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ABSTRACT

Nowadays, a lot of unsubstantiated and unverified information, named rumors,

are created and propagated through the Internet because of the easiness of posting

information online and lack of supervision. These rumors may cause users’ confusion

and social unrest. To prevent the negative influences, rumor detection which employs

machine learning has been well studied. And almost all of these machine learning based

methods rely on a large rumor dataset, which makes a large collection of rumor related

data highly desired. However, current rumor collection methods are partially manual

and usually specific for a single platform.

In this thesis, we propose a rumor collection system to automatically collect

rumor related data from both search engine and social media. It mainly consists of

two parts. First, instead of using user input as the search query, a query generator is

proposed to avoid directly using user input as the search query, which may result in

the fail of search. It can generate a set of queries based on the user’s input. After that,

a novel rumor crawler is built to collect rumor related data by using the generated

queries.

To validate our rumor collection system, experiments are taken on the Tweets

from January 2016 to March 2017. The result of 50 different rumors shows that,

compared with current widely used Twitter Search API, our system can crawl more

rumor with an average increasement of 3.589 times. Furthermore, for some rumors,

our system is still effective when Twitter Search API returns no results.

ix



Chapter 1

INTRODUCTION

In the last decade, the Internet has become a major source for news. A study

conducted by the Pew Research Center1 in 2016 has identified the Internet as the

most important source for the news for people under the age of 30 in the US and

the second most important source overall after television. However, there are also

amounts of rumors (unsubstantiated and unverified information) propagated on the

Internet. An example of such phenomenon is the 2010 Chile earthquake where the

propagation of related rumors on the Internet caused chaos and social unrest among

the news consumers. To clean the environment of Internet and reduce the harm of

rumors, automatic rumor detection methods which take the advantage of big data and

machine learning are very helpful. Rumor collection is a pre-requirement for such work.

However, current rumor collection methods are partially manual and have limitations

which make them unable to collect a complete data collection. In this thesis, we

propose and implement a framework to automatically collect rumor related data on

the Internet.

In Section 1.1, we briefly discuss the motivation of our work and the strengths

and shortcomings of existing methods. Section 1.2 introduced our rumor collection

framework and the contributions of the thesis. Finally, Section 1.3 provides an outline

of this thesis.

1 http://www.journalism.org/2016/07/07/pathways-to-news/
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1.1 Motivation

Rumor, especially malicious rumor, can cause a dramatically negative influence

on the Internet. Detecting and verifying rumors are highly needed to rebuild the envi-

ronment of Internet without chaos and confusion. Generally, with the help of big data

and machine learning, the detection process can be done automatically. However, the

performance of algorithms in machine learning highly rely on a large, comprehensive,

and accurate training dataset. Thus, collecting of rumor related data is always the

first fundamental step for related research.

On the Internet, there are many different types of news sources, such as social

media, news websites, general websites and personal blogs. Within these sources, the

most influential ones are social media and news websites considering the amount of

time people spend on these websites. Meanwhile, the lack of supervision on these

online platforms makes rumors spread easier and faster. In this regard, we pick news

websites and social media to collect rumor related data. For news websites, since

the framework and organization of various news websites could be totally different,

the current methods are partially manual and usually for specific websites, topics or

domains, which make the process painful, time-consuming and unscalable. For social

media, based on the data from eBizMBA 2, Twitter is one of the most popular social

media, after Facebook and Youtube. The Representational State Transfer (REST)

Application program interfaces (APIs) of Twitter are well developed and widely used

which enable others to do the collecting of data easily. Twitter Search API is widely

used for Twitter collection task, but there are two limitations of the Twitter Search

API. For one thing, only around 3000 tweets can be returned in maximum for a specific

request. For another, only tweets within roughly 7 days can be accessed. These

limitations greatly hurt the completeness of the data collection which is very important

for many pieces of research. As a result, a general framework that can automate the

entire process and collect the data more completely is in pressing need. It will save a

2 http://www.ebizmba.com/articles/social-networking-websites
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great amount of time for researchers and enable them to focus on the research part.

Also, it will greatly lower the threshold of doing related research.

1.2 Rumor Collection Framework

In this thesis, we aim to construct a framework to collect rumor related data

on the Internet automatically. Figure 1.1 shows the general pipeline of our system. As

can be seen, the system has three major parts, Query Generator, Rumor Crawler and

Online Judgement.

Figure 1.1: The pipeline of the rumor collection system. The inputs and outputs are
shown in gray and the subsystems in green.

The input of Query Generator is the rumors that are collected from Snops.com.

We find that directly using a rumor claim as the search query will result in few results,

typically for Twitter since a tweet is limited to 140 characters. The search query is

the input of a user put into a web search engine to satisfy the information needs. As

a result, a Query Generator is proposed. It is typically optimized for cases that the

original queries are relatively long and documents are short. By using linguistic and

statistic features, the system can extract keywords from the rumor claim and construct

a set of short queries based on it. As a result, the recall of the rumor data collecting

process increased dramatically.

After the query sets of rumors have been generated, multiple crawlers for differ-

ent rumor sources are built. We pick Google, Google News and Twitter as the sources

of data. Google is the largest search engine where users can find rumor related web

pages by search. Google News provides and aggregates up-to-date news from sources

all over the world. Twitter is one of the largest social media platforms and provides

powerful and versatile APIs to access the public data while many other mainstream

platforms do not. We extended an existing Google crawler framework to scrape data

3



from both Google and Google News. For Twitter, to overcome the time and amount

limitation of Twitter API, we introduced a novel Twitter crawler by using Twitter

advanced search and Selenium. Twitter advanced search is a web-based Twitter search

engine, which enables users to specify the date of searched tweets. It perfectly over-

comes the limitation of search API. After this, we extract data from the browser with

Selenium, a browser automation toolkit.

In addition, to evaluate the performance of the framework, based on an existing

online evaluation system, an online judgment system is constructed and deployed to

enable users to judge unlabeled rumor related data without bounding to locality. The

input of this system is the data collected by the Rumor Crawler. Since labeling data

is laborious, time-consuming, a ranking function is used to evaluate the relevance of a

specific result and the rumor. If too much data are crawled for a specific rumor, the

least relevant data will be removed automatically to increase the efficiency.

The primary goal of our research is to develop a new automatic rumor collection

framework. Our research contributions are as follows.

1. A combined automatic system for rumor collection is proposed, shown to be

effective in the experiment.

2. A query generation algorithm that shortens the size of a query based on word

distance is proposed to increase the recall of rumor collection.

3. To collect historical tweets, a novel tweets collection method based on the

simulation of user’s browsing behavior is proposed.

1.3 Thesis Overview

In Chapter 2, we review current approaches for query extraction and reduction,

rumor detection, and rumor collection. Chapter 3 describes the query generation sub-

system. Chapter 4 introduces the rumor crawling subsystem. Chapter 5 describes the

experiment as well as discuss the results obtained by the new rumor collection system.

In Chapter 6, we summarize the thesis and outline directions for future work.

4



Chapter 2

RELATED WORK

2.1 Automatic Extraction of Keywords

Automatic extraction of keywords have exhibited their potential to improve

the efficiency and accuracy of searching in natural language processing (NLP) and

information retrieval (IR) tasks[11] Terse queries that contain only a small selection of

keywords from a more verbose description of the actual information is more efficient

during a search [2, 3].

Corpus-oriented statistics of individual words is a foundational method and they

believe that keywords definitely occur much more times than other single words. For

example, Andrade et al. extract biological information directly from scientific literature

by comparing word frequency distribution and their relative accumulation [1]. However,

operating only on single words dramatically limit the accuracy of keywords extraction.

Co-occurrence distribution is used to show the importance of a term in the document

[24]. Also, since tweets are short and most words only occur once which makes the

word frequency based method impractical.

To avoid these drawbacks, features-based linguistics approaches have been pro-

posed. In this method, features can be anything to get more linguistic knowledge, such

as Named entities, Part-of-speech taggers [27], length of words, the position of words

[45], previous or next word [44], Term Frequency ∗ Inverse Document Frequency of

the word (TF ∗ IDF) [44, 16]. For example, in [9], a lexical chain that holds a set of

semantically related words of a text is applied to extract the keywords.

Intuitively, linguistics approaches heavily rely on the feature itself and generally,

one feature is not scalable enough to dramatically increase the accuracy for almost all
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database. Therefore, nowadays, supervised machine learning has been widely applied

in keywords extraction.

Using supervised machine learning for an automatic extraction of keywords was

first proposed by Turney [36] and later expanded by some other researchers [44, 13, 16].

Query expansion (QE) is the process of reformulating a seed query to improve

retrieval performance in information retrieval operations. Leverage Pseudo-Relevance

Feedback (PRF) for Query Expansion (QE) is widely used in research of microblog

search [12, 22, 8, 43, 38, 21], which assumes that most of the frequent terms in the

pseudo-relevance documents are useful. Many researcher aims at using semantics to

enhance microblog search [40, 47, 15].

However, machine learning based approaches are highly time-consuming and

need a large dataset. As far as we know, there is no appropriate up-to-date social

event dataset available now. In this paper, linguistic methods work well for our data

collection task and we may move to machine learning methods in the future.

2.2 Rumor Detection

The study of rumors is a classic topic in social sciences. Case studies on spe-

cific rumors are conducted to reveal the features of their context and the common

characteristics between rumors.

The problem of rumor detection can be cast as binary classification tasks [5].

The extraction and selection of discriminative features significantly affect the perfor-

mance of the classifier. We studied many features used for rumor detection. Mei et

al. addressed the problem of rumor detection in microblogs and explore the effective-

ness of 3 categories of features: content-based, network-based, and microblog-specific

memes for correctly identifying rumors [28]. Also, some semantic features i.e. opi-

tion words [33], Speech Act Verbs [35, 14, 45, 46], N-grams, and syntactic features i.e.

punctuations [37], abbreviations [7], dependency sub-trees [37, 23, 26], Twitter specific

characters [37, 45]are used for classification.
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Some models reveal how rumors have spread after an event. Some studies focus

on the behavior of Twitter users under an emergency situation [25, 31, 34]. Wu et

al. utilized a message propagation tree where each node represents a text message to

classify whether the root of the tree is a rumor or not [39].

2.3 Rumor Collection

Most of Twitter related researches use Twitter API to collect tweets. Some re-

searchers maintain a large-scale dataset by keeping storing data retrieved with Stream-

ing API which provides around 1% sampling of total tweets and then specific regular

expression is used to filter out tweets related to a specific rumor [28]. Hashtags are

also widely used to identify topics [37, 29]. Some studies collected data using Twit-

ter’s Search API, which is free to use and provides tweets published in the past 7 days

[4, 17, 20]. The synthetic data set is another possible way to generate a large data

set(generated using Watts and Strogatz model [3, 26]).

These limitations constrained the research in this field and inspired us to propose

a new rumor collection system.

2.4 Focused Crawling

Focused crawling was first introduced by Soumen et al[6]. to crawl topic-specific

web pages. Considering the large amount of information on the Internet, in order to

save hardware and network resources, a focused web crawler analyzes the crawled pages

to select only related documents and ignores the rest. It mainly has two components, a

classifier to evaluate the relevance of hypertext documents regarding the focused topic,

and a distiller to identify nodes as access points to pages is also. Ahmed [32] improved

the distiller by using an Optimized Nave Bayes (ONB) classifier

An optimized focused web crawler that learns from the information collected by

the knowledge base within one domain or category is proposed by Rungsawang and

Angkawattanawit[30]. Liu, Milios and Korba[18] presented a framework for focused

web crawler based on Maximum Entropy Markov Models (MEMMs)

7



In our system, we focus on a variety of rumors instead of a specific domain

or topic, which makes focused crawling not suitable. Also, focused crawling is not

applicable on social media. As a result, instead of using focused crawling, we crawl

rumor related data by doing search on both search engine and social media. To improve

the efficiency of crawling, a query generator is proposed to optimize the search queries.

8



Chapter 3

QUERY GENERATOR

The general pipeline of the rumor collection system is shown in Figure 1.1, as

can be seen in that figure, the system is composed of three main subsystems for query

generation, rumor collection, and online judgment. This chapter will describe in detail

the query generation subsystem.

Generally, the input of rumor crawling subsystem is the raw rumor claim. The

rumor claim is usually long and may contain many meanless words. As one can well

imagine, if it is directly used to search on Google or Twitter, the result will not be

good, especially for Twitter considering that a tweet can only have 140 characters in

maximum. To improve the performance and increase the recall of the crawler, a Query

Generator is necessary to generate terse queries based on user input.

