure is applied to the surfactant flux, . Having all the dependent variables discretized, the sys-

tem may now be fed into the DASSL package as the following implicit form 

Ψ

  [61] ( ), , 0t y y =G &

where a dot denotes a temporal derivative, and  may be either a differential or an algebraic variable. Using a 

backward difference scheme, the system is discretized in temporal direction is then solved by a modified version of 

Newton’s method. 

y

4. RESULTS 

In the results to follow, a parametric study is conducted on the hydrodynamic behavior of the thin film modeled 

in the earlier sections. 

The effect of the value of surfactant average concentration is first considered. In this study, a low surface viscous 

effect and a relatively high Marangoni effect is considered so that the effect of Marangoni-driven flow would be 

dominant. Next, the effect of initial surfactant concentration gradient is discussed based on a fixed average concen-

tration and other parameters. The behavior of the film is subsequently analyzed in a low-viscous, low-Marangoni 

effect regime. Then the effect of the surface concentration, both initial distribution and the average concentration is 

studied in a high surface viscosity situation. A case of high-viscosity and low Marangoni effect is discussed next and 

finally the similarity behavior of the thin film is studied based on a situation of high Marangoni effect and various 

levels of surface viscosity effect. 
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For all the following results the physical properties of the fluid/surfactant system is considered as follows: 

0.01002 g cm sµ = ⋅ , 31g cmρ = , , , 10d mµ= 0.28mm=l 6.3dyne cmβ = , , 6.2α = − 6 210s cm s−=D , 

. 0.189δ =

Based on the above parameters, a Marangoni number of  and a Peclet number of  are used 

in the following results. Two different values of the ratio of dilatational surface viscosity κ  to surface shear viscos-

ity  are used in our computations in order to cover both low and high viscosity. Hence, based on θ =  and 

, two different values of S  and  are used in the computations. Also for limiting cases of 

surface viscous effects and/or Marangoni effects, other artificial values of  and  are used as described in the 

following sections.  

1500=M 2700=P

s

sµ

10

10

00θ = 0.16= 15=S

S M

4.1. Effect of Average Concentration 

The effect of the average concentration is studied based on the three values of surface concentration 

, which are considered to be relatively low, medium, and high, respectively (see FIGURE 2). In all 

three cases, other parameters are considered to be fixed at the following values: S 0.16, 1500, 2700. 

Therefore, the flow regime may be described as low surface viscosity and high Marangoni effect. Also no initial 

surfactant concentration gradient is assigned for these cases. 

ˆ 0.50,0.65,0.80Γ =

= =M =P

 FIGURE 3 illustrates the film behavior having a relatively low average surface concentration of surfactant. At 

very early times ( t ), upper half of the film has a positive surface velocity distribution therefore the surfactant is 

being swept down in that region. On the other hand, the lower half has a negative surface velocity distribution, 

which is negligible compared to that of the upper half. According to FIGURE 2, the dependence of the surface tension 

on the surfactant concentration in the neighborhood of , is very weak. Therefore, only around the high-

gradient area of newly developed surface concentration distribution at , a surfactant-driven flow begins to 

counteract gravity, dragging up the surfactant at later times. However, at the very top of the film, concentration con-

tinues to decrease and so does the film thickness due to the downward velocity. A healing effect shapes in the film 

free surface, moving up with time, around the point where the concentration gradient is high. This upward-traveling 

wave, is actually dividing the film surface into a rigid, lower part of the film, and a mobile film in the upper part of 

the film. 

4=

ˆ 0.5Γ =

4t =
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In the next case, illustrated in FIGURE 4, the surface tension is more sensitive to the changes in surfactant concen-

tration distribution due to a higher value of average concentration, Γ = . The surface tension function begins to 

curve downward in the neighborhood of this value of concentration (see FIGURE 2). Due to this effect, stronger up-

ward flow occurs at the lower ¾ of the film tending toward redistributing the surfactant along the film height. Also 

the film thinning is more uniform and slower at the top comparing the previous case due to the negative surface ve-

locities. A very weak wave is observed traveling up the film and gradually disappearing due to smoothed concentra-

tion distribution by about . Consequently, most of the film surface may be described as rigid in this case. 

