Predicting Subsurface Architecture From Surface Channel Networks in the Bengal Delta

Abstract
Groundwater is the primary source of water in the Bengal Delta but contamination threatens this vital resource. In deltaic environments, heterogeneous sedimentary architecture controls groundwater flow; therefore, characterizing subsurface structure is a critical step in predicting groundwater contamination. Here, we show that surface information can improve the characterization of the nature and geometry of subsurface features, thus improving the predictions of groundwater flow. We selected three locations in the Bengal Delta with distinct surface river network characteristics—the lower delta with straighter tidal channels, the mid-delta with meandering and braided channels, and the inactive delta with transitional sinuous channels. We used surface information, including channel widths, depths, and sinuosity, to create models of the subsurface with object-based geostatistical simulations. We collected an extensive set of lithologic data and filled in gaps with newly drilled boreholes. Our results show that densely distributed lithologic data from active lower and mid-delta are consistent with the object-based models generated from surface information. In the inactive delta, metrics from object-based models derived from surface geometries are not consistent with subsurface data. We further simulated groundwater flow and solute transport through the object-based models and compared these with simulated flow through lithologic models based only on variograms. Substantial differences in flow and transport through the different geologic models show that geometric structure derived from surface information strongly influences groundwater flow and solute transport. Land surface features in active deltas are therefore a valuable source of information for improving the evaluation of groundwater vulnerability to contamination. Key Points: - We demonstrate a novel approach that harnesses land surface characteristics to inform groundwater modeling in deltas - The subsurface lithologic data of an active delta is more consistent with surface features than that of an inactive delta - Incorporation of surface information can improve the prediction of contaminant transport in aquifers Plain Language Summary: The structure of groundwater aquifers affects how groundwater and contaminants move through them. In deltas, dynamic river networks are responsible for depositing sediments that ultimately form subsurface aquifers. Therefore, the characteristics of the surface river channel network should provide information about the structure of the subsurface. We tested this idea using a large set of sedimentary data from the Bengal Basin. We created models of the subsurface based on the surface network and showed that the subsurface data reflect the model characteristics in deltas that are actively depositing sediment. Using these subsurface models as input for groundwater flow models, we showed that incorporating this surface information is important for being able to predict how contaminants move in groundwater.
Description
An edited version of this paper was published by AGU in Journal of Geophysical Research: Earth Surface. Copyright 2023 American Geophysical Union. The version of record is available at: https://doi.org/10.1029/2022JF006775. This article will be embargoed until 09/19/2023.
Keywords
aquifer heterogeneity, groundwater modeling, geostatistical modeling, Bengal Delta, delta networks, contaminant transport
Citation
Xu, Z., Khan, M. R., Ahmed, K. M., Zahid, A., Hariharan, J., Passalacqua, P., et al. (2023). Predicting subsurface architecture from surface channel networks in the Bengal Delta. Journal of Geophysical Research: Earth Surface, 128, e2022JF006775. https://doi.org/10.1029/2022JF006775