The Query Generator takes a rumor claim provided by the user as the input.

Then by using linguistic and statistic techniques i.e. Named entity recognition, Part-

of-speech tagging, Stop words to extract keywords from the rumor claim and generate

a set of queries automatically. The first part of this chapter describes the necessaries of

building a Query Generator subsystem and the second part describes the approaches

explored and how to integrate multiple methods to solve the problem.

3.1 Why Necessary?

Before introducing our Query Generator in detail, let’s review some character-

istics of collecting rumors on the Internet. First of all, a query of the rumor is a

pre-requirement to collect rumor related information online. In our system, Twitter

and Google are chosen as the sources of rumor related data. To collect the data, Twit-

ter Crawler and Google (News) Crawler are built respectively. For the Twitter crawling

9



task, there are mainly two choices to implement it. One option is based on the Twitter

search API, which can return tweets based on the request query. Another one is by us-

ing Twitter Advanced Search, which is a web-based search engine. Both methods need

a query as the input to get related tweets. As can be seen, how to set the search query

will make a great difference to the amount and the precision of returned tweets. For

example, “Cancer Is Caused by a Deficiency of Vitamin B17” is a wildly spread rumor

in recent years. If we search this rumor claim directly on Twitter, only 7 tweets are

returned. Instead, if we use “Cancer B17”, which is the keywords in the rumor claim,

as the search query, there are thousands of tweets returned. For widely used general

search engines, like Google, users typically interact with the system through natural

language queries to address a broad range of information needs. If we search the same

rumor claim mentioned above on Google, even though, compared with Twitter, more

results will be returned since the huge amount of information available on the Internet

and also possible optimization is done by Google. However, when we take a deep look

at the result, we find that the results are extremely biased and most of them support

this rumor even though it is a rumor which has been verified as false.

In summary, there are two main drawbacks of using the raw rumor claim as a

query. First, the rumor claims are usually long, with an average length of over eight

words in our case, since a specific rumor is usually detailed and unable to be described

in several words. Using the claim to search will greatly decrease the recall of our

Twitter crawler. Second, for both Google and Twitter, since the claim is a description

of the rumor, when it is used as a search query, the results from the search engine are

more likely to support the claim. As a result, the results presented to the users are

biased which may mislead users’ judgment on the veracity of the information.

Based on these observations, instead of using rumor claims as the input of

Rumor crawler, we decide to generate a set of queries based on the rumor claims that

contain fewer words, which is the functionality of our query generator subsystem.

10



3.2 Candidate Rumor List

To start the generation of queries, we need to get a list of rumor claims as the

input. In the real system, the input should come from real users. Considering that

the system has not been finished yet at this moment, we need to get the rumor list

in another way. A straight forward way to get a list of rumors is collecting rumors

on the Internet and record them manually. However, it is time-consuming and also

non-scalable.

Instead, we picked Snopes.com as our source to get canditates rumors. It in-

cludes a section called “Fact checking” that covers rumors from different fields e.g.

Politics, Medical, Fake news. Detailed analysis of the rumors is provided as well,

which can help us to understand them. The crawling process is done automatically by

building a web crawler, which is more efficient than manual work.

In order to automate the crawling process, a web crawler is developed by using

Python and BeautifulSoup41. The result is stored in a CSV file. Crawled data include

the rumor claim, publish date, rating, and origin(explanation), as shown in Table 3.1.

3.3 Keywords Extraction

In this section, a variety of keywords extraction methods based on the knowledge

of Natural Language Processing and Information Retrieval, are introduced. Keywords,

a subset of words or phrases from a text that can describe the meaning of the text,

will be extracted from the original query based on different features.

3.3.1 Named Entity Recognition

Named Entity Recognition (NER) is a technique used to label words and phrases

in a text which are the names of things, such as person names, company names and

location names. In many cases, a rumor claim may be related to a specific person,

location or company. These name entities can be used to identify a specific topic or

rumor, which makes them irreducible during query reduction.

1 https://pypi.python.org/pypi/beautifulsoup4
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Table 3.1: An example of crawled data from Snopes.com

Figure 3.1 is an example output of NER. In this case, by using NER, “Wik-

iLeaks” and “ISIS” are tagged as ORGANIZATION while “Hillary Clinton” is tagged

as PERSON. These words identified by NER is critical in this case. If we use “Hillary

Clinton ISIS WikiLeaks” as a query to search on Google or Google News, a lot of

related information will be presented on the first page. Clearly, the usage of NER can

be useful in some cases.

However, NER does not always work since that NER only focus on named

entities like person, location and organization. If the rumor is not related to the either

of these name entities, no entities will be returned. For example, “Bees have been

classified as an endangered species”. There are no name entities in this text. As a

result, NER is possibly invalid.

Nowadays, NER systems have been created by using linguistic techniques as

well as statistical models, i.e. machine learning. However, statistical NER systems

typically require a large amount of training data which need to be judged manually.

12



This limitation makes many researchers hard to train a NER model by themselves.

Fortunately, there are models already available such as GATE, Stanford NLP, and

OpenNLP. By comparing, Stanford NER is chosen in our system.

Stanford NER2 is a Java implementation of a Named Entity Recognizer powered

by Standford University. Figure 3.1 is an example output by using Stanford NER.

Based on the output, we can construct a query “WikiLeaks Hillary Clinton ISIS”. In

Figure 3.1: An example output of Stanford NER

addition, considering that a person could be mentioned and referred with only the first

name or last name, we can optimize the method by only take the first name or last

name as part of the reconstructed query. So, the query turns to be “WikiLeaks Hillary

ISIS” or “WikiLeaks Clinton ISIS”.

3.3.2 Part-of-Speech Tagging

In the English language, words can be considered as the smallest units of mean-

ing. Based on the use and functions of words, they can be categorized into several

types or parts of speech. There are 8 major parts of speech in English grammar: noun,

pronoun, verb, adverb, adjective, conjunction, preposition, and interjection. Within

these parts, noun and verb are those most likely contains keywords. A noun is a word

that names a specific object such as person, thing, animal or place. Though some of

the Noun phrases can be detected and tagged by using the NER technique mentioned

above, the range of Noun phrases is larger than NER. As a result, Noun phrases are

2 https://nlp.stanford.edu/software/CRF-NER.shtml
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sometimes necessary as well, especially when NER tagger returns nothing. Meanwhile,

a verb is a word used to describe an action, such as run, listen, swim. Considering

that a specific rumor is about “someone did something”, the action “did something” is

important to identify this rumor instead of just uses the Noun phrases involved. Based

on the analysis of the formation of a rumor, noun and verb are chosen to be extracted

considering the relatively high probability to contain keywords.