ˆ 0.65

32t =

At the higher average concentration in the third case, Γ = , shown in FIGURE 5, the surface velocity is com-

pletely negative (upward) from early time. No healing is observed on the film surface and the surfactant concentra-

tion is symmetrically redistributed after a slight gravitational wash-down effect at  in the upper half of the film. 

The surface tension is highly sensitive to the concentration and this is the reason for the dominance of the Maran-

goni effect and upward surface flow in this case. Due to the strong Marangoni effect, the film is acting more rigid in 

this case. 

ˆ 0.80

4t =

 

4.2. The Effect of Initial Concentration Gradient 

By fixing the value of average concentration at , the effect of initial concentration gradient is discussed 

in this section. As the first case, the behavior of the film for a relatively low concentration gradient is illustrated 

inFIGURE 6, using 

ˆ 0.50Γ =

0 0.40 Lγ = . By comparing with the case of FIGURE 3, it is clear that there is no significant dif-

ference in the hydrodynamic behavior of the film except that the negative surface velocity is slightly larger in the 

lower half of the film for the case with an initial gradient in . This is due to the stronger initial Marangoni effect 

which pushes the stagnation point on the free surface upward from around  to . Consequently, the 

same wave observed in FIGURE 3 can be identified in this case, starting slightly closer to the top of the film at the 

first illustrated time step and then continuing to travel upward keeping the same position as the previous case. This 

is due to the balanced Marangoni effect after the redistribution which starts at about . Film may again be de-

scribed as rigid in the lower part and mobile in the upper part, separated by the wave front. 

Γ

20z � 13z �

16t =
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4.3. The Effect of Surface Viscosity 

To study the effect of surface viscosity on the hydrodynamic behavior of the film, the modified Boussinesq 

number of the previous case illustrated in FIGURE 6, is increased to . The Boussinesq number of this case, 

illustrated in Figure 7, represents an increased value surface viscosity ratio θ  (see equation [12]) from 10 to 1000, 

resulting in much larger surface dilatational viscosity κ  and consequently much stronger surface viscous effects. 

15=S

s

The sensitivity of surface tension to the surfactant concentration is relatively low in this case as the curve in 

FIGURE 2 shows a nearly flat behavior around . The significant surface viscous effect has decreased the sur-

face velocity gradient especially around the surface stagnation point, which in turn has made the traveling wave on 

the surface disappear at the early times. However, as the total Marangoni effect increases at later times the wave 

starts to form again which can be clearly identified in . Still in this case, the Marangoni and viscous effects 

are weak enough at the very top of the film allowing the surface to get swept clean of the surfactant. The magnitude 

of the surface velocity peak is approximately 30% lower than the low surface-viscosity case, making the film sur-

face relatively more sluggish. 

0.5Γ =

32t =

 

4.4. Limiting Cases for low Marangoni Effect 

Two limiting cases are studied in this section which correspond to a weak Marangoni effect, having either a rela-

tively low or a high Boussinesq number. The first case corresponds to a film with  and , which is 

illustrated in Figure 8. The average surfactant concentration is set to the flat region of the equation of state and also a 

relatively mild initial gradient is considered. As it is expected for these parameters, the film is acting completely 

mobile for the early time. Due to the very weak Marangoni effect, most of the surfactant is swept down and has built 

up near the meniscus as it is shown in the curves for . The surface velocity is also completely positive with the 

only mechanism acting in this stage being the gravitationally-driven flow. The viscous effects are also small at the 

top of the film which along with the weak Marangoni effect, causes a rapid thinning in the top of the film. However, 

the redistributed surfactant concentration enhances the total effective Marangoni and viscous effect and causes the 

flow to reverse as is illustrated in t . A wave front forms and starts traveling upward right in the position of the 

stagnation point which is the equilibrium of the gravitationally- and viscous-driven flow. However, due to low over-

all Marangoni effect, the traveling wave does not get close to the top of the film for the times we computed and the 

10=S 50=M

4t =

16=
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mobile portion of the film is much larger compared to the case with the same strength of viscous effect and higher 

Marangoni number which is illustrated in Figure 7. 

