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Abstract

This report describes the kinematic and dynamic modeling of a hexapod robot. The 6-DOF (degrees of freedom)
analytical kinematic and dynamic equations of motion are derived following the classical Newtonian mechanics.
Under certain task-specific assumption, it is shown that the complex 6-DOF model can be simplified, resulting in an
abstract model. Specifically, the motion of the robot on the horizontal plane in particular is described by the unicycle
model with dynamic extension. The abstract unicycle model exhibits restricted behavior compared to the concrete
hexapod model, but facilitates motion planning and control design and ensures that higher level control plans are
implementable as low level control laws.

1 Introduction
The motion of animals has recently inspired researchers’ intuition that legged locomotion has unique advantages in
exploration of uneven, and highly environments. In this view, legged machines that capture some measure of animal
mobility afford the best hope against inhospitable terrain conditions [1]. Thus, numerous biologically inspired legged
robots, primarily 2-legged (androids), 4-legged and 6-legged robots have been developed.

A hexapod (6-legged), compliant robot, named RHex, which resembles the motion pattern of the cockroach, is
presented in [2]. RHex has the advantage of high mobility on uneven terrain with minimal torque configuration, since
only one rotary actuator per leg is required. Several modifications of the first RHex platform have been developed,
see [3]. One commercial version of this hexapod platform is RespondBot RDK, available from Sandbox Innovations
[4]. The use of a hexapod robot like RespondBot RDK for navigation in unstructured environments offers both the
mobility capabilities of this robotic platform, ought to its compliant design, and the simplicity of torque configuration,
ought to the minimal actuation design.

In order to design control algorithms for this class of robots, an analytical expression of the full kinematic and
dynamic model is typically needed. However, the models obtained are usually too large and complicated, and do not
lend themselves easily to analytical control design and stability verification methods. It is thus desirable for one to be
able to preform the control design using simplified models of the system, which nonetheless capture the behaviors of
interest, and be able to implement the designs on the actual system. This report aims at mapping a hexapod dynamic
model of medium complexity to the kinematic equations of a unicycle. The development of a high fidelity dynamical
model, suitable for accurate simulation and visualization, requires detailed modeling of the leg structure, identification
of the mechanical parameters, consideration of possible gaits, and falls beyond the scope of this report.

2 Mathematical Modeling
In this section, the kinematic and dynamic equations of motion for the RespondBot RDK are derived. The robot is
modeled as a rigid body with 6 compliant legs, following the design presented in [5].
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Figure 1: Global G and Body-fixed B Coordinate Frames (Reproduced from [4])

2.1 Kinematics
The kinematic equations of motion of the robot are developed using a global coordinate frame G and a body-fixed
coordinate frame B, as depicted in Figure 1. The position and orientation vector of the robot with respect to the global
frame G is defined as

nnn =
[
x y z ρ π γ

]T
, (1)

where x, y, z are the coordinates of the robot position and ρ , π , γ are the Euler angles (roll, pitch, yaw). The velocity
vector is defined in the body-fixed frame B as

ννν =
[
u v w p q r

]T
, (2)

where u, v, w are the linear and p, q, r are the angular velocities of the robot with respect to the body frame axes.
Following [6] the kinematic equations are given in vectorial form as

ṅnn = JJJ(ΘΘΘ)ννν , (3)

where ΘΘΘ =
[
ρ π γ

]T and the transformation matrix JJJ(ΘΘΘ) ∈ R6×6 is

JJJ(ΘΘΘ) =
[

RRRG
B (ΘΘΘ) 0003×3
0003×3 TTT (ΘΘΘ)

]
, (4)

with RRRG
B (ΘΘΘ) and TTT (ΘΘΘ) the linear and the angular velocity transformation matrices from G to B frame, respectively

RRRG
B (ΘΘΘ) =

cosγ cosπ −sinγ cosρ + cosγ sinπ sinρ sinγ sinρ + cosγ cosρ sinπ

sinγ cosπ cosγ cosρ + sinγ sinπ sinρ −cosγ sinρ + sinγ cosρ sinπ

−sinπ cosπ sinρ cosπ cosρ


TTT (ΘΘΘ) =

1 sinρ tanπ cosρ tanπ

0 cosρ −sinρ

0 sinρ/cosπ cosρ/cosπ

 .

The following section presents a preliminary approach to modeling of the hexapod’s legs, for the purpose of
gaining insight into the type of motion they induce, rather than the construction of a detailed leg model.

2.2 Leg Modeling
In order to derive the analytical dynamic equations of motion for the RespondBot RDK, the model of the forces
resulting from the contact of each leg with the ground should be initially considered.
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RespondBot RDK is a 6-legged robot, with C-shaped legs (see Figure 2). Its mechanical design is based on the
RHex hexapod robot [5]. RHex-like robots, as well as the RespondBot RDK, are able to walk, run and turn in place,
using appropriate gaits for each operation. In order to move forward, RespondBot uses the alternating tripod gait,
which is a biologically common walking pattern; the robot lifts three legs (one middle leg on one side and two non-
adjacent legs on the other side of the body) at a time, whereas the other three legs remain on the ground and keep the
its body statically stable.

Following [5], each leg i is described using a spherical coordinate frame
[
li,φi,θi

]T with origin at ααα iii. Each leg
is actuated only along the revolute φi degree of freedom (DOF) and is compliant along the unactuated li and θi DOF.
Compliance along li and θi is enhanced by the mechanical design and the C-shape of the leg. Thus, each leg is
considered as a massless linear spring of length l0i at rest and stiffness ki.

The attachments of the legs and the joint orientations are all fixed with respect to the robot’s body. The geometry
of the robot implies that the legs lie on the (x− z)B plane when the robot is not moving, i.e. θi = 0. Moreover, despite
the compliance of the unactuated θi DOF, it can be assumed that the angle θi always remains very close to zero during
the motion of the robot, θi ≈ 0.

Figure 2: Modeling of Leg Forces (Reproduced from [7] with permission)

When a leg i is in contact with the ground, it experiences the ground reaction forces Fxi, Fyi, Fzi, expressed in the
B frame, as shown in Figure 2. These forces result from the actuation force FAi = τφ i

li
that is exerted to the ground by

the leg i, where τφ i is the motor torque along φi DOF and li is the length of the spring, see also Figure 3 (left). Under
the assumption that θi ≈ 0, i.e., that the actuation force FAi always lies on the (x− z)B plane, one can conclude that the
lateral force Fyi can be considered as negligible, Fyi ≈ 0. Thus, the leg i experiences the ground force FGi, (Figure 3)
where ‖FGi‖=‖FAi‖.

Figure 3: Leg Forces on the (x− z)B plane (Reproduced from [7] with permission)
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Consequently, the forces exerted on the robot’s body are

• ground forces FGi and spring forces FSi by each leg i that is on the ground, (Figure 3), and

• gravitational forces and moments.

The spring force FSi and the ground force FGi are expressed in the B frame using the following coordinate transforma-
tion

FFFB
i =

Fxi
Fyi
Fzi

=

−sinφi −cosφi
0 0

−cosφi sinφi

[FSi
FGi

]
, (5)

where FSi = −ki(li− l0i) and FGi = τφ i/li. Thus, the vector FFFB of leg (actuation) forces FB
i that apply to the robot’s

body, expressed in the B frame is given as

FFFB =

Fx
Fy
Fz

B

=
6

∑
i=1

legiFFF
B
i , (6)

whereas the vector of the resulting actuation moments with respect to the center of gravity CG of the body is

τττ
B =

τx
τy
τz

B

=
6

∑
i=1

legiτττ
B
iii , (7)

in which

legi =
{

1 leg i is in stance,
0 leg i is in flight, (8)

and τττB
i = ααα i×FFFB

i (Figure 3). Recall that

λλλ ×FFF = SSS(λλλ )FFF =
[

0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

]
FFF ,

where λλλ =
[
λ1 λ2 λ3

]T.
Thus, in order to determine the actuation moments τττB

i , one needs to consider the geometry of the robot and the
allocation of actuation forces FFFB

i of each leg i (Figure 4). Given α , β , γ > 0 the vectors ααα i, i = 1 . . .6 are

ααα1 =
[
α β 0

]T
, ααα2 =

[
α −β 0

]T
, ααα3 =

[
0 γ 0

]T
,

ααα4 =
[
0 −γ 0

]T
, ααα5 =

[
−α β 0

]T
, ααα6 =

[
−α −β 0

]T
,

and the actuation moments τττB
i are

τττ
B
1 =

 0 0 β

0 0 −α

−β α 0

Fx1
0

Fz1

 , τττ
B
2 =

0 0 −β

0 0 −α

β α 0

Fx2
0

Fz2

 , τττ
B
3 =

 0 0 γ

0 0 0
−γ 0 0

Fx3
0

Fz3

 ,

τττ
B
4 =

0 0 −γ

0 0 0
γ 0 0

Fx4
0

Fz4

 , τττ
B
5 =

 0 0 β

0 0 α

−β −α 0

Fx5
0

Fz5

 , τττ
B
6 =

0 0 −β

0 0 α

β −α 0

Fx6
0

Fz6

 .

The alternating tripod gait implies that at the same time the robot lifts the legs 2-3-6, while legs 1-4-5 remain on
the ground, producing thus the actuation forces and moments, whereas at the next cycle, legs 2-3-6 will be on the
ground while 1-4-5 will be in flight, and so forth. According to this, the vector of actuation forces and moments τττAAA is

τττAAA =
[

FFFB

τττB

]
=


[

FFFB
1 +FFFB

4 +FFFB
5

τττB
1 + τττB

4 + τττB
5

]
, legs 1-4-5 on the ground;[

FFFB
2 +FFFB

3 +FFFB
6

τττB
2 + τττB

3 + τττB
6

]
, legs 2-3-6 on the ground.