To extract the Noun and Verb phrases from the text, a Part-Of-Speech Tagger

(POS Tagger) is introduced, which is a piece of software that reads the text in some

language and assigns parts of speech to each word (and another token), such as noun,

verb, adjective, etc. In our system, We extract noun and verb phrases from the text

by using Stanford POS-Tagger 3, as shown in Figure 3.2.

Figure 3.2: An example output of Part-of-Speech Tagger

Based on the noun phrases we get, a possible query could be “person intelligence

3 https://nlp.stanford.edu/software/tagger.shtml
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mother”. By using verb phrases, “person intelligence is determined mother” could be

another query. It is worthwhile to note that “determined” is the keyword in this rumor

but “is” is too general to express the meaning of the rumor. As a result, stop words are

imported in next part to solve this problem and remove meanless words from queries.

3.3.3 Stop Words Removal

Stop words usually refer to the words in a document that are some frequently

used words. These words would appear to be of little value in expressing the meaning

of the sentence and can be excluded from the vocabulary entirely during keywords

extraction.

Removing stop words is a widely used step within natural language processing

and information retrieval. Considering that the rumor claim inputted by a user is a

verbal query, stop words do exist in the rumor claims, such as “a”, “by”,“of”, as shown

in Figure 3.1. To remove stop words from a query, using a list of stop words is the

common way to solve it since the stop words are relatively static even though it may

vary for different domains. The general way to get a stop word list is to sort the terms

by the frequency, and then take the most frequent terms. Some published stop word

lists are also available i.e. Snowball stop word list4, Terrier stop word list, Minimal

stop word list. In our system, Snowball stop word list is used. Also, stop words could

vary in different domains. So a possible optimization is constructing stop word list for

different domains separately instead of using a general one.

3.3.4 Inverse Document Frequency

The term weighting function known as IDF has been extremely widely used,

usually as part of a TF*IDF function in information retrieval to measure the importance

of a word to a document in a collection or corpus. Since that tweets are short, the

term frequency of words in a tweet is usually one. Instead of using the combination

of TF and IDF, IDF is used alone to weight terms. It is based on the heuristic that

4 http://snowball.tartarus.org/algorithms/english/stop.txt
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a word is not a good discriminator if it occurs in many tweets or Google results. IDF

scales down the term weights of terms with high collection frequency. It is defined as

the total number of occurrences of a term in the collection divides the total number of

documents in a collection, and then taking the logarithm of that quotient, as shown

in the equation below. Obviously, the IDF score of a rare term is high, whereas the

IDF score of a common term is more likely to be low. As a result, in order to remove

common words from the original query, the terms with low IDF could be the ones to

remove.

idft = log
N

dft

In order to calculate the IDF of tweets, 1,000,000 tweets are crawled by using

one of the Twitter Steaming APIs, which provides low latency access to Twitters global

stream of tweet data. There are three types of streams, as shown in Table 3.2. Con-

sidering that we need sampling tweets of the whole public twitter data, Public streams

are suitable. To get the data, One Streaming API method, GET statuses/sample, is

used. By using this API, A small random sample of all public statuses will be returned.

The tweets returned by the default access level are the same, so if two different clients

connect to this endpoint, they will see the same tweets.

Table 3.2: Steaming API types

To use Streaming API in Python code, a Python library for accessing the Twitter

APIs called Tweepy5 is used. There are mainly three steps to use it.

5 http://www.tweepy.org/
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1. Create a class inheriting from StreamListener

import tweepy

# o v e r r i d e tweepy . StreamListener

# to add l o g i c to on s ta tu s

c l a s s MyStreamListener ( tweepy . StreamListener ) :

de f on s ta tu s ( s e l f , s t a t u s ) :

p r i n t ( s t a tu s . t ex t )

2. Using that class create a Stream object

myStreamListener = MyStreamListener ( )

myStream = tweepy . Stream ( auth = api . auth ,

l i s t e n e r=myStreamListener ( ) )

3. Connect to the Twitter API using the Stream.

myStream . sample ( languages =[ ‘ en ’ ] )

Once we get the IDF weighting, we try to set a score as a threshold at first.

Words with a score lower than the threshold will be considered as non-keywords. How-

ever, this method does not work well because the threshold for different queries varies

a lot, also some common words identified by IDF score could also contain key concepts

of the query. It is hard to set a general threshold that is suitable for each case. Instead,

a relatively loose threshold can be used to filter out the most common words, which is

similar to the functionality of stop words.

3.3.5 Stemming

Stemmer is an automated tool which produces a base string (the word stem) and

removes morphological affixes from words. Algorithmic stemmers and dictionary-based

stemmers are the two types of stemmers. Despite the promise of out-performance by

dictionary-based stemmers in normal cases, algorithmic stemmers still greatly used in

information retrieval since having the advantage that they are available out of the box,

fast, and memory-saving.
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In our system, algorithmic stemmer 6 is used instead of dictionary-based stem-

mers because Twitter is social media and tweets contain many informal words, mis-

spelled words, Internet slang words that usually are not covered by dictionary-based

stemmers. Stemmer is used to combine words with the same word stem together to

optimize the IDF based term-weighting method.

3.4 Shorten the Length of Query

By using the query generation methods we introduced, we can get a set of

queries for a specific rumor based on various features i.e. NER, POS-Tagging, Stop

words. The number of keywords returned from these features varies from rumor to

rumor, sometimes a few and sometimes a lot. The number of terms extracted by

different features, like noun phrases, verb phrases, name entities, stop words in the

rumor claims varies a lot. It is possible that a query contains too many keywords so

that most rumor related tweets only mentioned some of these words instead of all of

them, which means that the generated query should use only a subset of candidtated

keywords instead of all of them.

Search engines usually perform better with short queries than long queries.

We note that the performance of a search engine is highly related to the size of search

queries. If the query length is long, the returned results will be more precise but become

fewer. If the query length is short, then returned results will contain more irrelevant

tweets but the amount of results increase dramatically. Based on this notation, an

experiment is done to figure out the relation between the size of a query and the

number of returned results.

