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A 241 dimensional mathematical model is constructed to study the evolution of a
vertically-oriented thin, free liquid film draining under gravity when there is an insoluble
surfactant, with finite surface viscosity, on its free surface. Lubrication theory for this
free film results in four coupled nonlinear partial differential equations (PDEs) describ-
ing the free surface shape, the surface velocities and the surfactant transport, at leading
order. Numerical experiments are performed to understand the stability of the system
to perturbations across the film. In the limit of large surface viscosities, the evolution
of the free surface is that of a rigid film. In addition, these large surface viscosities act
as stabilizing factors due to their energy dissipating effect. An instability is seen for the
mobile case; this is caused by a competition between gravity and the Marangoni effect.
The behavior observed from this model qualitatively matches some structures observed

in draining film experiments.
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1. Introduction

In this paper, we develop a mathematical model to simulate a vertically-aligned thin
liquid film with an insoluble surfactant draining under gravity. Motivation for this study
comes from a draining film experiment developed by Snow and co-workers (Snow &
Stevens 1999; Snow, Nugent & Pernisz 1996a,b; Snow, Nugent, Pernisz, Naire & Braun
1996¢; Snow, Pernisz & Stevens 1998) at Dow Corning. In this experiment, a rectangular
frame is lifted to a fixed height above a cuvette of liquid. This allows for the suspension
of a thin liquid film from the wire frame to the bath in the cuvette, and its subsequent
drainage due to gravity back into the bath. The bath in the cuvette at the bottom
models a Plateau border; the top of the film models the middle of a film in a foam. The
experiment typically uses polyether/toluene blend that is 80 times more viscous than
water and behaves as a Newtonian fluid; silicone surfactants are added and evaluated
in the experiment. This model experiment has gravity driven drainage competing with
various surface forces caused by film deformation and the presence of surfactant; thus, the
necessary elements to model thin liquid film drainage in foams are present. The amount
and type of surfactant affect the drainage rate and commercially successful surfactants
have been used as benchmarks in the experiments. The experiments use interferometry
to measure the rate of thinning of the film and can give detailed information about the
shape of the surface of the film.

Figures 1(a—d) are a sequence of fringe patterns at time approximately equal to 1.5,
2.5, 3.5 and 4.5 minutes after film formation, respectively. These fringe patterns depict
many of the physical features of polyurethane (PU) films. Flows can be observed in
the film, concentrated at the bottom of the film and along the sides and top edges.
The finger-like patterns at the bottom of the film proceed upward along the film. The

structures along the edges of the film also move upward, except for those at the top edge
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which proceed inwards from the sides of the film. These patterns are larger and slower
moving compared to those found in aqueous films, e.g., Baets & Stein and plate IT of
Mysels, Shinoda & Frankel (1959). Some of the important conclusions that were arrived
at from the experimental observations were that the temporal rate of change of fringe
density and rate of movement of the finger-like patterns could be correlated to the film
drainage rate. In some cases, the observation of rigid-surfaced films could be attributed
to the large surface viscosity of the particular surfactant used (Snow et al. 1996a). The
drainage rate of the film could be correlated to the surface viscosity. In cases of low
surface viscosity, the extensive, relatively fast-moving and complex flow patterns on the
surface of the flow were attributed to the Marangoni effect; surface flows stimulated by
surface tension gradients. The chaotic appearance of the flows was attributed to the fact
that two directionally opposite flow processes were present; the shear flow of the surface
due to film drainage and the opposing Marangoni flow (Snow et al. 1998).

Mysels et al. were the first to investigate different types of thin film drainage in ver-
tical aqueous soap films. They observed mobile films that showed edge turbulence and
upward swirling flows and rigid films that showed little or no motion. They proposed
that the turbulent motion and rapid drainage, which presumably play a major role in
the thinning of mobile films, were the result of marginal regeneration. This refers to the
flow in the Plateau border regions, where thin spots of film are generated and thicker
spots disappear. This exchange of thinner for thicker film elements results in an effective
drainage of the film. According to them, marginal regeneration is a consequence of vari-
ations in the thickness-averaged density of the film leading to a replacement of thicker
film elements by thinner ones.

Hudales & Stein (1989, 1990), while experimentally testing the hydrodynamic theory

for the above concept of marginal regeneration, measured profiles of the Plateau border at
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(c) (d)
FIGURE 1. Sequence of fringe patterns at (a) £ ~ 1.5 minutes, (b) £ ~ 2.5 min., (¢) ¥ ~ 3.5 min. and
(d) £ ~ 4.5 min., where % is dimensional time. The topmost part of each fringe pattern is where the film is

fixed to the wire frame; the bottom is where the film enters the bath; the fringe area is roughly lcmx lcm.
As t increases, fewer fringes are present which suggests film thinning due to drainage. Fringes in the middle
region are roughly horizontal and uniformly spaced which suggests a two dimensional film shape and a
roughly planar film surface in this region. Surface flows are seen near the bottom and along the sides. The
finger-like patterns seen at the bottom and along the sides are much bigger and slower moving than that

seen in aqueous soap film experiments by Mysels et al. and Baets & Stein.
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a vertical film using optical interferometry. They observed an upward flow in the border
close to the film, while a downward flow takes place in the periphery of the border.
They attributed this directional influence to surface tension gradients in the film. Stein
(1991) described this directional dependence of marginal regeneration as a hydrodynamic
instability by taking into account the surface tension gradients in the film that lead to a
surface tension-gradient-driven flow, i.e., a Marangoni flow. Stable, vertical liquid films
were formed and studied and comparisons were made with corresponding aqueous soap
film experiments by Baets & Stein (1994).

More recently, Joye, Hirasaki & Miller (1992, 1994, 1996), studied drainage in circular
films and have shown, via a linear stability analysis and numerical simulations, that this
hydrodynamic instability is caused by a surface tension-driven (Marangoni) flow. This
instability is stabilized by surface viscosity, surface diffusivity and the system length
scale. They also argued that the asymmetric drainage seen in their circular films, the
behavior observed by Hudales and Stein, and Mysels’ theory on marginal regeneration
all stem from the hydrodynamic instability described by Stein.

Nierstrasz & Frens (1998, 1999) have also proposed Marangoni effects as a cause for
structures observed at the edges of vertical films, they have a computational model of
the draining film. Their model is one dimensional, includes a soluble surfactant and
seems to be focussed on the region where the film meets the surface of the bath. This is
in contrast to our work (Braun, Snow & Pernisz 1999; Naire, Braun & Snow 2000a,b)
where the entire film above this junction and part of the junction area are combined into
a single model. Their computations (Nierstrasz & Frens 1999) apparently exhibit jumps
of the slope in, and localized spikes in, some of the dependent variables at the junction

point (inside the computational domain). They also speculate that the Marangoni effect
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may cause instability of the film near the bath leading to the structures at the bottom a
vertical draining film.

Snow and co-workers also attributed the surface flows observed at the bottom and the
edges of their PU films to surface tension-gradient-driven flows. Their conclusion was
based on measurements made for the rate of thinning which were correlated with the
drainage rate of the film.

A general consensus that can be arrived at, from all the observations made by the above
authors, is that drainage in vertical mobile films is a fine interplay between gravity and
surface tension gradients. In the thicker parts of the film, gravity is the dominant effect
leading to surface flow in the direction of gravity while at the thinner parts, the surface
tension gradient effects dominate, leading to a Marangoni flow opposite to the direction
of gravity. It is conjectured that this competition between gravity and the Marangoni
effect caused by the redistribution of surfactant along the film surface by the underlying
flow is the mechanism driving the instability seen in vertical draining films.

In this paper, we use lubrication theory to derive four nonlinear partial differential
equations (PDEs) that describes the time-evolution of the free surface of the fluid inter-
face, surface velocities and the transport of surfactant along the free surface. In previ-
ous works by the authors, 1+1 dimensional models have been formulated for both the
tangentially-immobile film (Braun et al.) and the mobile film (Naire et al.). Results from
these models will be used as a point of departure for this model. Our endeavour will be
to recover some of the experimental structures observed by Snow et al., Baets and Stein,
Hudales and Stein, and others. An investigation of the above conjecture as an instability
mechanism, by performing a fully nonlinear stability analysis via numerical simulations,
is our primary objective in this paper.

The plan of this paper is as follows. In §2, the 241 dimensional hydrodynamic problem
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is described in both dimensional and nondimensional forms. Lubrication theory is used
to arrive at four nonlinear coupled partial differential equations for the evolution of the
free surface, the two components of surface velocity and the surfactant concentration on
the free surface. Boundary conditions for the PDEs are also prescribed in this section. §3
deals with the numerical scheme that we employ to solve the PDEs. In §4, we examine
the 241 dimensional tangentially-immobile case which is obtained in the limit of large
surface viscosities. This section also discusses some numerical results for this simplified
case. In §5, we study the mobile film model. We also show how the tangentially-immobile
model can be recovered asymptotically in the limit of large surface shear viscosity. We
also present the numerical results for the mobile film problem and explain the instability
mechanism observed in the simulations. In §6, comparison is made with the work done

by Joye et al. §7 summarizes some of the important results and discusses future work.

2. Problem formulation

Consider a 2+1 dimensional draining film in a Cartesian coordinate system (Z,, 2)
(see figure 2). The film is hanging from a thin wire frame at Z = 0 (the z-y plane). Gravity
acts in the downward direction so g = gk, where k is the unit vector pointing in the
positive z direction. The free surface of the thin film is given by # = k(y, 2, 7). The top
end of the film is assumed to be fixed at k = ko and the film is assumed to be symmetric
about the plane Z = 0. We employ the incompressible Navier—Stokes equation to describe
the flow of the bulk liquid. The velocity vector ¥ = (4(z, 7, z, 1), 9(%, 7, 2, 1), W(Z, §, Z, 1))

and the pressure p(z, , z, t) satisfy



8 S. Naire, R .J. Braun and S .A. Snow
y. v

Wire frame holding film

[
|
[
|
I
i
g |
[
|
[
x=0 : Free surface of film
symmetry : 4 x = Kk(y,z,t)
plane of ~ |
the film !
|
T T
: 1-D meniscus .-~
i
L
[
I
[
[
i

FIGURE 2. 2+1 dimensional schematic representation of the model studied.
where k = (0,0, 1), g is the magnitude of gravitational acceleration, p is the density and
u is the dynamic shear viscosity of the fluid. We assume p and p to be constant.
Boundary conditions for (2.1) and (2.2) include the symmetry condition at Z = 0 given

by

The instantaneous location of the free surface Z = k(7, z,) is described by the kinematic
boundary condition

ki +v-Vk = a. (2.4)
The normal and the tangential component of the interfacial stress is derived from the

Boussinesqg-Scriven surface stress model (Boussinesq 1913; Scriven 1960) and is given by
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(see Edwards, Brenner & Wasan 1991; Slattery 1990)

+ 2u5t [(B — 2HI)- S\_r-ﬁ] , (2.6)

respectively, for constant surface viscosities. Here, i1 is the unit outward surface normal
and t is the unit tangent vector along the free surface. | 7 ||= 7a — 7 denotes the
jump in the stress tensor across the free surface where 7 = —Ip + u(V¥ + ?\_ft) is the
stress tensor and 7, is the stress tensor in the outside air phase (assumed to be zero).
H is the mean curvature of the free surface, & is the surface tension, k% and p® are the
surface dilatational and shear viscosity coefficients, respectively, Vs denotes the surface
gradient operator, b = —V,ii is the surface curvature dyadic and I = I — fifi is the
spatial idemfactor. Surface differentiation operators are based on Scriven, Stone (1990)
and Wong, Rumschitzki & Maldarelli (1996).

For the case when the fluid surface contains a dilute insoluble surfactant, surface

tension is no longer a constant and is assumed to behave according to

_ B oo - -
oM =0n-(55), (-Tu), 1)
where G,, = o(T',,). We will typically assume that T,, is a reference concentration.

The transport equation for the surfactant on the free surface is (Scriven; Stone; and

Wong et al.).

O 4 9.09) = D,92T 2.8)

S

where the surface concentration of surfactant is I' = T (k(y, 2,1),7, 2,£) and D; is the
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surface diffusivity. Here, —n-j is the flux of the surfactant between the bulk and the free

surface, for the insoluble case, j = 0.

