Effects of defect density, minority carrier lifetime, doping density, and absorber-layer thickness in CIGS and CZTSSe thin-film solar cells

Date
2023-06-02
Journal Title
Journal ISSN
Volume Title
Publisher
Journal of Photonics for Energy
Abstract
Detailed optoelectronic simulations of thin-film photovoltaic solar cells (PVSCs) with a homogeneous photon-absorber layer made of with CIGS or CZTSSe were carried out to determine the effects of defect density, minority carrier lifetime, doping density, composition (i.e., bandgap energy), and absorber-layer thickness on solar-cell performance. The transfer-matrix method was used to calculate the electron-hole-pair (EHP) generation rate, and a one-dimensional drift-diffusion model was used to determine the EHP recombination rate, open-circuit voltage, short-circuit current density, power-conversion efficiency, and fill factor. Through a comparison of limited experimental data and simulation results, we formulated expressions for the defect density in terms of the composition parameter of either CIGS or CZTSSe. All performance parameters of the thin-films PVSCs were thereby shown to be obtainable from the bulk material-response parameters of the semiconductor, with the influence of surface defects being small enough to be ignored. Furthermore, unrealistic values of the defect density (equivalently, minority carrier lifetime) will deliver unreliable predictions of the solar-cell performance. The derived expressions should guide fellow researchers in simulating the graded-bandgap and quantum-well-based PVSCs.
Description
Copyright © 2023 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited. This article was originally published in Journal of Photonics for Energy. The version of record is available at: https://doi.org/10.1117/1.JPE.13.025502
Keywords
copper indium gallium selenide, thin films, solar cells, doping, simulations, thin film solar cells, quantum experiments, affordable and clean energy
Citation
Faiz Ahmad, Benjamin J. Civiletti, Peter B. Monk, Akhlesh Lakhtakia, "Effects of defect density, minority carrier lifetime, doping density, and absorber-layer thickness in CIGS and CZTSSe thin-film solar cells," J. Photon. Energy 13(2) 025502 (2 June 2023) https://doi.org/10.1117/1.JPE.13.025502