Based on the principle of the search engine, it is promised that a short search

query will return more results than a longer query that includes the short query. How-

ever, what is the suitable size for a query? We need to trade off between the amount

of returned results and the relevance of the returned results and the rumor. As can

be seen in Figure 3.3, the average amount of results varies a lot with different query

6 http://snowballstem.org/algorithms/
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length. The number of results with a query size of 2 words is 4 times of 3 words. The

amount of results with a query size of 3 words is 6 times of 4 words. When the size of a

query is larger or equal to 6, nothing is returned on average. To balance the relevance

and quantity, we decide to pick 3 as the size of a query.

Figure 3.3: Relation between query length and returned tweets

To shorten the size of query further, we tried some methods based on information

retrieval and NLP knowledge. As we mentioned before, IDF score is calculated by using

100,000 sampling tweets. Since we already get the weight of all words in the query. We

can use the IDF score as a filter to pick 3 keywords from the original query. First, we

sort the words in the query based on the IDF score. Then top 3 words among these

keywords are picked to construct a new query. This method does not work well since

the IDF score is not sufficient to distinguish the most valuable keywords from the other

keyword candidates. For example, there are a lot of topics related to “Donald Trump”,
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which makes “Trump” a popular keyword with a relatively low IDF score. Clearly,

the person who is involved in a rumor should be a keyword in the generated query. If

we pick top 3 keywords based on the IDF score to construct the query, the important

keyword “Trump” will not be included in the generated query. As a result, we move

to a new method based on the word distance to shorten the length of a query.

Word Distance

We assume that, in English, the words appear at the beginning of a sentence

are more important. Also, keywords are likely to be close to each other. Based on

this observation, we proposed a new method to shorten the length of query. First, we

extract keywords from the rumor claim by using features such as noun phrases and verb

phrases. Then we measure the likelihood of each combination of three words based on

the relative position of selected words.

For a set of words (w1, i1), (w2, i2), (w3, i3), wt stand for tth word in original

query and it stand for the index of wt in the rumor claim, i1 < i2 < i3. To simplify the

computation, i1 is considered as the benchmark, so the distance between three words

is represented as: i2 − i1 + i3 − i1.

A brute-force approach to solve the problem needs to consider all
(
N
3

)
combina-

tions where N is the size of original query in words and then pick the combination that

has the smallest word distance as the final query. However, suppose (ix, iy, iz) are not

adjacent in the original query and word candidates are ordered by the relative position

of keywords in the rumor claim, then there must be another subset (ix, iy, iz−1) that

has a smaller distance. So we only need to enumerate all adjacent words instead, in this

case, only n-2 possible combinations in total. Algorithm 1 shows the word distance

based query reduction method.

3.5 Expand Queries with Google Related Searches

When search for a query on Google, related queries that are searched by other

users will be shown in the“Related searches” section at the bottom of the result page.
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input : A list of potential keywords extracted from the rumor claim
output: A new constructed query

min distance← infinite;
new query ← null;
for All 3 words permutation [ (w1, i1), (w2, i2), (w3, i3) ] of the
candidate words list do
// The permutations are iterated by the order of the

position of words in the original query

cur distance← i2 + i3 − i1 ∗ 2;
if cur distance < min distance then

min distance← cur distance // update min distance

new query ← “w1 w2 w3” // update new query

else
// If one permutation has the same word distance as

min distance, it will still be passed since the

position of the words lean to back

end

end
Algorithm 1: Keyword extraction by word distance

Top related searches are terms that are most frequently searched with the term entered

in the same period of time. Since Google related searches do not filter controversial

topics, the bias of returned results about the rumor claim can be reduced by expanding

our query set with Google related searches. Figure 3.4 shows an example of related

searches of query “boil water twice” which is a query based on the rumor that “Boiling

the same water twice will make your water dangerous to drink”. We can see the word

“reboil” appears in the related searches as a synonym of “boil twice”. Also, top two

results are highly related to this rumor. Based on this, we decided to use Google related

searches as a method to expand the query.

3.6 Conclusion

As shown in Table 3.3, by combining the features in different ways, we generate

multiple keyword extraction methods. First, the generated query set greatly increases

the recall of the crawlers. Second, comparing with enumerating all possible subsets of

the original query, our query generator avoid the crawling of too much irrelevant and
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Figure 3.4: Google related searches of rumor “Boiling the same water twice will make
your water dangerous to drink”

redundant data.

Table 3.3: An example output of query generator. NER stand for Name entity recog-
nition, DISTANCE 3 stand for the word distance based query extrac-
tion method, IDF stand for the Inverse document frequency based query
extraction method and NOUN VB stand for the combination of Noun
phrases and Verb phrases. Same condition for other combinations.
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Chapter 4

RUMOR CRAWLER

In the previous chapter, we discuss different methods proposed to generate

queries based on the rumor claims. To get rumor related data and also evaluate these

query generation methods, we developed a rumor crawler subsystem. It is a key pro-

cess in the rumor collection framework to collect rumor related data from the Internet.

This chapter will describe in detail the Rumor Crawler subsystem.

4.1 Platforms to Collect Rumor

Nowadays, there are a lot of online platforms i.e. Google, Bing, Twitter, In-

stagram, Snapchat that rumors may spread inside. Among these platforms, we pick

Google, Google News and Twitter as the source of data considering the popularity

and user numbers. Google is the largest search engine which can return rumor related

web pages from different websites based on the relevance and a page ranking algorithm

when searching a rumor. Google News provides up-to-date news by aggregating the

news from sources all over the world. Twitter is one of the largest social media plat-

forms. Also, Twitter REST APIs enable developers and researchers to get access to the

data easily, which are widely used for data collecting from Twitter. We will introduce

them in detail in the following.

4.1.1 Google Search

Google is the most popular search engine on the Internet nowadays. It is good

at returning information that matches user’s information need. Usually, what users

need will appear at the top of returned results. Besides, advertisements and sponsored

links are clearly marked and kept separate from search results. Each search result
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includes a snippet of the text which is a description of or a short extraction from the

web page.

4.1.2 Google News

Google News provides comprehensive up-to-date news coverage and focuses on

news. With Google Search, the results are normally ranked by relevance to the query.

Somewhat differently, The ranking is date oriented and top ranked results are usually

within recent news.