2.1. Nondimensionalization

We will use length scales based on the tangentially-immobile case (Wilson 1982; Braun

et al. 1999; Naire et al. 2000a,b) The three length scales are

MWW po JT and =D, (2.9)
Py’ Py

they are the film thickness d, equilibrium meniscus radius D, and the intermediate scale £,
respectively. Using an experimentally determined value for d, the corresponding vertical

velocity scale is given by solving for W. Separation of scales occurs with

6% = % <1 (2.10)

We then introduce the following nondimensionalizations

z g z W _ b}
- — = = = — t=—1t = I5 .
T d? y e’ 4 E’ E b) u 62W, (211)
O L i e A
we YTwe PToawP S TE, M7

Substituting the dimensionless variables into the equations governing the flow inside the
film ((2.1) and (2.2)) furnishes the following dimensionless problem. Inside the film, we

have

Uy + vy +w, =0, (2.12)

5% Re(us + uu, + Vuy +wu,) = 6* (Ugy + 68uyy + 6%u..) — pa, (2.13)
5*Re(vy + uv, + VUy + WU;) = Uy + (54(vyy +v.2) — Py, (2.14)
§*Re(w; + vw, + VWy + WW;) = Wy + (54(wyy +w,,) —p, + 1. (2.15)

On the plane z = 0 (the y-z plane), symmetry requires u = v; = w,; = 0. The kinematic
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condition becomes
ke —u+kyv+ k,w=0. (2.16)
The tangential and normal components of the interfacial stress condition can be written
as
T = — M-Vl + Sti-VaVav + St,--{n X Ve [(Vs x v)n]
+ub—%%ﬂgvgm}, (2.17)
T =29 [1 - * M(T — 1)] + 285*H Vv
+286% (b — 26°HI,) : Vv, (2.18)
respectively. Here,
T = N [20%ky (up — vy) + (8tuy + v,) (1 — 64k2) — 84k, k. (600 + w,)
=8k, (v, +wy)], (2.19)
T = N2 {254@% +20°k2 k.0, — 200k, (1 + 64 k2w, — 264Ky k. (3*uy + v,)
+ (6%us +we)(1 + 8K, — 6°k2)
+ (02 + wy) [0%ky k2 — 6Ky (1 + 6°K))] } (2.20)
T = —p 4 25*N? [us + ky (6K vy — 6*uy — v;) + ks (8K w, — 8tu, — w,)
+8*ky k. (v, + wy)] (2.21)

are the two tangential and normal stress components due to the bulk viscous stresses,

respectively, and

N:= ! (2.22)

NI

On the free surface of the plane we have a nondimensional surfactant transport equation

given by

ar 1,
& LV, (Tv) = —V,T, 2.2
o T Ve V) = 5 (223)
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Number Definition Comparison of forces
Reynolds Re = 2W¢ _inertial
w viscous shear
Modified Boussinesq S — (B +ut)mW/e surface viscous
wW/d viscous shear
S— B W/ surface viscous shear
uW/d viscous shear
: w viscous shear
Capillar C =L~ L
p y Tm surface tension
Tm (58 ); i dient sh
Marangoni M= T/ 52 concentration gradient shear
& uW viscous shear
Péclet Pe = Wt advective transport
Ds diffusive transport

TABLE 1. Table of nondimensional parameters and their interpretations.

Note that in our scalings C = §° (see Naire et al.).

Several dimensionless groups have appeared and they are listed in table 1.
2.2. Lubrication Theory
We seek solutions in the form of a regular perturbation expansion in powers of §*:
(u,v,w, k,p,T) = (u,v,w, k,p, ) + 6*(u,v,w, k,p, 1) + ... (2.24)

Substituting the series expansions into the scaled equations and dropping superscripts

gives to leading order in the bulk (inside the film)

Uy + vy +w; =0, (2.25)
0=—p,, (2.26)
0 = vgz — Py (2.27)
0=wge —p, +1. (2.28)

These are subject to the symmetry condition at £ = 0 (y — z plane),

u=1v; =wy =0. (2.29)
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At z = k(y, z,t) we have

K= —p, (2.30)
— NMTy, + SN A5 (N2 Azv + N2 Azw) — SN? A3(N? Asw — N> Azv) = vy, (2.31)

— NMT, + SNA3(N? Ayv + N2 Azw) + SN3 Ay (N2 Asw — N2 Azv) = w,, (2.32)

ki —u+kyo+kw=0, (2.33)
where
k k..
K= N*(kyy + ksz) = w ¥ (2.34)
[1+04(k2 + k2)]
is the full curvature of the film and
0 0
As = ky% a_y’ (2.35)
0 0
=k, — 4+ —. 2.
As k oz + 92 (2.36)

This model relies on results from previous work by Kheshgi, Kistler & Scriven (1992)
and Ruschak (1978), who have shown that it is possible to keep the full curvature in
the normal stress condition and integrate through the matching region onto the static
meniscus.

Using (2.27), (2.28) (2.30) and symmetry at 2 = 0 we obtain

2

v = —ﬁy% + By(y, 2, 1), (2.37)

72
w = —(1+Iiz)7 + By(y, 2, 1). (2.38)

We define

k2

U(S) (y,Z,t) = _ijg + B’v(yazat)7 (239)
k2

w (y,2,1) == —(1+ 52) 7 + Bu(y, 2, 1); (2.40)

where v(5) and w(®) are the surface velocities in the y and z directions respectively. (2.31)
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and (2.32), become

SN2(11?5*2) + wé*z)) - S’Nz(w?(jg) — o) + Nkk, — MT, =0,
SN2(U§*? +w) + SNQ(w?(j;) - vg‘z)) + Nk(k; +1) = M, =0.

From the kinematic condition we obtain

k3 K3
kt + VII' (kv(s) + EVIIH> + (?> = 0,

where

o 0
N . ) .= () ™
Vit : (63}’ 6z> and v'\%/: (v , W ) .

(2.41)

(2.42)

(2.43)

(2.44)

This evolution equation is coupled with the equations for the surface velocities, (2.41)

and (2.42), and the equation for surfactant transport given by

1
Ty + N?Vir- [rv<5> —~ P—N2v11r] =0.
e

(2.45)

(2.41), (2.42), (2.43) and (2.45) have all the ingredients that include the effects of curva-

ture, gravity, surface viscosity, the Marangoni effect, convective and diffusive surfactant

transport.

We have retained some normalization factors, i.e., powers of N, in (2.41), (2.42) and

(2.45); this is done so as to be consistent with keeping the full curvature term. For a

standard lubrication analysis, N would normally be unity at leading order; the equations

could then be simplified to

k3 K®
ki + Vir- (kv(s) + ?VHI‘&) + (?) =0,

S +0f2) = Sl — D) + ki, = MT, =0,
S +wld) + Sl — i) + k(k. +1) = MT, =0,

1
T'y + V- [FV(S) — —VHF:| =0.
Pe

(2.46)
(2.47)
(2.48)

(2.49)
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Similar forms of the above film equations has appeared in the literature (see Edwards &
Oron 1995; Ida & Miksis 1998a,b).

By incorporating surface viscous effects into our model we have a set of nonlinear
coupled partial differential equations at leading order that fully describe the evolution
of the free surface, the surface velocities and the concentration of surfactant along the
free surface. By the definition of the surface velocities, v(%) (y, z, t)and w® (y, 2,t), we
have introduced natural variables into our model; this is preferred over the unknowns
B,(y,z,t) and By (y, 2,t), because we would get fifth order derivatives of k if these latter
unknowns are kept. Such higher order derivatives would make our computations and

analysis to follow much more difficult.

2.3. Boundary conditions

Boundary conditions for (2.41), (2.42), (2.43) and (2.45) are specified as follows (see
figure 3).

The system is assumed to be symmetric at the transverse boundaries in the y direction;
we consider this instead of periodic boundary conditions for computational convenience.
This means that there is no flux normal to the y boundaries (y = 0 and y = L,), where
L, is the length of the computational domain in the y direction. Similarly, there is no

surfactant flux normal to these boundaries. We thus have
ky = kyyy =Ty = 0 :wg(js) =0 at y=0 and y=L,, 0<z<L,. (2.50)

The above two boundary conditions for v(5) and w(S) essentially mean that there is no
flow out of the y boundaries and no shear along the y boundaries, respectively.
At z = 0, the film is pinned to the wire frame and there is no flux out of the frame.

Also, we have no surfactant flux out of the wire frame. Hence

k=1, k,=-1, v =w® =0 and T, =0 at z=0, 0<y <L, (251)
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At the bottom, i.e., z = L, we assume that the film connects onto a one dimensional
static meniscus. The virtually static meniscus below is governed by the Young Laplace
equation, i.e.,

Kk, = —1. (2.52)
Solutions of the Young Laplace equation for two-dimensional menisci are parametrized
by «a,

A 2k,
&2y (2.53)

52 V1462

a constant in the first integral of (2.52): for an infinite bath at the bottom of the film,
we have a = 2. If we think of specifying a boundary condition where we fix k,, we may

then use (2.53) to specify k., for an infinite bath, via

1 k.
k., = 2(5——————>G+M@f. (2.54)

V1 + 0%k

We specify a and k, at the bottom of the film, and k., is then known (Kheshgi et al.

and Ruschak);
k; =350, k=51 at z=L,, 0<y<L,. (2.55)

For a specified slope, s, we can compute the corresponding curvature, s, using (2.54).
We also need the following boundary conditions for v(5), w(5) and T to get the right

behavior so as to connect onto the meniscus.
[,=v%=w® =0 at 2=1L,, 0<y<L,. (2.56)

These are the complete boundary conditions for the film problem.

3. Numerical scheme

The spatial derivatives involved in (2.41)-(2.43) and (2.45) are approximated by appro-

priate second order accurate finite difference approximations keeping the time derivative
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the features of this package will be explained in what follows.

Writing (2.43) in terms of the fluxes in the y and z direction we obtain

o+ QP + 0 =0,

K3 kyy + k..

QW) = k) 4 = and

14 64(k2 + k2)

3
0 = b 4+ & kyy + k=

3 1+ 04 (k2 + k2)

z

17

continuous. The resulting equations can be written in the form of a system of differential-
algebraic equations, or DAEs (Brennan, Campbell & Petzold 1996); to solve them we

have used the package DASPK (Li & Petzold 1999). The solution procedure and some of

(3.1)
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are fluxes in the y and z direction, respectively. This evolution equation is coupled with

SN2(11?5*2) + wé*z)) - S’Nz(w?(jg) —o{9)) + Nkky — MI'y =0, (3.4)
SN (0fF + wD) + SN*(w(Y) — o)) + Nk(k, +1) — ML, =0, (3.5)
Ty + N2(Q) 4+ Qi) =0, (3.6)
where
(50) e ) 4 N
Q) = 1u(® + =Ty, (3.7)
N2
(52) .— P + 2 _
Q) :=Tw® + 2T, (3.8)

are the surfactant fluxes in the y and z direction, respectively. Writing the evolution and
the surfactant transport equations in this form ensures conservation of the fluxes over
the film region and our numerical method has to preserve this conservation property
regardless of accuracy.

The spatial derivatives involved are then approximated by finite difference approx-
imations with the time derivative kept continuous. In order to do this, the dependent
variables, k, v(5), w(%) and T are evaluated on discrete grid points y; = iAy and zj = jAz
where 0 < i < N and 0 < j < M; we then have k; ; = k(yi, zj, 1), vgg) = v (y;, 2, 1),
wgg) = w® (y;, 2;,t) and Ty ; = [(y;, 2j,t). Here Ay = L, /N and Az = L, /M where L,
and L, are the lengths of the computational domain in the y and z directions, respec-

tively. We use a staggered numbering system to order the unknowns, i.e., the unknowns

are considered in the order of

[(k,,j,u‘s) w T:;),5=0,...,M|,i=0,...,N (3.9)

2V AR % B
This ordering greatly reduces the bandwidth of the system and storage requirements

compared with say an ordering such as:

(kij,j=1,...,M),i=0,...,N; (¥, j=1,...,M),i=0,...,N;

4
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(@,j=1,...,M),i=0,...,N;Tij,j=1,...,M),i=0,...,N.  (3.10)
The resulting differential-algebraic system derived after spatial discretization can be

written as

G(t,y,y") =0, (3.11)

where

d
y(t) == [y, y2,--yn], ¥ (&) :=[y1,u5,---,yN] and "= —. (3.12)

dt
N is the total number of unknowns in the system and the y;’s could be either differential
or algebraic variables. We use DASPK to solve (3.11).
DASPK uses backward differentiation formula (BDF) methods (Petzold et al.) in time
to solve the system of DAEs. The methods are variable step-size and variable order. The

system of equations is written in implicit form as in (3.11); following discretization in ¢

by BDF methods, a nonlinear equation
Gt™, yi*,ay” +8) =0, (3.13)

must be solved at each time step, t™ (current time step), where a = ag/h™ is a constant
which changes whenever the stepsize or order changes, 8 is a vector which depends on
the solution at past times.

DASPK solves (3.13) by a modified version of Newton’s method

1
yT =y —c (ag_zi - %) Gt,y™, ay™ + B). (3.14)

The linear system is solved by using the preconditioned GMRES (Generalized Minimum
Residual) iterative method (e.g., Kelly 1995; Saad 1996) at each Newton iteration. Several
preconditioners have been used; one of them is the incomplete LU factorization (ILU)
preconditioner, which can be used for any sparse linear system.

One of the difficulties in using DASPK is that the integration must be started with a
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consistent set of initial conditions for all the dependent variables and their time deriva-
tives. This means that we need consistent initial conditions for the algebraic variables
which in our case are v(®) and w(®). For the case when S=§, i.e., zero dilatational vis-
cosity, (2.41) and (2.42) reduce to the familiar Poisson equation, for a given initial %
and I'. We can use any standard Poisson solver to get the corresponding consistent v(5)
and w® . It is for the general and physically interesting case when S # S, i.e., non-zero

dilatational viscosity, that a consistent v(%) and w(® is more difficult to compute.

4. Tangentially-immobile film

(2.41), (2.42), (2.43) and (2.45), are a strongly coupled nonlinear mixed system of
parabolic and elliptic PDEs with a number of nondimensional parameters. This poses a
very challenging problem not only in understanding the physics of the problem but also in
the numerical implementation of it. A first step towards understanding the full problem is
to consider a limiting case. Thus, we will first consider the tangentially-immobile problem
(see Braun et al., for the 1+1 dimensional tangentially immobile case). The surface is
assumed to be packed with surfactant; then I' is assumed constant, and the large value
makes the surface tangentially-immobile, i.e., v(5) = w(5) = 0. Mathematically, this
surface can be realized in the limit of S = & — oo; this is discussed in more detail in

§5.1. The governing equation for the tangentially-immobile model is then given by

k3 k3
ki + Vir (?V11ﬁ> + (?) =0, (4.1)

The assumption of a rigid surface has enabled us to greatly simplify the problem from
three coupled nonlinear equations to just one parabolic PDE for the evolution of the free
surface =z = k(y, z, ).

Our goal is to see whether the film is stable to tranverse perturbations, i.e., perturba-

tions in the y direction. A linear stability analysis cannot be done analytically because
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this problem has no steady state solution about which a perturbation could be imposed.
Hence, we have to resort to numerical computations to perform a full nonlinear stability

analysis. This is discussed in the next section.

4.1. Numerical results

As described in §3, to solve (4.1), we have used a second order accurate finite difference
scheme to discretize the spatial derivatives leaving the time derivative continuous. The
resulting equations are in the form of a differential-algebraic system; to solve them we
have used the package DASPK (Li & Petzold). Our main goal in this numerical experiment
is to see whether the system is stable to transverse perturbations, i.e., perturbations
along the y direction. We attempt a full nonlinear stability analysis numerically; we
will introduce a perturbation via the initial condition k(y, z,0) and see whether these
perturbations grow or decay in time. These perturbations will be concentrated near the
bottom where the film is close to the bath. From the 141 dimensional calculations, Braun
et al., have observed that there is a sequence of bumps and dips near the bottom as the
film enters the bath; we believe that stability of these bumps and dips may be important
in explaining observed patterns.

For the results to follow, we consider an initial shape

1+chos(%}y), 0<2z< 7.

k(y,z,O) = (42)

14+rs—/rs—(z2—21)%, 21 <z<L,.
where D = 0.05, the length of the computational box in the y and z directions are given
by L, = L, = 37.5, respectively and z; = 36.504962, can be thought of as the z location

where the film enters the bath. The equation of the static meniscus is given by

L., —
rs = V]-+8(2)< ZSOZ1>5 (43)

where sop = 10 is the slope at the bottom of the film. The value of § = 0.1 (fixed from
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experiment). We have used a 200 x 80 grid as our finite difference mesh, i.e., 200 points
in the z direction and 80 in the y direction. All computations have been done in parallel
on a SGI Origin 2000 workstation with 4 300-MHz IP27 processors.

Figure 4 plots the free surface shape k at time ¢ = 2. The perturbations near the
bottom of the film are still almost the same magnitude as the initial shape. We clearly
see the four distinct film regimes, i.e., meniscus forming at the top, long, flat middle region
connecting to the static meniscus via a transition region consisting of bumps and dips
whose amplitude diminishes rapidly up the film. This is consistent with our observation
from the 1+1dimensional computations (Braun et al. 1999). The one dimensional static
meniscus approximation does not work very well for early times. Figure 5 plots &k at
time ¢t = 6. The perturbations near the bottom are slowly decaying, the one dimensional
static meniscus approximation is still not good. Figure 6 plots k£ at time ¢ = 16. The
perturbations near the bottom are now decaying rapidly. The film takes on a concave-in
shape consistent with the 1+1 dimensional computations (Braun et al. 1999); the one
dimensional meniscus approximation is thus getting much better. Figure 7 plots k at time
t = 45. The perturbations have all decayed and the film is uniformly thinning rapidly.
The one dimensional static meniscus approximation is now very good.

Hence as time increases, we observe that the bumps near the bottom quickly decay
and the film thins uniformly in y; the one dimensional static meniscus approximation
therefore improves. This is what we had expected to see considering the fact that the
tangentially-immobile model is a limiting case when S (surface shear viscosity) — oo;
these large surface viscosities act as stabilizing factors due to their energy dissipating

effect.
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5. Mobile film

The equations governing the mobile film are given by

k3 k3
ky + Vir- (kv(s) + ?V”") + (?) =0, (5.1)
SN2 (W) +w(D) = SN2 (W —v{Y) + Nkk, — MT, =0, (5.2)
SN2(WS9) + w!) + SN (w(®) — vl3)) + Nk(k, +1) = MT, =0, (5.3)
Ty + Vi [NS) - %VHF] =0. (5.4)

(5.1) and (5.4) are parabolic equations and equations (5.2) and (5.3) are elliptic.

We have now a more complex problem at hand with four coupled nonlinear mixed type
of PDEs. For the case when S=38, (5.2) and (5.3) reduce to a Poisson-type equation. The
physically interesting case (as we shall see later on in the numerical results) is when S
# 8. (5.2) and (5.3) take on a more general elliptic form for this case and the numerics
prove to be challenging.

In the next section, we will attempt to recover asymptotically the tangentially-immobile

case from the mobile film equations in the limit of large S.

5.1. Large S asymptotics

In this section, we will show mathematically how to recover the previously discussed
tangentially-immobile model as S (surface shear viscosity) becomes large. Note that
S > &; this implies that S — oo whenever S — co. Thus, without loss of generality, we
can consider the case when S = S is large. (5.1), (5.2), (5.3) and (5.4), for the case when

S =8, can be simplified to

K3 k3
ki + Vir- (kV(S) + ?VHI‘G) + (?) =0, (5.5)
1 1
ol + 0l + S_—Nlmy ] MLy =0, (5.6)
1
S S —
w?(}y) + wgz) + S—Nk(lﬁz + 1) - WMFZ = 0, (57)
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1
Ty + Vi |[Dv® — B Vul| =0. (5.8)

When S > 1, we can write the solutions as a regular perturbation expansion in powers

of 1/8, i.e.,

(k,09,09, 1) = (k, 009, 0, YO 4 2(k,0D, 0 DO+ (59)

We assume that Pe = O(S); hence diffusion of surfactant will be neglected in the follow-
ing leading order analysis.

The O(1) problem is

k§°) + Vir- (k(o)v(s,o) + %0)3V1m(0)> + (k(;)3> =0, (5.10)
{0 4 Ugf,oi =0, (5.11)

w0 + w0 =0, (5.12)

T + V- [rm)v(S’O)] —0. (5.13)

v(50) satisfies the Laplace equation with zero Dirichlet boundary conditions, this implies
that v(59) = 0. w(59 also satisfies the Laplace equation with zero Dirichlet boundary
conditions at z = 0, L, and zero Neumann boundary conditions at y = 0, L,; using a
standard separation of variables argument, we obtain w($:%) = 0. Hence, the leading order

surface velocity, i.e.,

v(50) = . (5.14)

Hence,
kY + V- (%ﬂ)gvm“’)) + (%W) =0, (5.15)
rg"; =0. (5.16)

(5.15), is precisely the evolution equation for the tangentially-immobile model (see (4.1)).
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5.2. Numerical results

To solve (5.1), (5.2), (5.3) and (5.4), we use the scheme described in §3. The resulting
DAES are again solved using DASPK (Li & Petzold).

Our main motivation here is to analyze the stability of the system to transverse per-
turbations, i.e., perturbations in the y direction. Since there is no steady state to this
system to perturb around, we have to rely on our numerics to study stability. In addition,
we would like to simulate some of the three dimensional structures seen in experiments
near the bottom and along the sides of the film (e.g., Snow et al.).

For the results to follow we consider an initial shape (see figure 8)
1+chos(2LLf), 0<2< 7.

14+rs—/rs —(2—21)%, 21 <2z<L,.

where D = 0.01, the length of the computational box in the y and z directions are given

k(y,z,0) = (5.17)

by L, = L, = 37.5, respectively and z; = 36.504962, can be thought of as the z location

where the film enters the bath. The equation of the static meniscus is given by

L., —
rs:,/1+sg( zs()zl), (5.18)

where sg = 10, is the slope at the bottom of the film.

The initial concentration for I" (figure 9) is

[1-+tanh(z—L.+2.5)] [1 —0.01 cos(zLLyy)] 0<z2<z

I'(y,z,0) = (5.19)

1 z21<z<0L,

The surfactant concentration is set up so that there is a strong concentration (hence,
surface tension) gradient in the z direction. This concentration gradient causes the flow
in the z direction, w(®), to reverse, i.e., move upward, seen at the bottom in figure 10.
We have imposed a weak surfactant concentration gradient in the y direction with more
surfactant near the dip in k and less surfactant as we go toward the sides of the film.

This is consistent with an increase in surfactant concentration lowering the surface tension
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in the film, hence the region where surfactant concentration is high corresponds to low
surface tension. The resulting concentration gradient in the y direction drags fluid toward
the sides of the film (see figure 11). This tends to reinforce the existence of thick regions
of the film as we shall see later on. This choice of this initial surfactant concentration can
be physically realized by considering rapid withdrawl of films from the bath. We have also
computed solutions for linear initial surfactant profiles corresponding to a more gradual
withdrawl of films; the long time behavior of the film profiles is not strongly affected by
the choice of the initial concentration.

We have used a 200 x 80 grid as our finite difference mesh, i.e., 200 points in the z
direction and 80 in the y direction. All computations as before have been done in parallel
on a SGI Origin 2000 workstation with 4 300-MHz IP27 processors. These results are
computed only on coarse meshes owing to the finite difference approximations becoming
unstable for fine meshes; work is currently being done to implement differencing formulas
that are stable for reasonably fine meshes.

There are are a number of parameters that appear in our model; the idea is to find a
parameter range that best depicts any instability mechanism or any of the experimentally
observed structures. We will concentrate on a parameter regime which we believe explains
the hydrodynamic instability mechanism reported previously by many authors (Baets &
Stein; Hudales and Stein; Stein; Joye, Hirasaki & Miller). For the simulations depicted

in this section the choice of the parameters are
S=10% §=10, M=50 and Pe=10% (5.20)

The choice of the above parameters has been influenced by an instability criterion derived
by Joye et al. This will be discussed in some detail in §6.
Figures 12, 13, 14 and 15 show k, T, w(® and v(%), respectively, at time t ~ 50.

