Open Access Publications

Permanent URI for this collection

Open access publications by faculty, postdocs, and graduate students in the Department of Animal and Food Sciences.

Browse

Recent Submissions

Now showing 1 - 20 of 41
  • Item
    In-Ovo Glutamine Administration Enhances Intestinal Development and Functions in Broiler Chickens: Insights from Enteroid Models
    (The Journal of Nutrition, 2024-04-10) Yu, Liang-en; Mann, Peter; Schlitzkus, Lydia; Ghiselli, Federico; Sanders, Mia; Hadimundeen, Abdallah; Li, Yihang
    Background Early life events play significant roles in tissue development and animal health in their later life. Early nutrition, through in-ovo delivery, has shown beneficial effects on improving intestinal health in broiler chickens. However, the underlying mechanism is not fully investigated. A recently developed enteroid culture technique allows investigations on intestinal epithelial functions that are close to physiologic conditions. Objectives In this study, we evaluated the short- and long-term effects of in-ovo administration of glutamine (Gln) on intestinal epithelial development and functions by using intestinal enteroid culture and tissue electrophysiologic analysis. Methods A hundred eggs of commercial Cobb500 broilers were in-ovo injected with 0.2 mL of either phosphate-buffered saline (PBS) or 3% Gln at embryonic day 18 (E18). Chicks were killed on the day of hatch, and at 3- and 14-d posthatch. Enteroids were generated from the small intestine. After 4 d of culture, enteroids were harvested for 5-ethynyl-2′-deoxyuridine proliferation, fluorescein isothiocyanate-4 kDa dextran permeability, and glucose absorption assays. At day 3 (d3) and day 14 (d14), intestinal barrier and nutrient transport functions were measured by the Ussing chamber. The gene expression of epithelial cell markers, nutrient transporters, and tight-junction proteins were analyzed in both intestinal tissues and enteroids. Results In comparison with the PBS control group, in-ovo Gln increased intestinal villus morphology, epithelial cell proliferation, and differentiation, and altered epithelial cell population toward increased number of enteroendocrine and goblet cells while decreasing Paneth cells. Enteroids gene expression of nutrient transporters (B0AT1, SGLT1, and EAAT3), tight junction (ZO2), glucose absorption, and barrier functions were enhanced on the day of hatch. Long-term increases of intestinal di-peptide and alanine transport were observed at day 14 posthatch. Conclusions Together our results suggested that the in-ovo injection of Gln stimulated intestinal epithelium proliferation and programmed the epithelial cell differentiation toward absorptive cells.
  • Item
    Spatial transcriptomics reveals alterations in perivascular macrophage lipid metabolism in the onset of Wooden Breast myopathy in broiler chickens
    (Scientific Reports, 2024-02-11) Wang, Ziqing; Khondowe, Paul; Brannick, Erin; Abasht, Behnam
    This study aims to use spatial transcriptomics to characterize the cell-type-specific expression profile associated with the microscopic features observed in Wooden Breast myopathy. 1 cm3 muscle sample was dissected from the cranial part of the right pectoralis major muscle from three randomly sampled broiler chickens at 23 days post-hatch and processed with Visium Spatial Gene Expression kits (10X Genomics), followed by high-resolution imaging and sequencing on the Illumina Nextseq 2000 system. WB classification was based on histopathologic features identified. Sequence reads were aligned to the chicken reference genome (Galgal6) and mapped to histological images. Unsupervised K-means clustering and Seurat integrative analysis differentiated histologic features and their specific gene expression pattern, including lipid laden macrophages (LLM), unaffected myofibers, myositis and vasculature. In particular, LLM exhibited reprogramming of lipid metabolism with up-regulated lipid transporters and genes in peroxisome proliferator-activated receptors pathway, possibly through P. Moreover, overexpression of fatty acid binding protein 5 could enhance fatty acid uptake in adjacent veins. In myositis regions, increased expression of cathepsins may play a role in muscle homeostasis and repair by mediating lysosomal activity and apoptosis. A better knowledge of different cell-type interactions at early stages of WB is essential in developing a comprehensive understanding.
  • Item
    Advances in Poultry Vaccines: Leveraging Biotechnology for Improving Vaccine Development, Stability, and Delivery
    (Vaccines, 2024-01-29) Abdelaziz, Khaled; Helmy, Yosra A.; Yitbarek, Alexander; Hodgins, Douglas C.; Sharafeldin, Tamer A.; Selim, Mohamed S. H.