(9)
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Figure 4: Allocation of Leg Forces (Reproduced from [7] with permission)

2.3 Dynamics
Following [6], the rigid-body dynamics are written in vectorial form as

MMMRBν̇νν +CCCRB(ννν)ννν = τττRB, (10)

where MMMRB is the inertia matrix of the rigid-body, CCCRB is the matrix of Coriolis and centripetal forces, τττRB is the vector
of generalized external forces and ννν is the linear and angular velocity vector in the body-fixed frame B.

In order to derive the (simplified) analytical expression of (10), we consider the following assumptions:

1. The origin of B frame is located at the center of gravity CG of the robot, rrrCG = 000.

2. The axes of B frame coincide with the principle axes of inertia of the robot’s body.

Under these, the analytical form of the inertia matrix is

MMMRB =
[

mIII3×3 0003×3
0003×3 III0

]
, (11)

where m is the mass of the robot, III3×3 is the 3×3 identity matrix and III0 = diag(Ix, Iy, Iz) is the matrix of moments of
inertia.

Moreover, in [6] it is proved that the Coriolis matrix can be represented in the skew-symmetric form

CCCRB(ννν) =
[

0003×3 −mSSS(ννν111)
−mSSS(ννν111) −SSS(III0ννν222)

]
, (12)

where ννν111 =
[
u v w

]T, ννν222 =
[
p q r

]T,

−mSSS(ννν111) =

 0 mw −mv
−mw 0 mu

mv −mu 0

 , −SSS(III0ννν222) =

 0 Izr −Iyq
−Izr 0 Ix p
Iyq −Ix p 0

 .

Finally, the vector of generalized forces and moments is given as

τττRB = τττAAA−ggg(ηηη), (13)
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where τττAAA =
[

FFFB

τττB

]
is the vector of actuation forces and moments and ggg(ηηη) =

[
fff B

ggg
rrrCG× fff B

ggg

]
is the vector of gravitational

forces and moments with fff B
ggg = RRRG

B (ΘΘΘ)−1
[
0 0 −mg

]T.
Consequently, the analytical form of the 6-DOF dynamic equations of motion for the RespondBot RDK are

mu̇+mwq−mvr +mgsinπ = Fx (14a)
mv̇−mwp+mur−mgsinρ cosπ = Fy (14b)
mẇ+mvp−muq−mgcosρ cosπ = Fz (14c)

Ix ṗ+ Izrq− Iyqr = τx (14d)
Iyq̇− Izrp+ Ix pr = τy (14e)
Izṙ + Iyqp− Ix pq = τz (14f)

The dynamic equations of motion (14) for RespondBot RDK can be further simplified by considering that:

1. The rotational motion along xB, yB axes (roll and pitch DOF, respectively) is negligible in practice, since for the
walking patterns that the robot uses (e.g. alternating tripod gait with low joint velocities), the angular velocities
p, q remain always very close to zero, p≈ 0 and q≈ 0.

2. The lateral force Fy in the B frame is negligible, as it was justified in 2.2, i.e. Fy = 0.

3. For the motion of the robot on the horizontal plane, the angles roll ρ and pitch π remain always very close to
zero, i.e. ρ ≈ 0 and π ≈ 0.

Then, the motion of the robot on the horizontal plane is described by the 3-DOF dynamics

mu̇−mvr = Fx (15a)
mv̇+mur = 0 (15b)

Izṙ = τz (15c)

whereas the 3-DOF kinematics describing the motion on the horizontal plane are derived from (3) as

ẋ = ucosψ− vsinψ (16a)
ẏ = usinψ + vcosψ (16b)

ψ̇ = r (16c)

Finally, one can take into consideration that the allocation of actuation forces, along with the gaits utilized, does not
significantly excite the DOF along yB axis (lateral motion), resulting thus in the assumption that the linear velocity
along yB axis is zero, v = 0. Therefore, the corresponding dynamic equation (14b) can be neglected. Consequently,
the motion of the RespondBot RDK on the horizontal plane can be approximated by the unicycle model with dynamic
extension

ẋ = ucosψ (17a)
ẏ = usinψ (17b)

ψ̇ = r (17c)
mu̇ = Fx (17d)
Izṙ = τz (17e)

3 Conclusion
In this report, the kinematic and dynamic equations of motion for a 6-legged robot are derived. It is shown that under
certain, task-specific assumptions, the motion of the robot on the horizontal plane can be adequately described by
the equations of a unicycle with dynamic extension. This result facilitates the development of navigation and motion
planning algorithms for this class of robots, by allowing control design on a higher level based on the simple models
while at the same time ensuring that the control plans are implementable at the lower level.
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