
 
 
 
 

HIERARCHICAL MARKOV CHAIN MONTE CARLO 

AND PAVEMENT ROUGHNESS MODEL 

 

 
 
 
 

by 
 

Leslie Nii Odartey Mills 
 
 
 
 
 
 
 
 
 

A thesis submitted to the College of Engineering of the University of 
Delaware in partial fulfillment of the requirements for the degree of Master of Civil 
Engineering 

 
 
 

Spring 2010 
 
 
 
 

Copyright 2010 Leslie Nii Odartey Mills 
All Rights Reserved 



 
 
 
 
 

HIERARCHICAL MARKOV CHAIN MONTE CARLO 

AND PAVEMENT ROUGHNESS MODEL 

 

 

 
by 

Leslie Nii Odartey Mills 
 

 
 
Approved:  __________________________________________________________  
 Busby N. O. Attoh-Okine, Ph.D. 
 Professor in charge of thesis on behalf of the Advisory Committee 
 
 
 
Approved:  __________________________________________________________  
 Harry Shenton III, Ph.D. 
 Chair of the Department of Civil and Environmental Engineering 
 
 
 
Approved:  __________________________________________________________  
 Michael J. Chajes, Ph.D. 
 Dean of the College of Engineering 
 
 
 
Approved:  __________________________________________________________  
 Debra H. Norris, M.S. 
 Vice Provost for Graduate and Professional Education 



 iii 

 

ACKNOWLEDGMENTS 

I will like to first and foremost thank the Most High God for His grace and 

mercies in seeing me through another phase of my educational pursuit. His guidance 

and direction were invaluable in helping me successfully complete this program. 

 I am also grateful to my adviser, Dr. Nii Attoh-Okine for his advice and 

wise counsel during the entire course of my study. This was most evident in how you 

assisted me set up the boundaries and framework for my thesis, and the effort you put 

into reviewing the whole document. My gratitude also goes to Prof. Sue McNeil for 

her remarkable insight and assistance throughout the duration of my study. 

Finally, I am indebted to my family, colleagues and lecturers in my 

department whose support and constructive criticisms helped at each stage in the 

progress of my thesis. 



 iv 

 

TABLE OF CONTENTS 

LIST OF TABLES ......................................................................................................... vi 
LIST OF FIGURES ...................................................................................................... vii 
ABSTRACT .................................................................................................................. ix 
 
 
Chapter 
 1 INTRODUCTION .............................................................................................. 1 
 

1.1 Background ................................................................................................ 1 
1.2 Statement of Problem ................................................................................ 3 
1.3 Objective .................................................................................................... 4 
1.4 Scope of Study ........................................................................................... 5 
1.5 Thesis Organization ................................................................................... 5 
 

 2 BACKGROUND ................................................................................................ 7 
 

2.1 Modeling Pavement Roughness ................................................................ 7 
 

2.1.1 Modeling Roughness Using Deterministic Models ....................... 8 
2.1.2 Probabilistic Models for Pavement Roughness ........................... 10 
2.1.3 Non-traditional Models for Predicting Roughness ...................... 12 
 

 3 MARKOV CHAIN MONTE CARLO (MCMC) METHODS AND 
HIERARCHICAL MODELS ........................................................................... 14 

 
3.1 Bayesian Inference ................................................................................... 14 
3.2 Markov Chain Monte Carlo (MCMC) methods ...................................... 15 
 

3.2.1 Gibbs Sampling ........................................................................... 16 
3.2.2 Metropolis-Hastings algorithm .................................................... 17 
 

3.3 Hierarchical Models ................................................................................ 18 
3.4 WinBUGS ................................................................................................ 23 
 



 v 

 4 HIERARCHICAL MCMC MODELS FOR PAVEMENT 
ROUGHNESS .................................................................................................. 24 

 
4.1 Introduction ............................................................................................. 24 
4.2 Source of Data ......................................................................................... 24 
4.3 Exploratory Data Analysis ....................................................................... 27 
4.4 Model Development ................................................................................ 44 
 

 5 RESULTS OF NORMAL HIERARCHICAL MCMC MODELS ................... 46 
 

5.1 Estimating IRI values of sections ............................................................ 46 
 

5.1.1 Estimation Results for Section D ................................................ 46 
5.1.2 Estimation Results for Section F ................................................. 50 
5.1.3 Estimation Results for Section H ................................................ 53 
 

5.2 Predicting IRI values of sections ............................................................. 56 
5.3 Discussion of Results .............................................................................. 61 
 

 6 SUMMARY AND CONCLUSION ................................................................. 62 
 

6.1 Summary .................................................................................................. 62 
6.2 Conclusion ............................................................................................... 63 
 

REFERENCES ............................................................................................................. 65 



 vi 

 

LIST OF TABLES 

Table 1 Annual IRI values for selected Kansas pavement sections ...................... 25 

Table 1 Continued ................................................................................................ 26 

Table 2 Summary statistics of Roughness for Sections A to O ............................ 28 

Table 3 Estimated IRI values of 5 arbitrary years for Section D .......................... 47 

Table 4 Estimated IRI values for Section D from 1989 to 2007 .......................... 47 

Table 4 Continued ................................................................................................ 48 

Table 5 Parameters used in estimation for Section D ........................................... 48 

Table 6 Estimated IRI values of 5 arbitrary years for Section F ........................... 50 

Table 7 Estimated IRI values for Section F from 1989 to 2007 ........................... 50 

Table 7 Continued ................................................................................................ 51 

Table 8 Parameters used in estimation for Section F ........................................... 51 

Table 9 Estimated IRI values of 5 arbitrary years for Section H .......................... 53 

Table 10 Estimated IRI values for Section H from 1989 to 2007 .......................... 53 

Table 10 Continued ................................................................................................ 54 

Table 11 Parameters used in estimation for Section H ........................................... 54 

Table 12 Prediction results for Section D ............................................................... 56 

Table 13 Prediction results for Section F ............................................................... 57 

Table 14 Prediction results for Section H ............................................................... 58 

 



 vii 

 

LIST OF FIGURES 

Figure 1 Graphical representation of standard Bayesian model ........................... 19 

Figure 2 Graphical representation of a 2-stage Bayesian hierarchical model ....... 20 

Figure 3 Graphical illustration of a hierarchical model ........................................ 21 

Figure 4 Hierarchical Normal Model .................................................................... 22 

Figure 5 Time Series and Normal Plots for Section A ......................................... 29 

Figure 6 Time Series and Normal Plots for Section B ......................................... 30 

Figure 7 Time Series and Normal Plots for Section C ......................................... 31 

Figure 8 Time Series and Normal Plots for Section D ......................................... 32 

Figure 9 Time Series and Normal Plots for Section E .......................................... 33 

Figure 10 Time Series and Normal Plots for Section F .......................................... 34 

Figure 11 Time Series and Normal Plots for Section G ......................................... 35 

Figure 12 Time Series and Normal Plots for Section H ......................................... 36 

Figure 13 Time Series and Normal Plots for Section I ........................................... 37 

Figure 14 Time Series and Normal Plots for Section J .......................................... 38 

Figure 15 Time Series and Normal Plots for Section K ......................................... 39 

Figure 16 Time Series and Normal Plots for Section L .......................................... 40 

Figure 17 Time Series and Normal Plots for Section M......................................... 41 

Figure 18 Time Series and Normal Plots for Section N ......................................... 42 

Figure 19 Time series and Normal Plots for Section O .......................................... 43 



 viii 

Figure 20 Graphical representation of normal hierarchical MCMC model ............ 44 

Figure 21 Syntax for normal hierarchical MCMC model in WinBUGS ................ 45 

Figure 22 Density plot of monitored node for Section D ....................................... 49 

Figure 23 Plot of Estimated versus Actual IRI for Section D ................................. 49 

Figure 24 Density plot of monitored node for Section F ........................................ 52 

Figure 25 Plot of Estimated versus Actual IRI for Section F ................................. 52 

Figure 26 Density plot of monitored node for Section H ....................................... 55 

Figure 27 Plot of Estimated versus Actual IRI for Section H ................................. 55 

Figure 28 Plot of Predicted versus Actual IRI values for Section D ...................... 59 

Figure 29 Plot of Predicted versus Actual IRI values for Section F ....................... 60 

Figure 30 Plot of Predicted versus Actual IRI values for Section H ...................... 60 

   

 



 ix 

 

ABSTRACT 

Traditionally, pavement roughness has been modeled to mimic 

heterogeneity across pavement sections. Modeling heterogeneity is challenging and 

can generate models that are unable to reflect true pavement conditions. Heterogeneity 

is fundamental to modeling pavement roughness and describes how road conditions 

change continuously with corresponding time change. However, road conditions are 

unpredictable and this feature raises inherent challenges when modeling heterogeneity 

across pavement sections. This thesis seeks to model the roughness of road pavements 

in Kansas using hierarchical Markov Chain Monte Carlo (MCMC) simulation. The 

aim is to investigate how efficient this technique is at estimating and predicting 

pavement roughness without neglecting inherent heterogeneity across pavement 

sections. Hierarchical MCMC models use Bayesian approach in their estimation 

process which allows them to account for heterogeneity in pavement roughness. 

Models easily lend themselves to validation and can be examined to see if they reflect 

roughness conditions on a specified length of roadway or a network of roads. Using 

individual lengths of pavements and a nineteen year time span, a hierarchical MCMC 

model is used to predict the IRI value for the twentieth year. Estimated IRI values are 

then compared with original IRI values to see how well they correlate and if they 

reflect prevailing road conditions. Once proven to be successful, this technique can be 

incorporated into pavement management systems and used as a basis for making sound 

decisions about the level of roughness on a given road network. 
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Chapter 1 

INTRODUCTION 

1.1 Background 

Road pavements form an integral part of the transportation infrastructure 

of any nation. As part of a nation’s transportation network, they contribute largely to 

the economic, social and individual well-being of citizens within the nation. Their 

significance emerges from the essential role they play in the transportation of people, 

goods and services. Real-life examples include how road transport is vital to the 

supply and demand logistics for just-in-time operations of the business world; and in 

transporting prompt health care services to emergency victims of a natural or man-

made disaster. In doing this, roads serve as the primary mode of transport or as a 

secondary mode by linking other primary modes of transport. Roads can be classified 

into many groups according to use, surface type, pavement structure, location, type of 

distress etc. The basis of classification aids in identifying pavement families and the 

characteristics associated with a particular pavement family. Like other civil 

infrastructure, road pavements are susceptible to deterioration which adversely affects 

the performance of these pavements. 

Deterioration of road pavements is inevitable and occurs as a result of 

using pavements with time or due to the presence of distresses. Examples of pavement 

distresses include rutting, bleeding, cracking, roughness, pot-holes etc. When 

deterioration occurs, the capacity of the roadway to function at its optimal level is 
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reduced tremendously and the transportation of people, goods and services as well as 

their accompanying benefits to a nation is adversely impacted. To safeguard against 

the consequences of deterioration, road pavement distresses need to be monitored on a 

regular basis so as to intervene when necessary to reduce the propagation of these 

distresses. 

This research specifically looks at one type of pavement distress: 

roughness and its assessment in the context of pavement management performance. 

Roughness refers to irregularities in the pavement surface that adversely affect ride 

quality, safety and vehicle dynamics. To assess the state of roughness on their road 

network, many Departments of Transportation (DOT’s) use pavement management 

systems. Pavement management system is a process that assists in roadway monitoring 

and decision making. It serves as a means by which the performance of road 

pavements at both the network and project levels can be effectively monitored, and the 

appropriate maintenance and rehabilitation techniques tailored to meet their 

subsequent deterioration. Pavement management systems comprise the following 

activities: collecting road inventory data of all roads in a network; analyzing the data 

to assess the condition of road pavements and to identify any trends in pavement 

condition; and selecting the most economic and feasible alternative that will cater for 

the needs of the pavement and maximize its capacity to perform efficiently. However, 

doing this requires the use of pavement performance models that are able to reflect 

past pavement attributes and predict future pavement conditions. 

Pavement performance models can be developed for a family of road 

pavements at the network or project level. At the network level, performance models 

are used for condition forecasting, budget planning, inspection scheduling and work 

planning. On the other hand, performance models at the project level are used to select 
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specific rehabilitation alternatives to meet expected traffic and climatic conditions. 

This assists in comparing the economics of various maintenance and rehabilitation 

strategies which are aimed at improving the life and performance of road pavements. 

1.2 Statement of Problem 

Roughness characteristics of a particular stretch of roadway or network of 

roads are not stationary, but change incrementally with corresponding change in time. 

At times these changes can be dramatic as seen when the road pavement undergoes 

massive rehabilitation or suffers severe damage to its surface as a result of man-made 

or natural disaster. Heterogeneity is the term used to describe this sequence of 

changing pavement condition with time, and stimulates the development of models 

that attempt to characterize the inherent uncertainty associated with the degree of 

roughness along road pavements. Over the years, pavement performance models have 

been developed to model roughness characteristics of road pavements. Most of these 

models are developed using the traditional deterministic or probabilistic approach. 

Roughness models based on the deterministic approach use empirical, mechanistic or 

mechanistic-empirical relationships to relate roughness to explanatory variables such 

as pavement age, surface distresses, and the environment amongst others. Researchers 

have however questioned the basis on which explanatory variables are selected to be 

included in the deterministic models (Prozzi and Madanat 2003) whilst other 

researchers have pointed to the inability of deterministic models to depict uncertainty 

(Butt et al. 1987). Probabilistic models use principles of probability to model the 

uncertainty associated with pavement roughness. A commonly used probabilistic 

model is the Markov process which makes use of a transition probability matrix to 

determine the probability that a pavement remains in its present condition or moves to 
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another condition. Transition probability matrices can either be constant and termed as 

homogenous or can be simulated to meet changing conditions in which case they are 

described as nonhomogenous. Research has argued that where as homogenous Markov 

processes do not fit real conditions, nonhomogenous Markov processes lack the 

support of real data (Butt et al. 1987; Li et al. 1996). Thus a situation arises in which 

an ideal model is sought to mimic actual pavement conditions whilst predicting future 

conditions within a particular confidence interval. With regards to all pavement 

distresses and roughness in particular, this model must have the unique property of 

depicting roughness characteristics and being mathematically sound at the same time. 

And as mentioned above, most traditional models achieve one or the other and not 

both. The task here is to explore the use of hierarchical Markov Chain Monte Carlo 

simulation to examine how best it models heterogeneity associated with pavement 

roughness without distorting prevailing conditions on the roadway. 

1.3 Objective 

This research seeks to model roughness of road pavements using a 

hierarchical Markov Chain Monte Carlo (MCMC) technique. The aim is to investigate 

how efficient this technique will be at estimating and predicting pavement roughness. 

Using individual lengths of pavements and a nineteen year time span, roughness 

values will be replicated for each year using the model and compared with original 

values to determine how well they correlate. Based on the results obtained, prediction 

of roughness values for the twentieth year of each pavement section will then be made. 

This will give an indication of the present condition and potential future condition of 

individual roads found in the network. 
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1.4 Scope of Study 

A review of literature of past model forms and experiences at estimating 

pavement roughness will first be conducted. The merits and potential pitfalls of these 

methods will serve as a guide in this new estimation process. Exploratory data analysis 

will be conducted to determine the accuracy, completeness and consistency of data to 

be used in the estimation process. Statistical tools such as time series and distribution 

plots will be used in this regard. The hierarchical Markov Chain Monte Carlo 

(MCMC) technique will then be developed and used in estimating values of pavement 

roughness for data obtained from Kansas. This technique will also be employed to 

predict roughness values for the subsequent year that falls immediately outside the 

dataset. Analysis will then be made using results from the hierarchical MCMC 

technique. 

1.5 Thesis Organization 

The thesis has been structured in such a way as to give the reader a clear 

understanding of the entire modeling process. Chapter 1 introduces the complexities 

associated with modeling pavement roughness. It illustrates how pavement distresses 

and roughness in particular affect the performance of a road pavement and presents 

why modeling pavement roughness has posed as a challenge in the past. In this stems 

our objective to use the hierarchical MCMC as a means to address this challenge. 

Chapter 2 presents a review of literature showing past models and recognizing how 

effectively they modeled roughness characteristics on the roadway. This served as a 

guide in the current estimation approach. An overview of the structure of Markov 

Chain Monte Carlo (MCMC) methods and hierarchical models is presented in Chapter 

3. This chapter provides equations and diagrams explaining their basic concepts. 
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Chapter 4 consists of activities conducted during the development of the hierarchical 

MCMC models. These include data analysis and model formulation. Results obtained 

from these activities are then presented and discussed in Chapter 5. Chapter 6 outlines 

the conclusions obtained from the research and puts forth recommendations to guide in 

future work. 
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CHAPTER 2 

BACKGROUND 

2.1 Modeling Pavement Roughness 

Pavement performance measures the adequacy of a pavement’s functional 

and structural service over a specified design period. It describes how pavement 

conditions change or how they serve their intended function with accumulating use 

(George et al. 1989). Pavement performance can be expressed in terms of distresses 

such as rutting, cracking and roughness. Of these, pavement roughness is one key 

indicator which influences the acceptability of service provided by the roadway. The 

American Society of Testing and Materials defines pavement roughness as the 

deviation from a true planar surface with characteristic dimensions that affects vehicle 

dynamics, ride quality, dynamic loads, and drainage. Notably, roughness affects 

driving comfort, vehicle operating costs and safety. It also increases the dynamic 

loading imposed by vehicles on the surface, accelerating the deterioration of the 

pavement structure. Roughness can also have adverse effects on drainage, causing 

water to pond on the surface, with consequence adverse impacts on both the 

performance of the pavement and vehicle safety. 

The International Roughness Index (IRI) is a standard measurement scale 

that is accepted widely in evaluating pavement roughness (Smith and Tighe 2004).  

Fundamentally, IRI values form the basis on which models are developed to reflect 

and predict the roughness characteristics of a given road pavement. As such these 
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values must be analyzed in such a way to make inferences formed from them as 

statistically sound as possible without neglecting heterogeneity across pavement 

sections. Due to the importance of roughness in the performance of road pavements, 

sufficient effort has been put into modeling roughness so as to characterize and predict 

its occurrence as accurately as possible. Models for predicting roughness are pivotal in 

managing road network, pavement design, road pricing and regulation (Paterson 1989; 

Prozzi and Madanat 2003). 

Generally, pavement performance models, which can be extended to 

include models for roughness, can be classified into two groups: deterministic and 

probabilistic models (George 1989; Ningyuan et al. 1997). Traditionally, roughness 

models have been developed based on these two groups. Other ways of modeling 

roughness have been done using functional network, multivariate adaptive regression 

splines (MARS), adaptive neural networks and artificial neural networks. All these 

were developed with the aim of modeling roughness as accurately as possible and by 

highlighting the characteristics of these models, this review will serve as a tool for 

knowing how far this field of research has traveled and the gains that have been made 

thus far. 

2.1.1 Modeling Roughness Using Deterministic Models 

Deterministic models can either be empirical, mechanistic or mechanistic-

empirical (George 1989; Ningyuan et al. 1997).  In these, statistical methods such as 

regression analysis and correlations are used to relate roughness to pavement age, 

environment, pavement structural strength and traffic loading. Multiple regression 

techniques have traditionally been used to predict pavement performance ever since 

the first conceptual pavement performance prediction model was developed by Carey 
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and Irick 40 years ago (Carey and Irick 1960). Straight-line extrapolation and fitting 

polynomials to performance data are also deterministic techniques. In regression 

analysis, IRI is the dependent variable and is related to one or more explanatory or 

independent variables statistically with a set of mathematical equations (Prozzi and 

Madanat 2003). Several examples of deterministic roughness models have been 

documented in literature. Paterson in 1989 developed a model that combined structural 

effects, surface defects and environmental-age-condition influences to predict 

roughness progression (Paterson 1989). Prior to his research, traditional methods had 

predominantly modeled roughness as an independent mode of distress dependent 

entirely on traffic loading and pavement strength or age. Paterson however saw the 

need to include in his model the mechanistic association between roughness and other 

distress modes such as potholing and rutting that contribute considerably to roughness. 

Down the timeline, Saleh et al. developed a mechanistic roughness model to model the 

relation between roughness and axle load, number of load repetitions and asphalt layer 

thickness. The authors discovered the scale of dynamic vehicle loads played a role in 

the amount of roughness developed on a pavement surface (Saleh, Mamlouk and 

Owusu-Antwi 2000). An exponential regression equation was also developed to 

demonstrate how the progression of overlay roughness in Canada increased steadily 

overtime (Smith and Tighe 2004). In this study, it was also shown that though overlay 

thickness and climatic region have a significant impact on the progression of pavement 

roughness subgrade thickness had little influence. Statistically significant relationships 

have also been established between IRI and HMA thickness, base type and thickness 

and drainage characteristics of flexible pavements constructed in different site 

conditions (Haider and Chatti 2009). Previous research work have also used an 

empirical sigmoid curve to fit the pavement deterioration process (Garcia and Riggins 
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1984), whilst others have used a mechanistic approach to develop damage functions 

for rutting and fatigue cracking (Rauhut et al. 1983). 

In as much as deterministic models are used extensively in predicting 

pavement roughness, concerns have been raised about their application (Prozzi and 

Madanat 2003). These relate to the practice in which for most empirical work the 

selection of explanatory variables on the basis of their statistical significance meant 

that relevant variables were often left out of the models whilst irrelevant variables 

could often time be incorporated into the model. The authors further stated that 

mechanistic models were usually developed under restricted conditions and lacked 

validation under a wide range of traffic and environmental conditions. For 

mechanistic-empirical models, they expressed caution about the reliability of making 

extrapolations out of the original range of data for which the models were calibrated. 

Prior research have also highlighted the deficiency of straight-line models to explain 

variability among data points as well as errors inherent in using polynomials fit on data 

to make extrapolations. In general, it cannot be guaranteed deterministic models will 

portray uncertainty associated with pavement roughness (Butt et al. 1987). 

2.1.2 Probabilistic Models for Pavement Roughness 

Probabilistic models include Markov processes and survivor curves 

(George et al. 1989). Survivor curves describe pavement deterioration in the form of a 

cumulative distribution which can then be employed to develop a transition probability 

matrix (TPM). Markov models are stochastic models that have successfully been used 

in modeling pavement performance (Way et al. 1982; Butt et al. 1987; Li et al. 1996; 

Abaza and Ashur 1999; Hong and Wang 2003; Abaza et al. 2004). Markov models 

make use of a transition-probability matrix (TPM) which specifies the probabilities 
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that a pavement remains in its current condition state or changes to another one in the 

future. Various methods can be used to estimate transition probabilities based on 

historical data or engineering judgments (Jiang et al. 1988; Abaza et al. 2004). One 

major advantage of using the Markov model is that it has the capacity to integrate 

pavement deterioration rates and M&R improvement variables into a single entity 

which is the transition matrix. Another advantage is the ease with which the Markov 

process can be combined with dynamic programming to produce optimal solutions for 

any maintenance problem (Butt et al. 1987). Researchers have used both homogenous 

and nonhomogenous Markov chains in modeling pavement performance (Way et al. 

1982; Butt et al. 1987; Li et al. 1996; Abaza and Ashur 1999; Hong and Wang 2003; 

Abaza et al. 2004). Homogeneous Markov processes may not fit real conditions since 

they assume the probability matrix remains constant (Butt et al. 1987). Elsewhere, 

attempts have been made using reliability analysis and Monte Carlo simulation to 

build TPM’s for nonhomogeneous Markov processes, but the process lacks the support 

of real data and only traffic is considered for nonhomogeneity (Li et al. 1996). 

Another form of probabilistic modeling adopts the Bayesian approach in 

model development. Hong and Prozzi used this approach in developing an incremental 

pavement deterioration model based on the AASHO road test data (Hong and Prozzi 

2006). The Bayesian approach incorporates existing knowledge into the modeling 

process so that previous experience can be utilized rather than ignored (Zellner 1971). 

Obtaining the probabilistic distribution of the parameters to reflect performance 

heterogeneity is straightforward, and the resulting output is a density function, which 

can provide comprehensive statistics of the individual parameters (Hong and Prozzi 

2006). The Bayesian approach involves a process which assesses the effects of 

unobserved heterogeneity on pavement performance model parameters. In addition 
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factors such as structural properties, environmental effects and traffic loading that 

affect pavement performance are easily incorporated into the modeling process. By 

using this approach, the probabilistic parameter distributions are obtained through a 

combination of existing knowledge (prior) and information from the data collected. 

The Markov chain Monte Carlo simulation is used for estimating parameter 

distributions in the Bayesian approach. 

2.1.3 Non-traditional Models for Predicting Roughness 

Neural networks are relatively new techniques that have been developed to 

model pavement roughness (Roberts and Attoh-Okine 1998; Chou and Pellinen 2005). 

The neural network is a memory-based technology that can accumulate past 

experiences through the process of training to make human-like decisions and 

judgments (Chou and Pellinen 2005). Neural networks have the unique attribute of 

using developing non-linear functions without being constrained by the principle of 

linearity which strictly governs regression analyses (Roberts and Attoh-Okine 1998). 

Back-propagation neural networks have also been used in roughness prediction 

modeling (Fwa and Chen 1993; Attoh-Okine 1994, 1995a). Like neural networks, their 

advantage over traditional methods lies in their ability to generalize and offer real-time 

solutions to complex-pavement-performance-prediction problems. Another model 

developed to predict pavement roughness used adaptive neural network (Attoh-Okine 

1995b). Adaptive neural networks help identify variables that determine pavement 

performance. In their study, Roberts and Attoh-Okine (Roberts and Attoh-Okine 1998) 

discovered that adaptive neural networks appeared to out-perform back-propagation 

networks. The multivariate adaptive regression splines (MARS) has also been used in 

the past to predict roughness of flexible pavements (Attoh-Okine et al. 2003). Their 
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strength lies in their ability to reduce redundancy in the model by focusing on the 

relevant variables and eliminating inconsistencies in the roughness data. Work has also 

been conducted into using functional networks in roughness prediction (Attoh-Okine 

2005). Their main advantage is in combining domain and data knowledge to develop 

prediction models. Where as neural networks have the ability to learn from data, 

functional networks possess the quality of reproducing physical properties as well as 

learning from data and domain knowledge (Castillo and Guitierrez 1998). 
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CHAPTER 3 

MARKOV CHAIN MONTE CARLO (MCMC) METHODS AND 
HIERARCHICAL MODELS 

3.1 Bayesian Inference 

Markov Chain Monte Carlo Methods use Bayesian inference in 

estimation. The Bayesian inference is described as follows: Assuming y  is a vector or 

matrix of data and θ  is a vector or matrix that contains parameters that describe y  , 

then from Bayes’ theorem, 

 ( ) ( ) ( )
( )yf

fyf
yf

θθ
θ = α ( ) ( )θθ fyf  (1) 

Where ( )yf θ  is the posterior distribution, ( )θyf   is the likelihood and ( )θf   is the 

prior distribution. In Bayesian inference, θ  is considered to be a quantity whose 

variation can be described by its probability distribution ( )θf . ( )θf  is a subjective 

description based on the experimenter’s belief and is formulated before seeing the 

data. Specification of the prior distribution is important in Bayesian inference since it 

influences the posterior distribution. The prior mean provides a prior point estimate for 

the parameter of interest while the variance expresses uncertainty concerning this 

estimate. The likelihood is the distribution of the data conditional on the parameters. It 

is the data generating process. Of these, the posterior distribution is of fundamental 

interest. It summarizes all knowledge about θ  after seeing the data. The main 

distinction between Bayesian inference and the classical approach lies with the 
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parameter θ  . Whilst the classical approach sees θ  as a fixed but unknown quantity, 

Bayesian inference considers θ  to be a random variable. 