4.1.3 Twitter

Twitter is one of the world’s largest social networks that the monthly active users

of Twitter are over 300 millions1. It allows users to broadcast and interact with short

posts called tweets, which are restricted to 140-character. Twitter users can create

tweets, broadcast tweets and retweet, quote and reply other users’ tweets. tweets can

be sent by an app on the cell phone, desktop client or by browsing the Twitter.com

website.

Academic Benefits through Using Twitter

• Twitter’s wide reach is one of the main advantages. It has 300 million monthly

active users and provides a platform for around 6,000 tweets in every second2.

• The hashtags is also a good feature of Twitter, which can facilitate real-time

chat through the use of hashtags. It makes Twitter a good place for information

propagation and rumor spreading.

• Twitter provides REST APIs, which simplify the process to collect data from

Twitter.

1 https://www.fool.com/investing/2017/04/27/how-many-users-does-twitter-
have.aspx

2 http://www.internetlivestats.com/twitter-statistics/
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• Twitter Advanced search, where users can specify operators, language, date,

places, people and even sentiment during a search, gives researchers the high

flexibility to satisfy the information need.

4.2 Google Crawler

To crawl data from Google, a Google crawler is built based on a previous Google

crawler framework. The input of the Google crawler is the generated queries provided

by the query generator mentioned at chapter 3. To scrap data from Google, we need

to simulate the process of the user’s searching on Google through a browser. There are

mainly 5 steps during one Google search. When a user searches something in Google,

an HTTP request will be sent to the target domain such as ’www.google.com’, then

the domain will return HTML file back to the client’s browser, the browser can convert

the HTML file to the real web page that user can interact with. As shown in Figure

4.1, our Google crawler simulate the process to search on Google without opening a

browser. At first, we need to construct HTTP request, which simulates the action of

user’s search on Google, then we send the query and get the returned HTML from

Google. Instead of showing the web page to the user, the crawler will extract data

from the HTML file and stored the data in file system or database.

Figure 4.1: Example workflow of Google crawler

Construct HTTP Request

When a query is inserted into the search box and then the search button clicked,

the query will be converted into an HTTP request, as shown in Figure 4.2. In order to

construct the request, we need to figure out the request parameters used by Google.

As shown in Table 4.1, we can specify the type of boolean search by using different

parameters i.e search operators, language, and filter. Also, Table 4.2 shows the options
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that can be used for searching a specific type of information. In order to search Google

News specifically, we need to put “tbm=nws” in the request in addition.

Figure 4.2: Example HTTP request of Google crawler

Table 4.1: Parameters of Google search request

Send HTTP Request

Once the HTTP request is constructed, we can send the GET request by using

urllib23 or request4. The returned data is in HTML format.

3 https://pymotw.com/2/urllib2/

4 http://docs.python-requests.org/en/master/
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Table 4.2: Google search filter

It should be noted that Google can distinguish between human and program

behavior. If sending requests frequently, the IP address may be banned by Google for

hours with a 403 error returned.

Parse Google Result

BeautifulSoup4 is a Python library for pulling data out of HTML and XML files.

In our system, we use it to parse the returned HTML files to extract search results and

then store data in files in JSON format.

Here is an example of JSON format result:

{

” t i t l e ” : ”Onion Bunions ” ,

” u r l ” : ” http ://www. snopes . com/onion−in−your−sock−cure&sa

=U&ved=0ahUKEwiqyOKoisPSAhUE4CYKHXRDACgQqQIIFCgA

MAA&usg=AFQjCNGsFEwzrQYgxJVWErzGTzbUkDasRw” ,

” sn ippet ” : ” Like so many que s t i onab l e b i t s o f s c i e n t i f i c

mis informat ion , the c la im that putt ing onions on
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your f e e t w i l l do something u n s p e c i f i e d that has

to \u00a0 . . . ” ,

” source ” : ” snopes . com” ,

” date ” : ”Jan 24 , 2017” ,

” id ” : ”1 goog le news co lumn 1 ”

}

4.3 Twitter Crawler

To collect data from Twitter, Twitter REST APIs are widely used. Some re-

searchers use the Twitter Streaming API, which is mentioned in chapter 3, to return

a small random sample of all public statuses in real time(roughly 1%). As a result,

the entire data collecting process is unpredictable and the collected data is far from

complete. Also, historical data is unavailable since it is real-time data. In our system,

we should be able to provide related tweets, include historical tweets, in a given time

after a rumor claim is given. It makes Streaming API unsuitable for our system in the

following.

Another widely used Twitter REST API is the Search API. We will introduce

this API in detail.

4.3.1 Twitter Search API

Twitter Search API provides programmatic access to search Twitter data within

7 days. It can return tweets that match a specified query. The returned data is a JSON

format tweet object. Within a tweet object, there are multiple key-value pairs, include

entity object, user object, tweet ID, text etc.

Authorization of API Usage

To use the Twitter Search API, it is required to get authorization from Twitter.

There are 4 steps to finish the authorization.

Step 1: Go to Twitter Application Management dashboard and log in.
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Step 2: Create an app like https://apps.twitter.com/app/12316567/keys

Step 3: Get consumer key and secret, as shown in Figure 4.3

Step 4: Get access key and secret, as shown in Figure 4.4

Figure 4.3: An example of consumer key and secret

Figure 4.4: An example of access key and secret
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Access API with Python

Tweepy, which is an easy-to-use Python library for accessing the Twitter API,

is used to integrate API with our system. By using the key and secret we get from

Twitter Application Management dashboard, the authorization can be done in a few

lines Python code easily.

auth = OAuthHandler ( consumer key , consumer sec re t )

auth . s e t a c c e s s t o k e n ( acce s s token , a c c e s s t o k e n s e c r e t )

api = tweepy . API( auth )

api . s earch ( ‘ example search query ’ )

Configure Search API Parameters

Twitter Search API return tweets that match a specified query and return a list

of “SearchResult” objects. Table 4.3 shows the details of Tweepy parameters.

Table 4.3: Tweepy search API parameters

Limitations

However, Twitter Search API has two limitations, which place restrictions on the

usage of the API in our system. As mentioned in Twitter Developer Documentation,
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the Twitter Search API searches can only return a sampling of recent tweets published

in the past 7 days. Considering that the propagation of a rumor can take a long period

of time more than one week, the data collected by Search API is far from enough. Also,

relevance, instead of completeness, is the focus of the Search API, which means that

some tweets may be missing in the results.