We observe the first signs of the occurrence of an instability. The thickness variation in
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the y direction is more prominent than before. This is caused by the Marangoni effect
(surface tension gradients) in the y direction as seen from the plot for T' (see figure 13).
This instability can be explained via figure 16. Point B represents the thinner middle
region of the film where T is high, hence the surface tension in that region is low. Point A
represents the thicker region near the sides of the film where I is low, hence the surface
tension in that region is high. These surface tension gradients cause the surface fluid to
flow from thin to thick parts of the film near the top (see figure 14). At the bottom, there
is a flow from the thicker to the thinner parts of the film because the surface concentration
gradients are reversed there. In the middle of the film with respect to y, the surfactant
concentration gradients continue to drag fluid up the surface of the film. This sets up
a pair of vortices which develops behind the wave and propagates up the film. Surface
tension gradients competing with gravity are the mechanisms that drives this instability.
A similar Marangoni-driven instability mechanism has been observed and simulated by
Joye et al. A more detailed discussion of their observations and some comparison with
our work will be made in §6. Figure 13 for the surfactant concentration, I', clearly depicts
the scenario explained above. The recirculation cell forming in figures 14 and 15 for the
surface velocity components, is now much stronger than before. Flow is downward along
the sides which implies that gravity is dominant over the Marangoni effect (gravity is
dominant in the thicker parts), while flow is upward in the middle (Marangoni effect is
dominant).

Figures 17, 18, 19 and 20 show k, T', w(®) and v(%), respectively, at time ¢ ~ 64.
From the free surface shape profile (figure 17), we observe that the thinner parts are
now larger in the middle region of the film and the thicker parts are now more localized
toward the edges of the film. This is again driven by surface tension gradients which are

now more pronounced due to a larger variation in I" across the film (see figure 18). The
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recirculation cell seen in figures 19 and 20 for the surface velocity components is more
prominent than before. The upward flow in the middle is now much stronger and the
flow is still downward along the sides; the trends described for the previous plots have
continued.

Figures 21, 22, 23 and 24 show k, T, w(®) and v, respectively, at a still later time,
t ~ 100. The thicker film regions are now very localized at the edges of the film. The
middle region is now more or less uniformly thin; from the concentration profile (figure 22)
we observe that the surface tension gradients are confined to the edges of the film and
is almost negligible for most part of the middle region of the film, which explains the
localization near the edges (see figure 21). The surface velocity profiles (figures 23 and
24) basically depict the same scenario seen at earlier times.

Thus, from the above numerical results we have seen an instability driven primarily
by surface tension gradients which cooperates with with the underlying gravity-driven
bulk flow. This sort of behavior qualitatively matches some special structures observed
in experiments by Snow et al., but more work is needed to quantify this behavior and
compare with their experiments. For example, a single vortex that fills the wire frame
has been observed for one experiment; we should be able to recover this with appropriate
initial conditions and parameter values. We believe that a more refined parameter search
and computations with different initial conditions has to be conducted to get a closer
match to experimental observations. Also, our numerics should be carried out on a more
refined mesh to facilitate better comparison with experiments. This is beyond the results
in this paper because of the limitations of both our computing power and the model

formulation. This will form part of our work in the immediate future.
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6. Comparison with Joye, Hirasaki & Miller

In a series of papers, Joye et al., studied the drainage in horizontal, circular films. They
have looked at both axisymmetric and symmetric drainage between the thick dimple
region in the middle of the film and the thinner barrier ring Plateau border region near
its edge. Some of the salient features of their experimental observations and numerical
experiments follows.

They found that symmetric drainage was associated with rigid films (large surface
viscosity) and asymmetric drainage with mobile films (low surface viscosity). They also
found that asymmetric drainage in circular films was much more rapid than when it
is axisymmetric. They proposed that this asymmetric drainage seen in circular films,
marginal regeneration in vertical, rectangular films observed by Mysels et al. and Hudales
& Stein were attributed to a hydrodynamic instability explained by Stein.

They developed a stability criterion for the onset of asymmetric drainage from a linear
stability analysis. Their linear stability analysis shows that the instability is a hydrody-
namic instability produced by a surface tension-driven flow. This is opposed by surface
viscosity, surface diffusivity and system dimensions (wavelength of transverse pertur-
bations, length of computational box, etc.) which stabilize perturbations having short
wavelengths. They have also performed a numerical simulation of this instability, which
apparently confirms the conditions for applicability of their simplified linear stability
analysis, recirculation cells that have been observed experimentally and the rapid in-
crease in drainage rate when the instability occurs.

Our problem differs from theirs in the sense that we are studying vertical drainage
in mobile films wherein gravity plays a very important role. Gravity and the Marangoni
effect are the main competing factors here which generate the localized thicker and

thinner regions that are very similar to the periodic convection patterns seen in vertical
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soap films (Mysels et al.). The surface tension driven instability that we numerically
simulated is very similar to that observed and analyzed by Joye et al. These effects that
we observe are primarily caused by the redistribution of surfactant due to surface and
underlying bulk flows so we agree with Joye et al.

One of their main assumptions in performing a linear stability analysis, and then
verifying it with numerical simulations, is the existence of a steady base state and that
the instability develops rapidly compared to changes in film shape caused by continuous
drainage. This assumption is reasonable for the horizontal ring apparatus for at least some
aqueous films. We do not assume any steady state or any other restriction for the onset
of instability and we impose the transverse perturbations to see whether any instability
develops or not. In this sense our problem is more complete, and this is particularly
needed early in the evolution when the drainage is rapid. Some difficulty arises because
the drainage for mobile films is so rapid that any transverse perturbation may get washed
out very quickly. However, the similarity of the results presented here with their results
highlights the success of their assumptions in many instances.

Joye et al.’s stability criterion did give us a rough parameter range to investigate for
which an instability could arise; this is precisely what motivated us to investigate the
parameters used in the simulations described in the previous section. If we identify gravity
as the pressure gradient and using their assumption for 0T'/0z (very small compared to
the uniform concentration of surfactant present in the absence of flow), then their stability

criterion is

2r ’ D8“S5m+6mdusfm(%lz) + 2n ® (Do (K + p°)dom
A p*g° 3up*g? A 3up*g?
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> 1, stable,
=1, marginal, (6.1)
<1, wunstable,

in terms of our parameters. The nondimensional form of the above equation is

> 1, stable,

% (1 + %MP@ + %K(S_iS> =1, marginal, (6.2)
<1, unstable,

where K = 2md/\. For the results of figures 8- 24 we find that (6.1) is less than one. One

of our goals in the near future is to investigate their conditions more fully and compare

parameter regimes where instability occurs.