To make computation easier, natural conjugate priors are commonly used. 

A natural conjugate prior distribution is one which, when combined with the 

likelihood, yields a posterior that falls in the same class of distributions. In addition a 

natural conjugate prior has the same functional form as the likelihood function. In this 

way, the prior information can be interpreted the same way as the likelihood function 

information. 

In some cases, no reliable prior information about θ  may exist. In this 

situation a non-informative prior distribution could be used that contained “no 

information” about θ , in the sense that it did not favor one θ  value over another. 

When this occurs, inferences made from the posterior distribution are regarded as 

objective rather than subjective. 

3.2 Markov Chain Monte Carlo (MCMC) methods 

Markov Chain Monte Carlo methods are simulation techniques through 

which posterior distributions can be obtained accurately by specifying the prior and 

likelihood distributions. They are flexible, general and most importantly tractable in 

comparison to direct simulation methods. The MCMC is an iterative process that is 

based on the construction of a Markov chain which eventually “converges” to a 

stationary, posterior distribution. Unlike direct simulation methods, the MCMC output 

is a dependent sample generated from a Markov chain. 

A Markov chain is a stochastic process ( ) ( ) ( ){ }Tθθθ ,.....,, 21  such that 

 ( ) ( ) ( )( ) ( ) ( )( )tttt ff θθθθθ 111 ,...... ++ =  (2) 
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that is, the distribution of θ  at sequence 1+t  given all the preceding θ   values (for 

times 1,.....1, −tt ) depends only on the value ( )tθ  on the previous sequence t . 

The main idea behind an MCMC method is to simulate realizations from a 

Markov Chain which has a stationary distribution say )(Uf . Given a vector random 

variable ),.......( 1 kUUU =  with joint distribution ),........( 1 kUUf  , then the expected 

value of some intractable function )(Uh can be approximated by obtaining independent 

random draws )(tU  , nt ,.......,1=  , from the distribution )(Uf  . The desired 

expectation can be approximated using: 

 ∑
=

≈
n

t

tUh
n

UhE
1

)( )(1)]([  as ∞→n  (3) 

The two most popular MCMC methods used for simulating realizations from the 

stationary distribution are Gibbs sampling and the Metropolis-Hastings algorithm. 

3.2.1 Gibbs Sampling 

Gibbs sampling is a Markovian updating scheme (Gelfand and Smith 

1990). It is a technique by which random variables can be generated indirectly from a 

marginal distribution without having to calculate densities. Basically, sampling for 

each variable is done from a conditional distribution where all other variables are 

considered known and are given the values of the previous state of the chain. That is 

conditional distributions have a known form and random numbers can easily be 

simulated using standard functions in statistical and computing software. This makes 

Gibbs sampling a popular and convenient method by which the posterior distribution 

can be simulated from a given Markov chain. The process of the algorithm used in the 

Gibbs sampling is described as:  
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For a set of random variables ,,.......,, .21 mUUU  the joint distribution is 

denoted as ).,.......,,( .21 mUUUf  With given arbitrary starting values of sU ’s, say 
( ) ( ) ( ),,.......,, 00

.2
0

1 m
w UUU  the first iteration of random draws of sU  ’s is obtained as 

                             ( )1
1U  from ( ) ( ) ( )),.......,,( 00

.3
0

21 mUUUUf   

                            ( )1
2U  from ( ) ( ) ( )),.......,,( 00

.3
1

12 mUUUUf   

                                                       . 

                                                       . 
                            ( )1

mU  from ( ) ( ) ( )),.......,,( 1
1

0
.2

1
1 −mm UUUUf   

In a similar manner, the second set of random draws of sU  ’s is obtained 

through the update process. After r  iterations as shown above, the series of sU  ’s is 

obtained as ( ) ( ) ( )).,.......,,( .21
r

k
rr UUU  It is shown that under mild conditions for each 

variable ( ) )(~ ss
r

s UfUU →  as ∞→r  (Geman and Geman, 1984), which means that 

after enough iterations, r  , ( )r
sU   can be regarded as a random draw from the 

distribution of ).( sUf   

3.2.2 Metropolis-Hastings algorithm 

Unlike Gibbs sampling, conditional distributions for the Metropolis-

Hastings algorithm have unknown forms. For each variable, a new value is generated 

from a proposed distribution which is then compared with the old value. The new 

value is accepted with a probability so that the draws are simulating from the posterior 

distribution. The variable retains its old value once a value is rejected. Complexities 

arise in the choice of the proposed distribution. Poor choices delay the convergence of 

the Markov chain towards its stationary distribution. 

Due to its convenience as a simulation technique, this research employs 

Gibbs sampling for obtaining parameters from the posterior distribution. 
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3.3 Hierarchical Models 

Hierarchical models refer more to a general set of modeling principles 

than to a specific family of models. They are also known as multilevel, repeated 

measures, mixed or longitudinal models (Ntzoufras 2009). Hierarchical modeling 

involves organizing models using a set of sequential statements of conditional 

relationships. Bayesian models portray an attribute of hierarchy because of the 

conditional structure of the posterior distribution which can be decomposed to the data 

likelihood multiplied by the prior distribution. 

Hierarchical models are formed when random variables are modeled using 

a sequence of distributions placed in a hierarchy. Bayesian models have an inherently 

hierarchical structure that can be represented by a class of models that aid in having a 

better understanding of the statistical problem. The main concept in the formulation of 

a hierarchical model is the use parameters and priors to model the posterior 

distribution in stages. In essence, priors are specified using new parameters not 

indicated in the likelihood; and these new parameters themselves will require priors 

that may (or may not) depend on the new parameters. The process terminates when 

new parameters are no longer introduced into the modeling process. 

Given a prior distribution )( af θ  of the model parameters θ , prior 

parameters a  can be considered as one level of hierarchy and the likelihood as the 

final stage of a Bayesian model resulting in the posterior distribution  

 )( yf θ  α  )( θyf  );( af θ  (4) 

This is a case of a one level hierarchical model and is shown in Figure 1. 

(Credit: Ntzoufras 2009) 
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Figure 1 Graphical representation of standard Bayesian model 

 
 

In other complex cases, a series of conditional distributions called 

hierarchical stages of the prior distribution can be used to generate the posterior 

distribution. An example of this is a two level hierarchical model where for parameters 

θ , a  and b , the first level is characterized by )( af θ  and the second level is 

characterized by )( baf . The distribution )( baf  is identified as the hyperprior and b  

are said to be the hyperparameters of the prior parameter a . The posterior distribution 

)( yf θ  is represented as 

 )( yf θ α )( θyf );( af θ );( baf  (5) 

 α )( θyf )( af θ )( baf   

A two-stage hierarchical model is shown in Figure 2. (Credit: Ntzoufras 2009) 
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Figure 2 Graphical representation of a 2-stage Bayesian hierarchical model 

 
 

Figure 3 is a representation of a hierarchical model showing priors and 

hyperpriors for a given dataset y . In this figure, prior parameters are represented by θ  

and hyperpriors by Θ. 
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Figure 3 Graphical illustration of a hierarchical model 

 
 

Hierarchical models can be considered as a large set of stochastic 

formulations that include popular models such as the random effects, the variance 

components, the multilevel and the generalized linear mixed models (GLMM) 

(Ntzoufras 2009). Specific examples of Bayesian hierarchical models include 

binomial-Poisson hierarchical model, gamma-Poisson hierarchical model and the 

normal hierarchical model. Figure 4 illustrates the structure of a normal hierarchical 

model. 

Θ 

θ11 θ21 θ31 

y11 y12 y13 y21 y22 y23 y31 y32 y33 

Hyperpriors for the 
full 

sample 

Priors for each 
Sub-population 

   Data 

 



 22 

 
 

Figure 4 Hierarchical Normal Model 

The significance of hierarchical models in MCMC methods are outlined 

below:  

• Generally, hierarchical models are able to describe complex data sets by 

incorporating correlation or other important properties into the model. Thus in cases 

where multivariate or repeated responses are observed, correlation can be incorporated 

in the model via a common “random” effect for all measurements referring to the same 

individual. This introduces a marginal correlation between repeated data, whilst 

interpretation is based on the conditional means. 

• Hierarchical models can be used to imply a complicated marginal 

distribution whilst keeping the conditional structure as simple as possible. In these, 
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random effects and the corresponding hierarchical structure are used to specify the 

marginal sampling distribution and this simplifies the MCMC scheme that can be used 

to estimate the posterior distributions of interest. 

• Hierarchical models can be used to combine information between 

different observations or studies or introduce a clustering effect on observations within 

the data. 