As shown at Table 4.4, the rate limitation of Twitter Search API is another

limitation. As an authorized user, the maximum rate is 180 requests / 15 minutes.

One request can return 100 tweets in maximum. Theoretically, 18,000 tweets can be

crawled in 15 minutes in maximum for users and 45, 000 tweets for App. For personal

usage, this limitaion may be acceptable, but this limitation makes the usage of the

Search API unscalable. If 100 search requests go into the system at the same time,

then the API can return 450 tweets for each searched rumor on average in 15 minutes.

If one search result exceed the maximum rate limitation, then no search can be done

in the following 15 minutes.

Table 4.4: Twitter Search API rate limitation

4.3.2 A Novel Web Crawler

As can be seen, the Twitter Search API has multiple limitations, which make

it unable to crawl enough data from Twitter. In order to overcome the limitations, we

move to the second method, web scraping.

Twitter Advanced Search is a web-based search engine where users can find the

latest news and world events. It allows users to tailor search results to specify date
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ranges, people and more. This makes it easier to find specific tweets. Considering that

it is also a search engine, which is similar to Google. At beginning, we try to solve this

task by sending HTTP request and resolve the returned result, which is the technique

used for Google Crawler. However, the returned HTML file only contains 20 tweets

in maximum. In order to get all of the returned tweets, the user need to search the

query with Twitter Advanced Search in the browser. Then keep scrolling down the web

page to the bottom to get 20 more tweets at each time until no more tweets returned.

As can be seen, if there are 1,000 tweets returned, then 50 scrolling down operations

are needed to get all of them. Meanwhile, the HTTP request can not simulate user’s

scrolling-down operation in the browser since the scrolling-down operation will triggle

the browser to send another secret HTTP request to get the 20 more tweets, which is

unpredictable and unable to be simulated.

To this end, a novel Twitter crawler is proposed, as shown in Figure 4.5. It uses

Twitter Advanced Search as the source to get rumor related tweets. After this, Sele-

nium, which can manipulate browser and simulate user’s interaction with the browser,

is used to simulate the scrolling-down operation and get all returned search results

from the browser.

Twitter Advanced Search

Twitter Advanced search is available without logging in to twitter.com. Users

can specify date ranges of search, which is impossible by using the Search API. As a

result, it is easier to find specific tweets, especially out-of-date tweets. Also, compared

with Twitter Search API, Twitter Advanced Search index more tweets than the Search

API, especially for unpopular tweets. Table 4.5 shows the fields can be used in advanced

search, we can refine search results by using any combination of the fields.

Selenium

In order to get all returned tweets from Twitter Advanced Search, we need

to keep scrolling down the web page until no more tweets appear. This requirement
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Figure 4.5: An example workflow of Twitter crawler

makes a general crawler unable to handle it. As a result, Selenium is chosen to solve

the problem, which is a browser automation toolkit. Primarily, it is used to automate

web applications for testing purposes. Here, we use it to do data crawling.

Selenium WebDriver provides a simple and concise programming interface which

can drive a browser natively as a user either locally or on a remote machine. The

supported browser includes Chrome, Firefox, InternetExplorer, Safari, and PhantomJS.

At the beginning, we choose Chrome and Firefox as the browser to get access to

Advanced search, considering that Internet Explorer and Safari are platforms specified
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Table 4.5: Sentiment analysis of top 200 tweets

and not available in all operating system. After further tests, Chrome is chosen as the

only browser used in our system because of two shortings of Firefox. First, Firefox

WebDriver is unable to close the browser correctly after the task is finished while

Chrome can. Second, Firefox WebDriver is slower than Chrome WebDriver.

Deploy the Crawler on Server

Considering that our system is a web-based system that can provide useful

rumor related information when a rumor claim is given, our service needs to be hosted

on the server instead of a personal computer. Different from a personal computer, a

server usually does not have a screen, but the Twitter crawler needs a screen to open

a browser visually and manipulate it with Selenium. In order to deploy the Twitter
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crawler on the server side, Xvfb is used to solve it.

Xvfb or X virtual framebuffer is an in-memory display server for UNIX-like

operating system. Xvfb performs all graphical operations in memory without showing

any screen output. This virtual server does not require the computer it is running on

to have a screen or any input device. Only a network layer is necessary. Also, in order

to execute Xvfb with Python, we used a python package, PyVirtualDisplay5, which is

a Python wrapper for Xvfb. An example code of using Xvfb is shown in Figure 4.6.

Figure 4.6: An example code of Xvfb wrapper

5 https://pypi.python.org/pypi/PyVirtualDisplay
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Chapter 5

EXPERIMENT

We conduct experiments to evaluate our rumor collection system. First, we get

a list of 50 rumor claims. After this, by using our rumor collection system, we crawled

data related to these 50 rumors from both Google and Twitter.

5.1 Performance of Query Generation Methods

For each rumor claim, we generate a set of queries by using different query

generation methods. These methods are based on the features extracted in chapter 3.

Also, we combine some of them to improve the performance of single feature. As shown

in Figure 5.1, NOUN stands for noun phrases, VB stands for verb phrases, GRS stands

for tweet, NER stands for Name Entity Recognition, DIS3 stands for the word distance

based query extraction method, IDF stands for the Inverse document frequency based

query extraction method and NOUN VB stands for the combination of noun phrases

and verb phrases. Same condition for other combinations. It shows the number of

returned tweets by using different query generation methods.

We can see NER returns more data than any other methods. The main reason is

that NER based query generation method usually return a few words which are more

efficient during search on Twitter. Also, with the help of Google Related Searches,

numerous results are returned because the terms returned by Google Related Searches

are popular queries based on the frequency of being searched, these popular queries

can also effective during a search on Twitter. About shortening the size of query,

both IDF based method and word distance based method contribute to more returned

queries. However, based on the number of results, word distance outperforms IDF

based method greatly. NOUN DIS3 returns 5 times more results when compare with
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Figure 5.1: Performance of query generation methods, NOUN stands for Noun
phrases, VB stands for Verb phrases, GRS stands for Google Related
Searches, NER stands for Name entity recognition, DIS3 stands for the
word distance based query extraction method, IDF stands for the In-
verse document frequency based query extraction method, ‘ ’ stand for
the combination of multiple methods

NOUN. Also, NOUN DIS3 gets more results than NOUN IDF. The impact of word

distance based query contraction method is greater on NOUN VB comparing with

NOUN. NOUN VB DIS3 returns amounts of results while NOUN VB rarely return

results. A possible explanation of the different impact on NOUN and NOUN VB is

that NOUN returns relatively fewer words, sometimes, it is short enough to get sizable
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results without additional contraction. Meanwhile, NOUN VB usually returns too

many words. When query contraction method applied, the returned results increase

dramatically.

