Spatial and temporal controls on the inorganic carbon system of the Western Arctic Ocean

Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
University of Delaware
Abstract
The Arctic Ocean plays a critical role in the global carbon cycle. It is believed to be particularly sensitive to the effects of climate change, is already undergoing dramatic changes, and is therefore important to study in that context. Most studies of the inorganic carbon system in the Western Arctic focus on hydrographic datasets from summer and/or fall (July-October), and do not consider the full response of the system to the timing of ice retreat, organic matter production and remineralization, and ice advance. Here we present the first dataset to investigate the spatial and temporal controls on the inorganic carbon system from early spring (pre-phytoplankton), late spring (initial phytoplankton bloom), summer (post-bloom), and fall in 2014. Our results suggest that the timing of ice retreat has important implications for the length of the phytoplankton growing season, and thus influences the magnitude of biological carbon cycling. We extend our analysis to include high-resolution temporal estimates of air-sea CO2 flux, and estimate a total annual CO2 uptake in the Chukchi Sea of ~7.7 Tg C. This is the first dataset to evaluate the importance of different seasonal observations within one year on the annual uptake of CO2 in the western Arctic Ocean. Our results show that extrapolations from one observational dataset result in large over- or underestimations of annual CO2 flux.
Description
Keywords
Citation