• In addition to the above, the use of hierarchical models is valuable in 

statistics since they are based on the logic of simple generalized linear models by 

including random terms in the linear predictor that can be used to introduce 

dependence or overdispersion or to simply change the marginal distribution of the 

data, that is the likelihood. 

3.4 WinBUGS 

WinBUGS is a Bayesian analysis software that uses Markov Chain Monte 

Carlo (MCMC) to fit statistical data. BUGS is an acronym for Bayesian inference 

Using Gibbs Sampling. The BUGS project was initiated by the MRC Biostatistics Unit 

in 1989. Different versions of BUGS software have been developed in the past, 

however, the first experimental version of BUGS for windows, WinBUGS was 

presented in 1997. The current version is WinBUGS 1.4.3. 

WinBUGS has the ability to generate a random sample from the posterior 

distribution of the parameters of a Bayesian model. It can be used in statistical 

problems as simple as estimating means and variances or as complicated as fitting 

multilevel models, measurement error models and missing data models. It does all 

these using the Bayesian approach. WinBUGS 1.4.3 was used in this research to 

develop hierarchical models. 
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CHAPTER 4 

HIERARCHICAL MCMC MODELS FOR PAVEMENT ROUGHNESS 

4.1 Introduction 

This research seeks to model roughness of road pavements in Kansas 

using a hierarchical Markov Chain Monte Carlo (MCMC) technique. The aim is to 

investigate how efficient this technique will be at estimating and predicting pavement 

roughness. Activities undertaken are data analysis, model development and discussion 

of results. 

4.2 Source of Data 

Data used for estimation was obtained from annual roughness of road 

pavements in Kansas. It spanned a period of 19years, from 1989 to 2007. Roughness 

values for 30 individual sections were provided. These are shown in Table 1. The first 

fifteen sections: Sections A to O were used to examine the process through which 

hierarchical MCMC models were fit to the data. 
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Table 1 Annual IRI values for selected Kansas pavement sections 

ID 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
A 79 66 114 89 92 114 123 101 110 68 69 
B 110 79 123 107 115 124 133 112 76 61 72 
C 87 69 123 102 95 99 95 101 69 66 81 
D 86 73 118 103 91 102 100 83 75 77 83 
E 90 71 120 97 95 94 104 64 78 87 78 
F 98 90 132 112 120 115 117 82 91 100 100 
G 155 82 129 113 121 103 102 106 119 138 110 
H 166 119 135 122 119 125 121 123 128 124 131 
I 155 112 126 115 121 120 120 116 119 120 123 
J 144 106 127 107 108 109 105 104 105 105 111 
K 127 97 119 111 100 103 100 104 100 108 109 
L 119 84 114 96 88 83 90 85 91 94 97 
M 56 60 98 74 72 78 86 82 93 59 52 
N 56 49 98 67 67 73 90 78 91 49 53 
O 53 47 94 73 62 65 82 76 81 48 53 
P 55 50 104 76 77 84 83 85 97 53 57 
Q 90 73 116 90 87 93 88 92 115 51 47 
R 55 60 104 76 71 79 80 86 100 52 49 
S 87 70 107 90 96 149 144 94 113 61 64 
T 79 72 110 90 124 167 150 96 94 58 62 
U 87 83 109 88 106 192 167 124 131 56 62 
V 86 75 113 89 107 166 162 131 134 50 56 
W 82 72 108 92 96 187 154 125 124 52 56 
X 85 77 108 83 59 89 108 53 61 63 50 
Y 83 76 115 87 58 105 101 65 61 63 47 
Z 103 84 119 77 53 110 99 54 58 63 48 

AA 104 93 122 70 55 111 109 50 61 66 51 
AB 127 108 106 71 55 99 107 56 69 72 56 
AC 120 102 123 71 74 119 114 52 67 77 58 
AD 73 82 112 70 101 110 107 66 70 73 67 
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Table 1 Continued 

ID 2000 2001 2002 2003 2004 2005 2006 2007 
A 91 92 92 88 90 94 105 115 
B 83 85 88 81 88 94 93 104 
C 76 86 86 77 81 86 84 96 
D 82 87 96 85 91 93 90 109 
E 94 103 109 82 93 96 90 106 
F 101 102 110 89 106 114 110 153 
G 125 75 82 83 80 89 91 89 
H 131 65 67 68 81 72 78 88 
I 127 75 79 79 78 82 88 96 
J 116 65 70 71 75 75 75 78 
K 106 58 64 68 71 66 85 95 
L 98 66 67 70 73 71 76 113 
M 52 66 61 64 70 76 58 69 
N 57 61 69 51 81 62 54 65 
O 53 57 64 53 72 64 59 81 
P 58 62 72 62 83 73 58 75 
Q 52 59 63 60 80 74 59 82 
R 53 57 60 59 71 69 48 70 
S 75 51 63 67 82 76 55 61 
T 62 63 62 61 70 69 47 55 
U 62 66 69 70 90 83 48 58 
V 59 62 62 62 81 76 59 64 
W 55 58 57 59 67 67 50 60 
X 54 48 50 57 58 59 59 43 
Y 49 58 60 52 61 57 59 47 
Z 51 59 59 58 63 63 62 42 

AA 53 54 54 56 67 72 63 47 
AB 67 59 62 74 89 81 80 49 
AC 67 54 59 66 79 78 77 54 
AD 70 60 64 71 82 77 80 56 

 
Source: Kansas Department of Transportation 
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4.3 Exploratory Data Analysis 

STATSGRAPHICS Plus Version 5.1 was used in undertaking exploratory 

data analysis. By subjecting the data to rigorous statistical analysis, pertinent data 

features such as completeness, accuracy and consistency were evaluated. Summary 

statistics obtained included measures of central tendency, measures of variability and 

measures of shape. The averages and corresponding standard deviations show the wide 

variability with which IRI values change annually for a given pavement section. 

Summary statistics for the fifteen sections are shown in Table 2. 

Time series plots were used to observe changes in pavement condition 

with time. Figures 5 to 19 show how roughness progressed annually along Sections A 

to O. The plots depict heterogeneity in the observed IRI values for these sections. 

Consequently, the roughness prediction model must attempt to model these changes 

without ignoring heterogeneity exhibited at these points. Also shown in the figures are 

normal probability plots for each section. The closer the points lie to the diagonal line, 

the better the plot is at predicting normality of the observed data for a particular 

pavement section. 
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Table 2 Summary statistics of Roughness for Sections A to O 

SECTION ID A B C D E 
Count (Year) 18 18 18 18 18 
Average 93.2 95.8 86.8 89.7 91.4 
Standard Dev. 16.2 20.2 14.1 11.2 13.6 
Minimum 66 61 66 73 64 
Maximum 123 133 123 118 120 
Range 57 72 57 45 56 
Standard 
Skewness. -0.045 0.48 1.37 1.38 -0.088 
Standard Kurt. -0.39 -0.76 0.99 0.85 0.32 

 
 
 
SECTION ID F G H I J 
Count (Year) 18 18 18 18 18 
Average 104.9 105.7 109.7 108.6 98.8 
Standard Dev. 12.6 22.5 29.6 22.6 21.9 
Minimum 82 75 65 75 65 
Maximum 132 155 166 155 144 
Range 50 80 101 80 79 
Standard 
Skewness. 0.26 0.87 -0.51 -0.23 0.015 
Standard Kurt. -0.09 -0.35 -0.75 -0.54 -0.46 

 
 
 
SECTION ID K L M N O 
Count (Year) 18 18 18 18 18 
Average 94.2 86.8 69.8 67 64.2 
Standard Dev. 20.5 15.1 13.7 15.3 13.1 
Minimum 58 66 52 49 47 
Maximum 127 119 98 98 94 
Range 69 53 46 49 47 
Standard 
Skewness. -0.86 0.94 1.03 1.18 1.23 
Standard Kurt. -0.78 -0.04 -0.42 -0.53 -0.11 
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Figure 5 Time Series and Normal Plots for Section A 

The plots show an extreme case of heterogeneity from years 1989 to 1998 

characterized by alternate and significant changes in deterioration and rehabilitation 

The pavement shows incremental signs of deterioration and maintenance after 1998. 
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IRI for Section B
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Figure 6 Time Series and Normal Plots for Section B 

Steep changes in gradient are observed from 1989 to 1998. Subsequent 

years show gradual changes with regards to pavement deterioration and maintenance. 
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IRI for Section C
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Figure 7 Time Series and Normal Plots for Section C 

Apart from a huge jump from 1990 to 1991, and a large drop from 1996 to 

1997, all other trends followed routine pavement maintenance and deterioration. 
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IRI for Section D
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Figure 8 Time Series and Normal Plots for Section D 

Apart from a sharp rise in deterioration from 1990 to 1991, the pavement 

section followed a general trend of deterioration and maintenance. 

Section D

Roughness

pe
rce

nta
ge

73 83 93 103 113 123
0.1

1
5

20
50
80
95
99

99.9



 33 

IRI for Section E
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Figure 9 Time Series and Normal Plots for Section E 

Where as roughness increased sharply to its highest value in 1991; two 

major rehabilitations took place in 1996 and 2003. All other points followed an 

incremental maintenance or deterioration cycle. 
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IRI for Section F

40

60

80

100

120

140

160

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Year

IR
I

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 Time Series and Normal Plots for Section F 

Plots generally show a gradual change in slope over time and represent a 

cycle of pavement deterioration and maintenance. Notable changes are however seen 

in 1991, 1996 and 2007. 
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IRI for Section G
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Figure 11 Time Series and Normal Plots for Section G 

Apart from two sharp drops in 1990 and 2001, plots had gentle rising and 

falling slopes highlighting incremental change in roughness across the pavement 

section within the time interval. 
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IRI for Section H
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Figure 12 Time Series and Normal Plots for Section H 

Apart from 2 major rehabilitation efforts in 1990 and 2001, plots followed 

a general cycle of incremental increase and decrease in pavement roughness. A stable 

trend in IRI values is generally seen from year 1992 to 2000. 
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Figure 13 Time Series and Normal Plots for Section I 

Two major rehabilitation efforts occurred in 1990 and 2001. A stable trend 

in IRI values is generally seen from year 1992 to 2000. The gentle slope from 2001 to 

2007 is indicative of a gradual increase in roughness for this time window. 
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IRI for Section J
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Figure 14 Time Series and Normal Plots for Section J 

Two significant rehabilitation efforts took place in 1990 and 2001. 

Rehabilitation in 1990 was not sustainable as there was an increase in roughness in 

1991. On the contrary, the major rehabilitation in 2001 produced a favorable trend in 

IRI values from 2002 to 2007 
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Figure 15 Time Series and Normal Plots for Section K 

Major rehabilitation took place in 1990 and 2001, but that in 2001 was 

greater. Whereas rehabilitation works in 1990 was followed by a sharp increase in 

roughness in 1991; that in 2001 produced a gradual increase from 2002 to 2004. 
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IRI for Section L
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Figure 16 Time Series and Normal Plots for Section L 

The pavement had similar rehabilitation efforts in 1990 and 2001. Rehabilitation in 

1990 did not last and significant deterioration in roughness occurred in 1991. 

Rehabilitation in 2001 grew incrementally for 3 years, before a sudden rise in 2007.  
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IRI for Section M
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Figure 17 Time Series and Normal Plots for Section M 

Significant changes occur in 1991 and 1998. In 1991 there is a sharp 

increase in pavement roughness from 1990. Rehabilitation is then undertaken and 

roughness then increases gradually from 1992 to 1995. In 1998, rehabilitation from 

1997 preserved pavement till 2000 after which roughness increased gradually to 2005. 
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IRI for Section N
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Figure 18 Time Series and Normal Plots for Section N 

The only trend that produced a steady pattern was from 1998 to 2002. All 

other points behaved unpredictably which depicted extreme heterogeneity for this 

pavement section. 
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IRI for Section O
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Figure 19 Time series and Normal Plots for Section O 

The only trend that produced a steady pattern was from 1998 to 2002. All 

other points behaved unpredictably which depicted extreme heterogeneity for this 

pavement section. The deterioration in 1991 and the rehabilitation in 1998 were the 

most conspicuous. 
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4.4 Model Development 

Normal hierarchical Markov Chain Monte Carlo (MCMC) model was 

used in estimating and predicting parameters for these sections. A diagrammatic 

representation of a normal hierarchical model is shown in Figure 20. The 

accompanying syntax in WinBUGS is shown in Figure 21. 

 

Figure 20 Graphical representation of normal hierarchical MCMC model 
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model 
{ 
for(i in 1:N) { 
Y[i]~dnorm(mu[i],tau.c) 
mu[i]<-alpha+(beta*(x[i])) 
} 
alpha~dnorm(alpha.c,tau.alpha) 
beta~dnorm(beta.c,tau.beta) 
tau.c~dgamma(0.001,0.001) 
sigma<-1/sqrt(tau.c) 
alpha.c~dnorm(0.0,1.0E-6) 
sigma.alpha~dunif(0,100) 
sigma.beta~dunif(0,100) 
tau.alpha<-1/(sigma.alpha*sigma.alpha) 
tau.beta<-1/(sigma.beta*sigma.beta) 
beta.c~dnorm(0.0,1.0E-6) 
} 
list( 
Y=c(……………………….),N=…., 
x=c(………………………..)) 
INITS 
list(alpha=…,beta=.., alpha.c=.., beta.c=.., tau.c=.., sigma.alpha=.., sigma.beta=..) 

Figure 21 Syntax for normal hierarchical MCMC model in WinBUGS 
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CHAPTER 5 

RESULTS OF NORMAL HIERARCHICAL MCMC MODELS 

5.1 Estimating IRI values of sections 

Estimation was done to determine the accuracy of the normal hierarchical 

model. This was done for each individual section. The process is illustrated as follows 

using three randomly selected pavement sections, Sections D, F, and H: 

• From the data, choose any 5 arbitrary years. Omit their IRI values prior 

to running the model by replacing them with NA (not available). 

• Run the model in WinBUGS and generate 18001 simulations. Ensure 

convergence by “burning the first 3000” simulations. 

• Observe the results for the selected 5 years and see if they correspond to 

the original roughness values in the data. Once good results are obtained, estimation is 

done for all years spanning 1989 to 2007. 

5.1.1 Estimation Results for Section D 

IRI values obtained after running the model are shown in Table 3. A 

comparison is then made between IRI values in the dataset and those obtained from the 

run. 
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Table 3 Estimated IRI values of 5 arbitrary years for Section D 

Year Original IRI 

(prior to run) 

Observed IRI 

(after run) - 2.5 

percentile 

Observed IRI 

(after run) – 50 

percentile 

Observed IRI 

(after run) – 

97.5 percentile 

1992 103 78.4 88.96 99.34 

1995 100 81.27 89.65 97.77 

1998 77 82.85 90.35 97.68 

2001 87 82.43 90.97 99.37 

2005 93 80.01 91.83 103.7 

 
 

From Table 3, it can be seen that observed IRI values are in close 

proximity to the original IRI values. This shows the efficiency of the normal 

hierarchical model at estimating roughness values is high. Table 4 shows all the 

estimated IRI values for section D within the 19 year time frame. Parameters used in 

the normal hierarchical MCMC model are shown in Table 5. 

Table 4 Estimated IRI values for Section D from 1989 to 2007 

Year  Mean sd MC error 2.5% Median 97.5% Observed 
89 mu[1] 88.28 6.782 0.1367 74.69 88.28 101.7 86 
90 mu[2] 88.5 6.258 0.1241 75.99 88.49 100.9 73 
91 mu[3] 88.73 5.757 0.1115 77.22 88.72 99.97 118 
92 mu[4] 88.95 5.287 0.09907 78.4 88.96 99.34 103 
93 mu[5] 89.18 4.856 0.08669 79.53 89.2 98.75 91 
94 mu[6] 89.4 4.476 0.07444 80.45 89.4 98.2 102 
95 mu[7] 89.62 4.16 0.0624 81.27 89.65 97.77 100 
96 mu[8] 89.85 3.925 0.05073 81.94 89.88 97.55 83 
97 mu[9] 90.07 3.784 0.03975 82.51 90.11 97.55 75 
98 mu[10] 90.3 3.75 0.03022 82.85 90.35 97.68 77 
99 mu[11] 90.52 3.824 0.02392 82.82 90.55 98.03 83 
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Table 4 Continued 

Year  Mean sd MC error 2.5% Median 97.5% Observed 
00 mu[12] 90.74 4.001 0.02363 82.77 90.75 98.59 82 
01 mu[13] 90.97 4.268 0.02951 82.43 90.97 99.37 87 
02 mu[14] 91.19 4.609 0.03886 81.95 91.18 100.3 96 
03 mu[15] 91.42 5.009 0.04976 81.44 91.41 101.4 85 
04 mu[16] 91.64 5.456 0.06138 80.77 91.63 102.5 91 
05 mu[17] 91.86 5.938 0.07339 80.01 91.83 103.7 93 
06 mu[18] 92.09 6.448 0.08563 79.2 92.06 104.9 90 
07 mu[19] 92.31 6.98 0.098 78.35 92.29 106.2 109 

Table 5 Parameters used in estimation for Section D 

Node  Mean  sd 
 MC 
error 2.50% Median 97.50% Sample 

tau.c 0.005986 0.002441 2.30E-05 0.002219 0.00566 0.01164 18001 
alpha 88.06 7.325 0.1493 73.3 88.07 102.5 18001 
beta 0.224 0.6412 0.01278 -1.045 0.2212 1.508 18001 

 
 

Monte Carlo error (MC error) measures the variability of the estimate due 

to the simulation. A low MC error is required to calculate the parameter of interest 

with increased precision. In order to obtain a stationary posterior distribution, 

convergence was guaranteed by ‘burning’ the first 3000 samples that were generated. 

Figure 22 shows a density plot of the posterior distribution for monitored node mu[9]. 

The plot indicates that random values generated for this node are normally distributed. 

A time series plot displaying both original and observed IRI values is shown in Figure 

23. As can be seen, only 5 out of the 19 values do not fall within the 95% confidence 

envelope. 
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mu[9] sample: 18001
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Figure 22 Density plot of monitored node for Section D 
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Figure 23 Plot of Estimated versus Actual IRI for Section D 
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5.1.2 Estimation Results for Section F 

Like Section D, tables 6 and 7 show close proximity between observed 

and actual IRI values. Table 8 shows parameters used for estimation. 

Table 6 Estimated IRI values of 5 arbitrary years for Section F 

Year Original IRI 

(prior to run) 

Observed IRI 

(after run) - 2.5 

percentile 

Observed IRI 

(after run) – 50 

percentile 

Observed IRI 

(after run) – 

97.5 percentile 

1993 120 92.48 105.4 118.3 

1996 82 96.79 107.5 117.9 

1999 100 98.97 109.6 119.9 

2002 110 98.6 111.6 124.6 

2006 110 96.13 114.4 132.6 

Table 7 Estimated IRI values for Section F from 1989 to 2007 

Year  Mean sd MC error 2.5% Median 97.5% Observed 
89 mu[1] 102.6 9.123 0.1855 84.45 102.6 120.7 98 
90 mu[2] 103.3 8.402 0.1679 86.55 103.3 119.9 90 
91 mu[3] 104 7.715 0.1503 88.63 104 119.2 132 
92 mu[4] 104.7 7.074 0.1328 90.64 104.7 118.7 112 
93 mu[5] 105.4 6.492 0.1155 92.48 105.4 118.3 120 
94 mu[6] 106.1 5.986 0.09838 94.06 106.1 117.9 115 
95 mu[7] 106.8 5.577 0.0816 95.51 106.8 117.7 117 
96 mu[8] 107.5 5.287 0.06543 96.79 107.5 117.9 82 
97 mu[9] 108.2 5.136 0.05046 97.87 108.2 118.3 91 
98 mu[10] 108.9 5.138 0.03811 98.58 108.9 119 100 
99 mu[11] 109.5 5.291 0.03165 98.97 109.6 119.9 100 
00 mu[12] 110.2 5.584 0.03454 99.11 110.3 121.1 101 
01 mu[13] 110.9 5.995 0.04502 98.95 110.9 122.8 102 
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Table 7 Continued 

Year  Mean sd MC error 2.5% Median 97.5% Observed 
02 mu[14] 111.6 6.503 0.05918 98.6 111.6 124.6 110 
03 mu[15] 112.3 7.087 0.07497 98.21 112.3 126.5 89 
04 mu[16] 113 7.729 0.09155 97.65 113 128.4 106 
05 mu[17] 113.7 8.416 0.1086 96.9 113.7 130.4 114 
06 mu[18] 114.4 9.138 0.1258 96.13 114.4 132.6 110 
07 mu[19] 115.1 9.888 0.1432 95.31 115.1 134.8 153 

Table 8 Parameters used in estimation for Section F 

Node  Mean  sd 
 MC 
error 2.50% Median 97.50% Sample 

tau.c 0.00319 0.001299 
1.21E-

05 0.001188 0.00301 0.00619 18001 
alpha 101.9 9.872 0.2032 82.24 101.9 121.4 18001 
beta 0.6917 0.8896 0.01792 -1.073 0.6876 2.474 18001 

 
 

Monte Carlo error (MC error) measures the variability of the estimate due 

to the simulation. A low MC error is required to calculate the parameter of interest 

with increased precision. In order to obtain a stationary posterior distribution, 

convergence was guaranteed by ‘burning’ the first 3000 samples that were generated. 

Figure 24 shows generated IRI values from the posterior distribution for Section F are 

normally distributed. Node mu[15] is used in this case. The time series plot in Figure 

25 shows that approximately 74% of values fell within the 95% confidence interval. 
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mu[15] sample: 18001
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Figure 24 Density plot of monitored node for Section F 
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Figure 25 Plot of Estimated versus Actual IRI for Section F 
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5.1.3 Estimation Results for Section H 

Tables 9 and 10 show close proximity between observed and original IRI 

values. Parameters used in estimation are shown in Table 11. 

Table 9 Estimated IRI values of 5 arbitrary years for Section H 

Year Original IRI 

(prior to run) 

Observed IRI 

(after run) - 2.5 

percentile 

Observed IRI 

(after run) – 50 

percentile 

Observed IRI 

(after run) – 

97.5 percentile 

1991 135 116.5 134.8 152.5 

1994 125 108.1 122.2 136 

1997 128 98.43 109.8 121.1 

2000 131 85.63 97.26 108.9 

2004 81 65.42 80.52 96.42 

Table 10 Estimated IRI values for Section H from 1989 to 2007 

Year  Mean sd MC error 2.5% Median 95% Observed 
89 mu[1] 143 10.57 0.2087 121.4 143.2 163.9 166 
90 mu[2] 138.9 9.76 0.19 119 139 158.2 119 
91 mu[3] 134.7 8.98 0.1713 116.5 134.8 152.5 135 
92 mu[4] 130.6 8.241 0.1527 113.8 130.6 146.7 122 
93 mu[5] 126.4 7.554 0.1342 111 126.5 141.3 119 
94 mu[6] 122.2 6.934 0.1161 108.1 122.2 136 125 
95 mu[7] 118.1 6.402 0.09826 105.1 118.1 130.8 121 
96 mu[8] 113.9 5.981 0.08108 101.9 113.9 125.9 123 
97 mu[9] 109.7 5.695 0.06502 98.43 109.8 121.1 128 
98 mu[10] 105.6 5.565 0.05114 94.53 105.6 116.7 124 
99 mu[11] 101.4 5.603 0.04169 90.25 101.4 112.7 131 
00 mu[12] 97.25 5.804 0.03995 85.63 97.26 108.9 131 
01 mu[13] 93.08 6.153 0.04678 81 93.07 105.5 65 
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Table 10 Continued 

Year  Mean sd MC error 2.5% Median 95% Observed 
02 mu[14] 88.92 6.626 0.05929 75.95 88.9 102.3 67 
03 mu[15] 84.76 7.2 0.07468 70.64 84.7 99.33 68 
04 mu[16] 80.59 7.851 0.09151 65.42 80.52 96.42 81 
05 mu[17] 76.43 8.563 0.1091 59.8 76.33 93.74 72 
06 mu[18] 72.26 9.321 0.1272 54.22 72.18 91.14 78 
07 mu[19] 68.1 10.12 0.1455 48.46 68 88.69 88 

Table 11 Parameters used in estimation for Section H 

Node  Mean  sd 
 MC 
error 2.50% Median 97.50% Sample 

tau.c 0.00275 0.00113 
1.12E-

05 0.001018 0.002595 0.00537 18001 
alpha 147.2 11.41 0.2276 123.9 147.4 169.6 18001 
beta -4.164 0.969 0.01917 -6.056 -4.168 -2.2 18001 

 
 

Monte Carlo error (MC error) measures the variability of the estimate due 

to the simulation. A low MC error is required to calculate the parameter of interest 

with increased precision. In order to obtain a stationary posterior distribution, 

convergence was guaranteed by ‘burning’ the first 3000 samples that were generated. 

Fig. 26 shows generated IRI values from the posterior distribution for Section H are 

normally distributed. The time series plot in Fig. 27 shows that 16 out of 19 IRI values 

were either within or close to the 95% confidence band. 
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mu[5] sample: 18001
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Figure 26 Density plot of monitored node for Section H 
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Figure 27 Plot of Estimated versus Actual IRI for Section H 
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5.2 Predicting IRI values of sections 

After having certified the normal hierarchical model reflected roughness 

conditions of the selected roads, an attempt was made to predict the IRI value for the 

20th year which is 2008. The results for individual section D, F and H are shown 

respectively in Tables 12, 13 and 14. Values for the 20th year are in bold caps. 

Table 12 Prediction results for Section D 

Year   Mean sd MC error 2.5% Median 97.5% Sample 
89 mu[1] 88.18 7.087 0.1337 74.04 88.21 102.3 18001 
90 mu[2] 88.42 6.536 0.1213 75.45 88.47 101.4 18001 
91 mu[3] 88.65 6.009 0.1089 76.76 88.68 100.6 18001 
92 mu[4] 88.88 5.512 0.0966 78.01 88.9 99.98 18001 
93 mu[5] 89.11 5.055 0.08435 79.17 89.13 99.27 18001 
94 mu[6] 89.34 4.649 0.07221 80.18 89.38 98.69 18001 
95 mu[7] 89.58 4.309 0.06026 81.01 89.61 98.19 18001 
96 mu[8] 89.81 4.052 0.04861 81.81 89.8 97.84 18001 
97 mu[9] 90.04 3.894 0.03757 82.26 90.05 97.72 18001 
98 mu[10] 90.27 3.847 0.02786 82.63 90.29 97.75 18001 
99 mu[11] 90.5 3.915 0.02137 82.68 90.5 98.15 18001 
00 mu[12] 90.74 4.093 0.0213 82.58 90.74 98.81 18001 
01 mu[13] 90.97 4.367 0.0277 82.3 90.99 99.55 18001 
02 mu[14] 91.2 4.72 0.03737 81.88 91.25 100.5 18001 
03 mu[15] 91.43 5.136 0.0484 81.22 91.5 101.6 18001 
04 mu[16] 91.66 5.601 0.06003 80.46 91.72 102.7 18001 
05 mu[17] 91.9 6.104 0.07199 79.68 91.96 104 18001 
06 mu[18] 92.13 6.636 0.08412 78.81 92.19 105.3 18001 
07 mu[19] 92.36 7.191 0.09637 77.92 92.43 106.7 18001 
08 mu[20] 92.59 7.764 0.1087 77.05 92.64 108 18001 
 
 

Values of nodes mu[1] to mu[19] in Table 12 are approximately the same 

compared to their corresponding values in Table 4. 
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Table 13 Prediction results for Section F 

Year   Mean sd 
MC 

error 2.5% Median 97.5% Sample 
89 mu[1] 102.6 9.496 0.178 83.53 102.6 121.5 18001 
90 mu[2] 103.3 8.743 0.161 85.8 103.3 120.7 18001 
91 mu[3] 104 8.025 0.1441 87.97 104 119.9 18001 
92 mu[4] 104.7 7.353 0.1272 90.12 104.7 119.4 18001 
93 mu[5] 105.3 6.742 0.1104 92.05 105.4 118.9 18001 
94 mu[6] 106 6.208 0.09389 93.78 106.1 118.5 18001 
95 mu[7] 106.7 5.773 0.07766 95.32 106.8 118.3 18001 
96 mu[8] 107.4 5.461 0.062 96.68 107.4 118.3 18001 
97 mu[9] 108.1 5.295 0.04747 97.57 108.2 118.5 18001 
98 mu[10] 108.8 5.287 0.0355 98.3 108.9 119.1 18001 
99 mu[11] 109.5 5.438 0.02941 98.62 109.5 120.1 18001 
00 mu[12] 110.2 5.736 0.03266 98.75 110.3 121.5 18001 
01 mu[13] 110.9 6.159 0.0432 98.68 110.9 123 18001 
02 mu[14] 111.6 6.685 0.05712 98.43 111.7 124.8 18001 
03 mu[15] 112.3 7.289 0.0725 97.82 112.4 126.7 18001 
04 mu[16] 113 7.956 0.08859 97.18 113.1 128.7 18001 
05 mu[17] 113.7 8.67 0.1051 96.45 113.8 130.9 18001 
06 mu[18] 114.4 9.42 0.1217 95.61 114.5 133.2 18001 
07 mu[19] 115.1 10.2 0.1386 94.81 115.2 135.5 18001 
08 mu[20] 115.8 11 0.1555 93.9 115.9 137.7 18001 

 
 

Values of nodes mu[1] to mu[19] in Table 13 are approximately the same 

compared to their corresponding values in Table 7. This assigns credibility to the 

prediction run and the IRI value obtained in 2008. 
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Table 14 Prediction results for Section H 

Year   Mean sd 
MC 

error 2.5% Median 95% Sample 
89 mu[1] 143.1 10.41 0.2254 122.7 143.1 163.5 18001 
90 mu[2] 138.9 9.62 0.2055 120 139 157.8 18001 
91 mu[3] 134.8 8.864 0.1856 117.1 134.8 152.2 18001 
92 mu[4] 130.6 8.149 0.1658 114.4 130.6 146.5 18001 
93 mu[5] 126.4 7.488 0.1461 111.6 126.5 141.1 18001 
94 mu[6] 122.3 6.895 0.1266 108.4 122.3 135.8 18001 
95 mu[7] 118.1 6.39 0.1074 105.3 118.2 130.7 18001 
96 mu[8] 113.9 5.995 0.08861 102 114 125.8 18001 
97 mu[9] 109.8 5.734 0.07067 98.21 109.8 121.1 18001 
98 mu[10] 105.6 5.623 0.05437 94.37 105.6 116.7 18001 
99 mu[11] 101.4 5.674 0.04168 90.04 101.5 112.6 18001 
00 mu[12] 97.26 5.88 0.03659 85.49 97.3 108.8 18001 
01 mu[13] 93.09 6.227 0.04195 80.67 93.12 105.5 18001 
02 mu[14] 88.92 6.693 0.05477 75.65 88.93 102.1 18001 
03 mu[15] 84.75 7.255 0.07114 70.38 84.78 98.98 18001 
04 mu[16] 80.58 7.892 0.08911 64.91 80.61 96.08 18001 
05 mu[17] 76.41 8.589 0.1079 59.33 76.43 93.32 18001 
06 mu[18] 72.25 9.33 0.1271 53.74 72.23 90.58 18001 
07 mu[19] 68.08 10.11 0.1466 48.1 68.05 87.96 18001 
08 mu[20] 63.91 10.91 0.1663 42.31 63.85 85.46 18001 

 
 

Values of nodes mu[1] to mu[19] in Table 14 are approximately the same 

compared to their corresponding values in Table 10. This assigns credibility to the 

prediction run and the IRI value obtained in 2008. 
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Figures 28, 29 and 30 shows plots of prediction results for Sections D, F 

and H. These are graphical representations of Tables 12, 13 and 14. 
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Figure 28 Plot of Predicted versus Actual IRI values for Section D 
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Figure 29 Plot of Predicted versus Actual IRI values for Section F 
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Figure 30 Plot of Predicted versus Actual IRI values for Section H 
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5.3 Discussion of Results 

The normal hierarchical MCMC model that was developed was validated 

on its ability to model heterogeneity without ignoring roughness conditions on the 

roadway. 

Using a confidence interval of 95%, estimated IRI values for pavement 

sections from the fitted model corresponded strongly with IRI values from the dataset. 

Approximately 70% of observed IRI values fell within the confidence intervals for all 

fifteen pavement sections used in this research. The models thus captured a significant 

proportion of the distribution of roughness for the individual pavement sections. 

Prediction of IRI values for the twentieth year was also made for the 

sections using a second run of the model which was independent of the one used for 

estimation. Even though they were run separately, generated values from the 

estimation and prediction runs follow the same trends for the first nineteen years. 

Similarity between the two sets of simulated values serves as a check on prediction 

and validates the normal hierarchical MCMC model. 

With regards to the 3 individual sections discussed in this chapter, the 

model, in the case of Sections D and H, best described recorded roughness conditions 

within the respective length of roadway. The replicated points for Section H within the 

95% confident interval were all consistent with observed field data. This was also the 

case for Section D, except for 1991 where the sudden spike in roughness was too 

extreme to be accounted for. For Section F, the model was able to replicate for the 

most part all the IRI values within the section but could not reflect very well the peaks 

in 1991 and 2007 in addition to the dip in 1996. 
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CHAPTER 6 

SUMMARY AND CONCLUSION 

6.1 Summary 

Heterogeneity is a feature of pavement distresses that traditional pavement 

performance models have always found difficult to characterize. With regards to 

pavement roughness, heterogeneity describes the continuous change in roughness in 

relation to a change in corresponding time. It is unpredictable and pavement 

performance models sometimes fail to address this form of uncertainty. Whereas some 

research have modeled heterogeneity mainly from a mathematical perspective  by 

disregarding its influence in pursuit of sound mathematical parameters, other research 

focus entirely on heterogeneity as pertains to prevailing pavement conditions having 

no regard for the soundness of mathematical estimates used in the model. The aim of 

this research was to model roughness using sound mathematical estimates without 

disregarding inherent heterogeneity associated with it. 

This research used hierarchical Markov Chain Monte Carlo models in 

estimating IRI values and in predicting values for a given data set. The data used was 

annual roughness for Kansas spanning a period of nineteen years. The model used the 

Gibbs sampler with MCMC simulation, and was able to reflect prevailing roughness 

conditions without neglecting heterogeneity. WinBUGS, a Bayesian analysis software 

that uses Markov Chain Monte Carlo (MCMC) to fit statistical data was used in 

simulation. 
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A chronological sequence of activities conducted as part of the research 

included literature review to investigate past model forms; exploratory data analysis to 

identify completeness and consistency in the dataset; formulation of the model; 

estimation of original IRI values and prediction of IRI values for the twentieth year. 

Out of the thirty pavement sections in the database, fifteen were used for this research 

and the results obtained were outstanding. Not less than 70% of generated IRI values 

from the model fell within the 95% confidence interval established for each pavement 

section. The soundness of the estimates obtained served as the premise on which 

prediction for the twentieth year was done. A second model run independent of the one 

used for estimation was used in prediction. Analysis of the results from the two 

independent runs showed that generated IRI values for both runs were similar. This 

confirmed the accuracy of the model used and served as a check on prediction. 

6.2 Conclusion 

Modeling pavement roughness using hierarchical Markov Chain Monte 

Carlo (MCMC) simulation is an efficient way to depict the roughness characteristics of 

a given road pavement or a network of roads. Its strength lies in its ability to 

characterize prevailing roughness characteristics on the basis of sound mathematical 

principles without neglecting apparent heterogeneity inherent in pavement roughness. 

The soundness of estimates obtained and that of the model in general, can 

serve as a useful tool in the decision making process for any pavement management 

system. This will go a long way to reduce the amount of uncertainty encountered 

during decision making and can form the basis when justifying the use of resources in 

managing road pavements. 
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In future, the use of hierarchical MCMC models can be extended to larger 

datasets and other pavement distresses. Ultimately, its use in assessing the 

performance of other civil infrastructure can also be examined and if found successful, 

will serve as an innovative technique in the asset management toolbox. 
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