7. Conclusions

We have formulated a 2+1 dimensional model to the study the role of finite surface
viscosity, the Marangoni effect and insoluble surfactant in understanding the draining
of a vertically-aligned thin liquid free film. We have used lubrication theory to derive a
system of four nonlinear coupled PDEs describing the evolution of the free surface, the
surface velocities and the surfactant concentration. These equations have been derived
at leading order.

In order to get a simple understanding of this model both in terms of the physics and
in the numerical implementation, we first studied the tangentially-immobile model. We
used second order accurate finite difference schemes for the spatial discretization and
solved the resulting differential-algebraic equations using DASPK. Qur numerical results
confirmed the fact that the surface viscosities have a stabilizing influence on transverse
perturbations due to their energy dissipating effect.

Next, we studied the more complex mobile film model. The problem was again spatially
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discretized by second order accurate finite difference formulas and solved using DASPK.
Numerical experiments were performed on this model to understand the response of the
system to perturbations across the film and to recover any experimentally observed struc-
tures. We did a limited parameter search to find a set of parameters which qualitatively
depicts some of the instabilities seen in experiments.

We found an instability, very similar to that reported by Joye et al. who studied
drainage in horizontal circular films. From our simulations we observed localized thicker
and thinner regions in the film which look similar to the periodic convection patterns
known as marginal regeneration seen in vertical soap films (Mysels et al.). We concluded
that these were caused by a competition between gravity and the Marangoni effect; the
underlying mechanism being the redistribution of surfactant due to the surface velocities
and the underlying bulk flow. This surface tension driven instability has been reported
previously by many authors. Although we were successful in simulating this instability,
we are far from recovering some of the experimental structures seen in experiment, in
particular, the localized structures seen at the bottom of the film. We believe that a
more refined parameter search and the use of more realistic surface properties (Naire,
Braun & Snow 2001) will get us closer to experiment. Also, we have not been successful
in running our numerics on very fine meshes due to a breakdown of the numerics at very
late times. This could be due to the boundary conditions at the bottom of the film; more
investigation is needed to determine whether this is the case. This again will be part
of our immediate future research; this will enable us to better quantify the comparison

between our numerical computations and experiment.
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FIGURE 4. Free surface shape k at ¢t = 2. Perturbations are still almost the same magnitude as initial

shape. The static meniscus approximation becomes more one dimensional as the calculation progresses.
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FIGURE 5. Free surface shape k at t = 6. The bumps near the bottom are slowly decaying and we see the
meniscus is rapidly forming at the top. The concave-in profile in the middle region is again consistent with

1+1 dimensional results.
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FIGURE 6. Free surface shape k at ¢ = 16. The bumps near the bottom are getting much smaller than

before.
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FIGURE 7. Free surface shape k at ¢ = 45. The bumps have all decayed and the one dimensional meniscus
approximation is excellent. We expected the perturbations to decay since this is the limiting case when §

— 0o (see §5.1).
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FIGURE 8. Initial free surface shape k(y, z,0). Perturbations in the y direction have been imposed on the
initial shape according to Equation (5.17).
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FIGURE 9. Initial surfactant concentration I'(y,z,0). There is a strong concentration gradient in the z
direction close to the bottom of the film; a weak concentration perturbation in the y direction has also been

imposed in this region; it is given by Equation (5.19).
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FIGURE 10. Initial surface velocity in the z direction, w(5)(y, z,0). There is a reversal of flow close to the

bottom of the film, this is due to strong concentration gradients in z near that region (see figure 9).
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FI1GURE 11. Initial surface velocity in the y direction, v(s)(y, 2,0). The flow in this region is moving

outward to the edges of the film; this is due to surface tension gradients in the y direction near that region.
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FIGURE 12. Free surface shape k at t = 50. The instability seen here is the developing of localized thick and
thin regions along the y direction. This is primarily due to the interaction between the Marangoni effect

(surface tension gradients) and gravity.
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F1GURE 13. Concentration profile I' at ¢ = 50. Concentration gradients are still strong in the z direction
and the surfactant is being dragged up the film. Concentration gradients are now much stronger in the y

direction than they were initially.
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FIGURE 14. Surface velocity w(®) at t & 50. The recirculation region forming near the middle and bottom
portions of the film is now much stronger than before. Flow is in the upward direction in the middle region

(Marangoni effect dominant) and downward along the sides (gravity dominant).
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FIGURE 15. Surface velocity v(%) at ¢ = 50. The outward flow is stronger due to surface tension gradients

in the y direction which drags fluid to the sides of the film (see figure 13).
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FIGURE 16. Instability mechanism. A similar mechanism was reported by Joye et al. (see §6).
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FIGURE 17. Free surface shape k at ¢t ~ 64. The thick regions are now localized more along the sides of the

film and the thinner parts cover most of the middle region. This is again due to the strong surface tension

gradients which are now concentrated along the sides of the film (see figure 18).
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FIGURE 18. Concentration profile, I', at ¢ = 64. Concentration gradients in the y direction are now much
stronger along the sides of the film causing film to thin in the middle and thicken along the sides (see figure

16).
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FIGURE 19. Surface velocity w'S) at t ~ 64. The recirculation region is much stronger with flow primarily
in the upward direction in the middle (Marangoni effect dominant) and downward along the sides (gravity

dominant).
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FIGURE 20. Surface velocity v(%) at t & 64. The outward flow is much stronger due to surface tension

gradients in the y direction which drag the flow out to the sides of the film.
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FIGURE 21. Free surface shape k at ¢t = 100. The thicker parts of the film are now all concentrated near the

edges while the middle thins in a roughly uniform way.
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FIGURE 22. Concentration profile I" at ¢ = 100. Concentration gradients in the y direction are confined

more to the edges of the film; towards the middle, the concentration is roughly uniform.
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F1GURE 23. Surface velocity w'S) at t ~ 100. As before, we still see the recirculation cells; the flow is

downward along the sides and upward at the middle of the film.
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FIGURE 24. Surface velocity v(%) at t &~ 100. The outward flow has moved more towards the upper part of

the film.