    With the rapidly increasing demand for poultry products and the current challenges facing the poultry industry, the application of biotechnology to enhance poultry production has gained growing significance. Biotechnology encompasses all forms of technology that can be harnessed to improve poultry health and production efficiency. Notably, biotechnology-based approaches have fueled rapid advances in biological research, including (a) genetic manipulation in poultry breeding to improve the growth and egg production traits and disease resistance, (b) rapid identification of infectious agents using DNA-based approaches, (c) inclusion of natural and synthetic feed additives to poultry diets to enhance their nutritional value and maximize feed utilization by birds, and (d) production of biological products such as vaccines and various types of immunostimulants to increase the defensive activity of the immune system against pathogenic infection. Indeed, managing both existing and newly emerging infectious diseases presents a challenge for poultry production. However, recent strides in vaccine technology are demonstrating significant promise for disease prevention and control. This review focuses on the evolving applications of biotechnology aimed at enhancing vaccine immunogenicity, efficacy, stability, and delivery.
  • Item
    Microgravity and evasion of plant innate immunity by human bacterial pathogens
    (npj Microgravity, 2023-09-07) Totsline, Noah; Kniel, Kalmia E.; Bais, Harsh P.
    Spaceflight microgravity and modeled-microgravity analogs (MMA) broadly alter gene expression and physiology in both pathogens and plants. Research elucidating plant and bacterial responses to normal gravity or microgravity has shown the involvement of both physiological and molecular mechanisms. Under true and simulated microgravity, plants display differential expression of pathogen-defense genes while human bacterial pathogens exhibit increased virulence, antibiotic resistance, stress tolerance, and reduced LD50 in animal hosts. Human bacterial pathogens including Salmonella enterica and E. coli act as cross-kingdom foodborne pathogens by evading and suppressing the innate immunity of plants for colonization of intracellular spaces. It is unknown if evasion and colonization of plants by human pathogens occurs under microgravity and if there is increased infection capability as demonstrated using animal hosts. Understanding the relationship between microgravity, plant immunity, and human pathogens could prevent potentially deadly outbreaks of foodborne disease during spaceflight. This review will summarize (1) alterations to the virulency of human pathogens under microgravity and MMA, (2) alterations to plant physiology and gene expression under microgravity and MMA, (3) suppression and evasion of plant immunity by human pathogens under normal gravity, (4) studies of plant-microbe interactions under microgravity and MMA. A conclusion suggests future study of interactions between plants and human pathogens under microgravity is beneficial to human safety, and an investment in humanity’s long and short-term space travel goals.
  • Item
    Simulated microgravity facilitates stomatal ingression by Salmonella in lettuce and suppresses a biocontrol agent
    (Scientific Reports, 2024-01-09) Totsline, Noah; Kniel, Kalmia E.; Sabagyanam, Chandran; Bais, Harsh P.
    As human spaceflight increases in duration, cultivation of crops in spaceflight is crucial to protecting human health under microgravity and elevated oxidative stress. Foodborne pathogens (e.g., Salmonella enterica) carried by leafy green vegetables are a significant cause of human disease. Our previous work showed that Salmonella enterica serovar Typhimurium suppresses defensive closure of foliar stomata in lettuce (Lactuca sativa L.) to ingress interior tissues of leaves. While there are no reported occurrences of foodborne disease in spaceflight to date, known foodborne pathogens persist aboard the International Space Station and space-grown lettuce has been colonized by a diverse microbiome including bacterial genera known to contain human pathogens. Interactions between leafy green vegetables and human bacterial pathogens under microgravity conditions present in spaceflight are unknown. Additionally, stomatal dynamics under microgravity conditions need further elucidation. Here, we employ a slow-rotating 2-D clinostat to simulate microgravity upon in-vitro lettuce plants following a foliar inoculation with S. enterica Typhimurium and use confocal microscopy to measure stomatal width in fixed leaf tissue. Our results reveal significant differences in average stomatal aperture width between an unrotated vertical control, plants rotated at 2 revolutions per minute (2 RPM), and 4 RPM, with and without the presence of S. typhimurium. Interestingly, we found stomatal aperture width in the presence of S. typhimurium to be increased under rotation as compared to unrotated inoculated plants. Using confocal Z-stacking, we observed greater average depth of stomatal ingression by S. typhimurium in lettuce under rotation at 4 RPM compared to unrotated and inoculated plants, along with greater in planta populations of S. typhimurium in lettuce rotated at 4 RPM using serial dilution plating of homogenized surface sterilized leaves. Given these findings, we tested the ability of the plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis strain UD1022 to transiently restrict stomatal apertures of lettuce both alone and co-inoculated with S. typhimurium under rotated and unrotated conditions as a means of potentially reducing stomatal ingression by S. typhimurium under simulated microgravity. Surprisingly, rotation at 4 RPM strongly inhibited the ability of UD1022 alone to restrict stomatal apertures and attenuated its efficacy as a biocontrol following co-inoculation with S. typhimurium. Our results highlight potential spaceflight food safety issues unique to production of crops in microgravity conditions and suggest microgravity may dramatically reduce the ability of PGPRs to restrict stomatal apertures.
  • Item
    Effect of short-term abomasal corn starch infusions on postruminal fermentation and blood measures
    (Journal of Dairy Science, 2023-12-13) Cronin, S.K.; Barnard, A.M.; Dietz, S.J.; Lawrence, M.; Kramer, A.E.; Gressley, T.F.
    It is possible that some of the systemic responses to subacute ruminal acidosis (SARA) may be caused by increased intestinal starch fermentation. The objective of this experiment was to evaluate the effect of abomasal infusion of up to 3 g of corn starch/kg body weight (approximately 1.6 kg of starch/d) on fecal measures of fermentation, plasma acute phase proteins, and white blood cell populations. Six ruminally cannulated cows in late lactation were randomly assigned to duplicate 3 × 3 Latin squares with 21-d periods. Cows were fed a 20.6% starch TMR twice daily and during the last 7 d of each period cows were abomasally infused with corn starch at 0 (CON), 1 (ST1), or 3 (ST3) g/kg body weight split into 2 bolus infusions, provided every 12 h. Fecal samples were collected at 0, 6, 12, and 18 h following feeding on d 21 and were analyzed for pH, VFA, lactic acid, and lipopolysaccharide (LPS). Composite fecal samples were used to estimate apparent total-tract nutrient digestibility using undigested neutral detergent fiber as an internal marker. Blood samples were collected at 0 and 6 h relative to feeding on d 14, 18, and 21 of each period. Concentrations of haptoglobin and serum amyloid A in plasma were measured in all samples, 0 h samples on d 14 and 21 were used to measure white blood cell populations, and 0 h samples from d 14, 18, and 21 were used for flow cytometric analysis of γδ T cells. Data were analyzed in SAS using models that included fixed effects of treatment and period and the random effects of cow and square. For blood measures, d 14 samples collected before the initiation of abomasal infusions were included as covariates. Time (d or h) was added as a repeated measure in variables that included multiple samples during the abomasal infusion period. A contrast was used to determine the linear effect of increasing abomasal corn starch. Abomasal corn starch linearly decreased fecal pH and linearly increased fecal total VFA and LPS, but effects were modest, with fecal pH, total VFA, and LPS changing from 6.96, 57.7 mM, and 4.14 log10 endotoxin units (EU) per gram for the CON treatment to 6.69, 64.1 mM, and 4.58 log10 EU/g for the ST3 treatment, respectively. This suggests that we did not induce hindgut acidosis. There were no effects of treatment on apparent total-tract starch digestibility or fecal starch content (mean of 96.9% and 2.2%, respectively). Treatment did not affect serum acute phase proteins or most circulating white blood cells, but the proportion of circulating γδ T cells tended to linearly decrease from 6.69% for CON to 4.61% for ST3. Contrary to our hypothesis, increased hindgut starch fermentation did not induce an inflammatory response in this study.
  • Item
    Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community
    (Animal Microbiome, 2022-05-31) Gruninger, Robert J.; Zhang, Xiu Min; Smith, Megan L.; Kung, Limin Jr.; Vyas, Diwakar; McGinn, Sean M.; Kindermann, Maik; Wang, Min; Tan, Zhi Liang; Beauchemin, Karen A.
    Background The major greenhouse gas from ruminants is enteric methane (CH4) which in 2010, was estimated at 2.1 Gt of CO2 equivalent, accounting for 4.3% of global anthropogenic greenhouse gas emissions. There are extensive efforts being made around the world to develop CH4 mitigating inhibitors that specifically target rumen methanogens with the ultimate goal of reducing the environmental footprint of ruminant livestock production. This study examined the individual and combined effects of supplementing a high-forage diet (90% barley silage) fed to beef cattle with the investigational CH4 inhibitor 3-nitrooxypropanol (3-NOP) and canola oil (OIL) on the rumen microbial community in relation to enteric CH4 emissions and ruminal fermentation. Results 3-NOP and OIL individually reduced enteric CH4 yield (g/kg dry matter intake) by 28.2% and 24.0%, respectively, and the effects were additive when used in combination (51.3% reduction). 3-NOP increased H2 emissions 37-fold, while co-administering 3-NOP and OIL increased H2 in the rumen 20-fold relative to the control diet. The inclusion of 3-NOP or OIL significantly reduced the diversity of the rumen microbiome. 3-NOP resulted in targeted changes in the microbiome decreasing the relative abundance of Methanobrevibacter and increasing the relative abundance of Bacteroidetes. The inclusion of OIL resulted in substantial changes to the microbial community that were associated with changes in ruminal volatile fatty acid concentration and gas production. OIL significantly reduced the abundance of protozoa and fiber-degrading microbes in the rumen but it did not selectively alter the abundance of rumen methanogens. Conclusions Our data provide a mechanistic understanding of CH4 inhibition by 3-NOP and OIL when offered alone and in combination to cattle fed a high forage diet. 3-NOP specifically targeted rumen methanogens and partly inhibited the hydrogenotrophic methanogenesis pathway, which increased H2 emissions and propionate molar proportion in rumen fluid. In contrast, OIL caused substantial changes in the rumen microbial community by indiscriminately altering the abundance of a range of rumen microbes, reducing the abundance of fibrolytic bacteria and protozoa, resulting in altered rumen fermentation. Importantly, our data suggest that co-administering CH4 inhibitors with distinct mechanisms of action can both enhance CH4 inhibition and provide alternative sinks to prevent excessive accumulation of ruminal H2.
