Pre-Holocene to modern evolution of the lower Delaware Estuary: constraints from high-resolution chirp subbottom profiles

Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
University of Delaware
Abstract
Throughout the Quaternary Period, the Delaware Estuary, which is located within the Mid-Atlantic region of the United States, has undergone substantial change as a result of sea-level fluctuations. To better understand the recent (late Pleistocene to Holocene) evolution of the region, chirp subbottom profiles were analyzed within Delaware Bay near the southern end of the Delaware River Navigation Channel including the adjacent shoals and sloughs, using RoxAnn bottom classification data and available vibracores to aid in interpreting sediment types and depositional environments within the study area. Using seismic processing software (SonarWiz6), chirp profiles were processed and reflection events were identified and their positions digitized. Major reflection events were analyzed using a seismic facies approach. The identified facies were each characterized as distinct units composed of reflections with unique elements, such as configuration, amplitude, and continuity. Five seismic facies were identified and their thicknesses determined. Depths to the major reflection events were correlated with sediment boundaries as observed in the available vibracores, allowing the seismic facies to be interpreted in terms of their associated sediment types and inferred environments of deposition. The distributions of surficial and subsurface seismic and sedimentological features were visualized using three-dimensional images. The interpretations of the identified facies are as follows: Facies I is a surficial unit of the modern Holocene estuarine deposits; Facies II is a beach-berm washover zone deposition; Facies III is a deposit of a lagoonal environment; Facies IV is a deposit of an open water environment; and Facies V is a marsh deposition. The chirp data, when integrated with available information from vibracores and RoxAnn bottom sediment classification, was also used to map the position of a former major river system (paleochannel). This paleochannel, trending generally northwest to southeast, can be correlated with the southern channel that was identified in previous work by Knebel and Circé (1988). In addition to the knowledge gained by studying the geological evolution of Delaware Bay, our data can be used by decision makers and stakeholders to inform future management of the Delaware Estuary in practical applications that range from planning for maintenance dredging of the navigation channel to determining locations and thicknesses of suitable sand resources for shoreline replenishment. The surficial layer that would be most affected by such applications is mostly composed of sand & muddy sand, but in the deeper portions and along the shoals, it is composed of mixed and coarse sediments and mud & sandy mud, respectively. Furthermore, the surficial unit is thickest (between 1.5 and 4 meters) in the central and eastern regions of the study area encompassing the deeper portions, and it is thinnest (up to 1 meter) along the western and northern regions that include the shoals.
Description
Keywords
Earth sciences, Chirp, Constraints, Delaware, Estuary, High-resolution, Holocene, Modern, Pre-Holocene, Resolution, Subbottom
Citation