Novel conjugates of peptides and conjugated polymers for optoelectronics and neural interfaces

Author(s)Bhagwat, Nandita
Date Accessioned2016-02-05T13:41:32Z
Date Available2016-02-05T13:41:32Z
Publication Date2015
AbstractPeptide-polymer conjugates are a novel class of hybrid materials that take advantage of each individual component giving the opportunity to generate materials with unique physical, chemical, mechanical, optical, and electronic properties. In this dissertation peptide-polymer conjugates for two different applications are discussed. The first set of peptide-polymer conjugates were developed as templates to study the intermolecular interactions between electroactive molecules by manipulating the intermolecular distances at nano-scale level. A PEGylated, α-helical peptide template was employed to effectively display an array of organic chromophores (oxadiazole containing phenylenevinylene oligomers, Oxa-PPV). Three Oxa-PPV chromophores were strategically positioned on each template, at distances ranging from 6 to 17 Å from each other, as dictated by the chemical and structural properties of the peptide. The Oxa-PPV modified PEGylated helical peptides (produced via Heck coupling strategies) were characterized by a variety of spectroscopic methods. Electronic contributions from multiple pairs of chromophores on a scaffold were detectable; the number and relative positioning of the chromophores dictated the absorbance and emission maxima, thus confirming the utility of these polymer-peptide templates for complex presentation of organic chromophores. The rest of the thesis is focused on using poly(3,4-alkylenedioxythiophene) based conjugated polymers as coatings for neural electrodes. This thiophene derivative is of considerable current interest for functionalizing the surfaces of a wide variety of devices including implantable biomedical electronics, specifically neural bio-electrodes. Toward these ends, copolymer films of 3,4-ethylenedioxythiophene (EDOT) with a carboxylic acid functional EDOT (EDOTacid) were electrochemically deposited and characterized as a systematic function of the EDOTacid content (0, 25, 50, 75, and 100%). The chemical surface characterization of the films confirmed the presence of both EODT and EDOTacid units. Cyclic voltammetry showed that the films had comparable charge storage capacities regardless of their composition. The morphology of the films varied depending on the monomer feed ratio. Thus we were able to develop a method for synthesizing electrically active carboxylic acid functional poly(3,4-ethylenedioxythiophene) copolymer films with tunable hydrophilicities and surface morphologies. For longer lifetime devices incorporating a biomolecule via covalent immobilization techniques are preferred over physical adsorption or entrapment. We took advantage of the carboxylic acid group on the PEDOTacid copolymer films to modify the surface of these films with a laminin based peptide, the nonapeptide sequence CDPGYIGSR. XPS and toluidine blue O assay proved the presence of the peptide on the surface and electrochemical analysis demonstrated unaltered properties of the peptide modified films. The bioactivity of the peptide along with the need of a spacer molecule for cell adhesion and differentiation was tested using the rat pheochromocytoma (PC12) cells. Films modified with the longest poly(ethylene glycol) spacer used in this study, a 3 nm long molecule, demonstrated the best attachment and neurite outgrowth compared to films with peptides with no spacer and a 1 nm spacer, PEG3. The films with PEG10-CDPGYISGR covalently modified to the surface demonstrated 11.5% neurite expression with the mean neurite length of 90 μm. Along with the acid functionalized PEDOT films, vinyl terminated ProDOT films were also investigated as coatings for neural electrodes. The vinyl group was successfully modified with a RGD peptide via thiol-ene click chemistry. Both the acid and vinyl functional conducting polymer films provide an effective approach to biofunctionalize conducting polymer films.en_US
AdvisorKiick, Kristi L.
AdvisorMartin, David C.
DegreePh.D.
DepartmentUniversity of Delaware, Department of Materials Science and Engineering
Unique Identifier936678407
URLhttp://udspace.udel.edu/handle/19716/17428
PublisherUniversity of Delawareen_US
URIhttp://search.proquest.com/docview/1727750822?accountid=10457
dc.subject.lcshOptoelectronics.
dc.subject.lcshThiophenes.
dc.subject.lcshPolymers.
dc.subject.lcshPeptides.
dc.subject.lcshCoatings.
dc.subject.lcshPheochromocytoma.
TitleNovel conjugates of peptides and conjugated polymers for optoelectronics and neural interfacesen_US
TypeThesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2015_BhagwatNandita_PhD.pdf
Size:
4.76 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.22 KB
Format:
Item-specific license agreed upon to submission
Description: