Trace elements in abyssal peridotite olivine record melting, thermal evolution, and melt refertilization in the oceanic upper mantle

Abstract
Trace element concentrations in abyssal peridotite olivine provide insights into the formation and evolution of the oceanic lithosphere. We present olivine trace element compositions (Al, Ca, Ti, V, Cr, Mn, Co, Ni, Zn, Y, Yb) from abyssal peridotites to investigate partial melting, melt–rock interaction, and subsolidus cooling at mid-ocean ridges and intra-oceanic forearcs. We targeted 44 peridotites from fast (Hess Deep, East Pacific Rise) and ultraslow (Gakkel and Southwest Indian Ridges) spreading ridges and the Tonga trench, including 5 peridotites that contain melt veins. We found that the abundances of Ti, Mn, Co, and Zn increase, while Ni decreases in melt-veined samples relative to unveined samples, suggesting that these elements are useful tracers of melt infiltration. The abundances of Al, Ca, Cr, and V in olivine are temperature sensitive. Thermometers utilizing Al and Ca in olivine indicate temperatures of 650–1000 °C, with variations corresponding to the contrasting cooling rates the peridotites experienced in different tectonic environments. Finally, we demonstrate with a two-stage model that olivine Y and Yb abundances reflect both partial melting and subsolidus re-equilibration. Samples that record lower Al- and Ca-in-olivine temperatures experienced higher extents of diffusive Y and Yb loss during cooling. Altogether, we demonstrate that olivine trace elements document both high-temperature melting and melt–rock interaction events, as well as subsolidus cooling related to their exhumation and emplacement onto the seafloor. This makes them useful tools to study processes associated with seafloor spreading and mid-ocean ridge tectonics.
Description
This article was originally published in Contributions to Mineralogy and Petrology. The version of record is available at: https://doi.org/10.1007/s00410-023-02044-6. © The Author(s) 2023.
Keywords
abyssal peridotite, mid-ocean ridge tectonics, olivine chemistry, geothermometry
Citation
Lin, KY., Warren, J.M. & Davis, F.A. Trace elements in abyssal peridotite olivine record melting, thermal evolution, and melt refertilization in the oceanic upper mantle. Contrib Mineral Petrol 178, 66 (2023). https://doi.org/10.1007/s00410-023-02044-6