5.2 Compare the Number of Crawled Tweets

Figure 5.2: Crawled tweets by our Twitter crawler and Search API

Figure 5.2 shows the different number of tweets crawled for 50 rumors by using

both our Twitter crawler and Twitter Search API. Our Twitter crawler crawls rumor

related tweets monthly from January 2016 to March 2017. As can be seen, the number

of results crawled by our novel Twitter crawler is always more than Twitter Search

API. Furthermore, in our novel Twitter crawler, the average increasement of returned

tweets is around 3.589 times compared with the Twitter Search API.
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5.3 Compare the Crawled Tweets within 7 Days

Considering that Twitter API can only return results in 7 days, we compare

the returned tweets in 7 days to check if our Twitter crawler can return more results

than Twitter Search API in a given period of time. To easier the comparing process,

we construct 10 queries that return a few tweets so that the Twitter Search API will

not exceed the limitation amount, which is around 3000 tweets. Since Twitter Search

API will return retweets, a reposted or forwarded message, while Advanced search does

not, we filter out retweets before comparison. Figure 5.3 shows the number of tweets

Figure 5.3: Returned tweets in 7 days

returned by these two methods. The majority of the results are same. Some data

provided by Twitter Search API does not exist in the result of Advanced Search. The

main reason is that Twitter Search API may return some results that do not include all
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the keywords in the query. Also, some results from Advanced Search are not returned

by Twitter Search API since Twitter Search API do not index all of the existing tweets.

5.4 Test the Limitations of Twitter Search API

To compare the difference between our Twitter crawler and Twitter Search API,

it is necessary to test the limitations of Twitter Search API. The input is the 50 claims

selected at the beginning of the experiment. By using the query generator, we generate

a set of queries for each rumor and then crawl rumor related data by using Twitter

search API.

5.4.1 Detect the earliest day of crawled results

Figure 5.4: Start date of returned tweets
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Based on the Twitter document1, the Twitter Search API searches against a

sampling of recent tweets published in the past 7 days. Figure 5.4 shows the detected

earliest days of 50 queries. All of them are over 7 days and most of them are between

9 and 10 days.

5.4.2 Detect the date distribution of crawled results

Figure 5.5: Distribution of returned tweets

Figure 5.5 shows the distribution of returned tweets over days by using Twitter

Search API. It shows that the returned tweets are randomly distributed instead of

preferring earlier or later tweets.

1 https://dev.twitter.com/rest/public/search
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5.5 Case Study

In order to evaluate the performance of our system and check whether crawled

results are rumor related data, labeling data manually is necessary and inevitable even

though it is time-consuming and painful.

There were many online judgment systems for general IR system [42, 19, 10, 41]

To increase the efficiency of labeling data and make the process more user-friendly, an

online judgment system is constructed and deployed based on an existing framework.

First, considering the limited time we have, instead of judging all crawled data, we

used a ranking function based on TF*IDF to retrieve 200 related data for each rumor

first. Then all selected data is stored in MySQL which is the database where the

web-based online judgment system can read and write data. When a user makes

a judgment through the website, the result will be written to the database in real

time. The online judgment system enables users to use it without bounding to locality.

Also, it is easy to use. Without typing anything, a few clicks are enough to make a

judgment. Furthermore, by assigning a task to multiple users, we can greatly avoid

the misjudgment caused by the personal error.

The judgment system provides four options to users: believe, deny, doubt, or

irrelevant. A document should be judged as ‘Believe’ if the document believes the rumor

claim, and ‘Deny’ when the document does not believe the rumor. If the document is

not sure about the rumor or has no opinion on the rumor, then it should be judged as

‘Doubt’.

Rumor 1: Cancer is caused by a deficiency of vitamin B17, a condition that

can be remedied with nutritional supplements.

As shown in Table 5.1, 86% of the Twitter are related to the rumor, which

proves that our rumor collection system can return rumor related tweets effectively.

According to the analysis on Snopes.com, this rumor is a fake news. However,

within these 200 tweets, most posters do believe in this rumor and do not realize that

this is a fake news. This rumor is widely spread and could be very harmful.
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Table 5.1: Sentiment analysis of top 200 tweets

Rumor 2: Clean coal technology currently makes coal a clean source of

energy and helps to reduce greenhouse gas emissions.

This rumor is actually unproven. Table 5.2 shows the sentiment analysis about

rumor 2. In this case, over 60 percent of the top 200 tweets are irrelevant to the rumor

One possible reason is that there are over 200 relevant results but the ranking function

is not good enough to pick them out from the results. So a better ranking function can

be used. Another reason could be that we do not get enough relevant data, so we may

need to make our Query Generator more aggressive (e.g. construct queries with fewer

words). Also, it is possible that some unpopular rumors are not widely discussed on

social media so that we can not find enough related rumors.

Table 5.2: Sentiment analysis of top 200 tweets

43



Chapter 6

CONCLUSION

This thesis described a system for rumor collection. It consists of two parts:

query generation and rumor crawling.

We proposed a query generator which can generate a set of queries based on a

rumor claim. We presented multiple features i.e. NER, POS, Stop words, Stemmer,

and IDF to extract keywords from the rumor claim. An algorithm based on the position

of candidate keywords in the original query is proposed to shorten the size of a query.

After this, Google Related Searches of generated queries are introduced to expand the

query set.

We also introduced a novel rumor crawler which can crawl data from different

platforms synthetically and automatically. The key idea behind our rumor crawler

is simulating the operation of humans during a search. Our system overcomes the

limitations of Twitter Search API by making historical tweets crawlable.

To validate our rumor collection system, extensive analysis of query generator

and rumor crawler has been taken based on over 200,000 tweets. The results show

that our framework can collect 3.589 times rumor related data than the widely used

Twitter search API.

As part of future work, we plan to use the system to crawl more rumor related

data. After this, we will use machine learning techniques to integrate these features to

detect rumors.
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