Next, a case with a very strong viscous effect and the same weak Marangoni effect is shown in Figure 9. Due to 

the highly viscous free surface, the sweeping effect of the surface concentration in the previous case is not observed 

here. The concentration is gradually reduced in the upper half of the film and starts to buildup in the lower half until 

. At this time, the Marangoni effect starts to turn on due to the adequate concentration gradient which is pro-

vided by the downward gravitationally-driven flow. The surface velocity is positive along the film height and no 

stagnation point is observed. At the last curve shown in the graph which corresponds to , a very slight flow 

reversal starts to occur and the surfactant is driven upward in a small region just over the middle point of the film. 

128t =

512t =

 

4.5. Power-Law Behavior of Drainage 

In an attempt to study the similarity behavior of the film drainage, the time-history of the film thickness for three 

locations along the film height is illustrated in FIGURE 10. Graphs are illustrated for points near the top ( 4z L= ), 

middle ( 2z L= ), and bottom ( 3 4z L= ) of the film and there are three cases of the surface viscosity strength for 

each location. 

The curves are on a logarithmic scale hence a straight line shows power-law behavior of the film drainage proc-

ess. The bottom and middle of the film both taken on linear forms with the slope 1
2−  for; they are essentially rigid 

for . This behavior is consistent with the dominance of the Marangoni effect causing the film to be rigid at 

these locations. However, the top of film behaves differently and shows more sensitivity to the strength of surface 

viscous effect. For very high surface viscosity ( ), the film acts essentially immobile from very early times, 

i.e. around. Before this time, mobility is observed on the film surface. For a lower surface viscosity ( ), the 

film surface starts by being more mobile up to about t , and then entering a transition time . 

10t ≥

1500=S

20=

15=S

6020 t≤ ≤

From approximately , the surface becomes immobile and follows a straight line with slope 60t = 1
2− . Therefore, 

it may be concluded that in this case, the film goes through two transitions. Decreasing the surface viscous effect 

further by setting S , shows a time interval  with slope 0= .15 4 15t≤ ≤ 1
2> −  which indicates a mobile surface. 

There follows a transition interval, and for t  the top part of the film is rigid. 50≥
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5. SUMMARY AND CONCLUSION 

A mathematical model is developed for the hydrodynamic behavior of a thin-liquid film draining over a vertical 

rigid wall in the regime of both gravitationally- and surfactant-driven flow based on the Boussinesq-Scriven model. 

Both surface tension and surface viscosities are nonlinearly dependent on the surfactant concentration on the free 

surface in this model: this follows from a property correlation for a physical insoluble monolayer on water. 

Numerical experiments are performed on governing equations to cover the different regimes of the film free-

surface and drainage behavior. It is found that for low average surfactant concentration, the top part of the film can 

be almost swept clean of surfactant. In the same regime, a traveling wave on the film's free surface is observed 

which acts as a boundary between mobile and rigid behavior of the film. This traveling wave was observed both in 

low and high surface viscosity cases, but with different phase speed and coverage area. As in the free film case (9), 

this natural flow can essentially clean the interface when nonlinear properties are present in the surface. Similar be-

havior has been seen in driven flows as observed for a drop in an extensional flow (30,31) and for flow in a rotating 

channel viscometer (32,33). In the latter case, the surface becomes immobile in the radial direction but not in the 

azimuthal direction. In our two-dimensional film, the surface becomes essentially immobile when the surfactant 

concentration becomes high enough. While the surface of a drop in an extensional flow without nonlinear surface 

properties can be essentially swept clean (34), in our naturally-driven flows the nonlinear properties appear to be a 

requirement for this to happen. 

It is shown that a surfactant-driven upward flow is caused by having either a high initial gradient of concentra-

tion distribution, or a localized gradient after the early-time redistribution due to gravitationally-driven flow. 

The surfactant concentration gradient, for an initially linear profile along the film surface, is found to have virtu-

ally no effect on the late time film drainage behavior when the average concentration is low enough. The behavior of 

the film was also studied for a weak Marangoni effect; it was found that even for a weak Marangoni effect the film 

may act partially rigid and starts to show a healing effect for low surface viscosity. However, by increasing the sur-

face viscosity, the film becomes essentially immobile except for a very localized flow reversal in the middle region 

of the film at very late times. 

Finally, it was also observed that the drainage process shows a power-law behavior in different time periods 

based on the strength of surface viscous effects. When the Marangoni effect is strong and fixed. However, it was 
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generally concluded that all of the film surface thins with power-law behavior at very late times regardless of sur-

face viscous effects.  

An experiment is currently being run for comparison with this theory (35). The results will be published in a 

forthcoming paper. 
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Figure 1. Schematic representation of the model 
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Figure 2. Dimensionless surface tension σ  as a function of surfactant surface concentration Γ  based on [9] and 
[10] with the parameters: , α = , σ = (18). 6.3 /dyne cmβ = 6.2− 66 /m dyne cm
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Figure 3. Free surface shape , surface velocity ϖ , and surface concentration of surfactant  for various  
nondimensional time values for the following parameters 

0.16, 1500, 2700, 0.50, =0.00 
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Figure 4. Free surface shape , surface velocity ϖ , and surface concentration of surfactant  for various 
nondimensional time values for the following parameters 

0.16, M 1500, P 2700, 0.65, γ =  

h

=S

Γ

= = Γ̂ = 0 0.
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Figure 5. Free surface shape , surface velocityω , and surface concentration of surfactant  for various  
nondimensional time values for the following parameters 

0.16, M 1500, P 2700, 0.80, γ =  

h

=S
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= = Γ̂ = 0 0.
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Figure 6. Free surface shape , surface velocity ϖ , and surface concentration of surfactant  for various  
nondimensional time values for the following parameters 

0.16, 1500, 2700, 0.50, γ =  

h Γ

=S =M =P Γ̂ = 0 0.80 / L
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Figure 7. Free surface shape , surface velocity ϖ , and surface concentration of surfactant  for various 
nondimensional time values for the following parameters 

15, 1500, 2700, 0.50, γ =

h

=

Γ

S =M =P Γ̂ = 0 0.80 / L
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Figure 8. Free surface shape , surface velocity ϖ , and surface concentration of surfactant  for various   
nondimensional time values for the following parameters 

10, M 50, 2700, Γ = 0.50, γ =
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Figure 9. Free surface shape , surface velocity ϖ , and surface concentration of surfactant  for various 
nondimensional time values for the following parameters 

500, M 50, 2700, Γ = 0.50, γ =
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Figure 10. Free surface shape  at the top ( ), middle ( ), and bottom ( 3 4z L= ) of the film as a 
function of  nondimensional time for various values of modified Boussinesq number and the following parameters: 

1500, 2700, 0.50, γ =  =M =P Γ̂ = 0 0.40 / L

 29 


	Under consideration for publication in Journal of Colloids and Interface Science
	ABSTRACT
	1. INTRODUCTION
	2. FORMULATION
	2.1. Dimensional Problem
	2.2. Surface Properties
	2.3. Nondimensional Problem
	2.4. Lubrication Theory
	2.5. Boundary Conditions
	2.6. Initial Conditions

	3. NUMERICAL SCHEME
	4. RESULTS
	4.1. Effect of Average Concentration
	4.2. The Effect of Initial Concentration Gradient
	4.3. The Effect of Surface Viscosity
	4.4. Limiting Cases for low Marangoni Effect
	4.5. Power-Law Behavior of Drainage

	5. SUMMARY AND CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