  • Item
    Proteomic insight into human directed selection of the domesticated chicken Gallus gallus
    (PLoS ONE, 2023-08-07) Schmidt, Carl J.; Kim, Dong Kyun; Pendarvis, G Ken; Abasht, Behnam; McCarthy, Fiona M.
    Chicken domestication began at least 3,500 years ago for purposes of divination, cockfighting, and food. Prior to industrial scale chicken production, domestication selected larger birds with increased egg production. In the mid-20th century companies began intensive selection with the broiler (meat) industry focusing on improved feed conversion, rapid growth, and breast muscle yield. Here we present proteomic analysis comparing the modern broiler line, Ross 708, with the UIUC legacy line which is not selected for growth traits. Breast muscle proteome analysis identifies cellular processes that have responded to human directed artificial selection. Mass spectrometry was used to identify protein level differences in the breast muscle of 6-day old chicks from Modern and Legacy lines. Our results indicate elevated levels of stress proteins, ribosomal proteins and proteins that participate in the innate immune pathway in the Modern chickens. Furthermore, the comparative analyses indicated expression differences for proteins involved in multiple biochemical pathways. In particular, the Modern line had elevated levels of proteins affecting the pentose phosphate pathway, TCA cycle and fatty acid oxidation while proteins involved in the first phase of glycolysis were reduced compared to the Legacy line. These analyses provide hypotheses linking the morphometric changes driven by human directed selection to biochemical pathways. These results also have implications for the poultry industry, specifically Wooden Breast disease which is linked to rapid breast muscle growth.
  • Item
    Innate immune pathway modulator screen identifies STING pathway activation as a strategy to inhibit multiple families of arbo and respiratory viruses
    (Cell Reports Medicine, 2023-05-16) Garcia, Gustavo Jr.; Irudayam, Joseph Ignatius; Jeyachandran, Arjit Vijey; Dubey, Swati; Chang, Christina; Castillo Cario, Sebastian; Price, Nate; Arumugam, Sathya; Marquez, Angelica L.; Shah, Aayushi; Fanaei, Amir; Chakravarty, Nikhil; Joshi, Shantanu; Sinha, Sanjeev; French, Samuel W.; Parcells, Mark S.; Ramaiah, Arunachalam; Arumugaswami, Vaithilingaraja
    Highlights: • Screen identifies innate immune agonists blocking multiple families of RNA viruses • Dectin-1 and cGAS-STING pathway agonists exhibit broader antiviral activity • STING activator cAIMP blocks ZIKV, WNV, CHIKV, EV-D68, and SARS-CoV-2 infections • cAIMP provides protection against CHIKV-mediated chronic arthritis in mouse model Summary: RNA viruses continue to remain a threat for potential pandemics due to their rapid evolution. Potentiating host antiviral pathways to prevent or limit viral infections is a promising strategy. Thus, by testing a library of innate immune agonists targeting pathogen recognition receptors, we observe that Toll-like receptor 3 (TLR3), stimulator of interferon genes (STING), TLR8, and Dectin-1 ligands inhibit arboviruses, Chikungunya virus (CHIKV), West Nile virus, and Zika virus to varying degrees. STING agonists (cAIMP, diABZI, and 2′,3′-cGAMP) and Dectin-1 agonist scleroglucan demonstrate the most potent, broad-spectrum antiviral function. Furthermore, STING agonists inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and enterovirus-D68 (EV-D68) infection in cardiomyocytes. Transcriptome analysis reveals that cAIMP treatment rescue cells from CHIKV-induced dysregulation of cell repair, immune, and metabolic pathways. In addition, cAIMP provides protection against CHIKV in a chronic CHIKV-arthritis mouse model. Our study describes innate immune signaling circuits crucial for RNA virus replication and identifies broad-spectrum antivirals effective against multiple families of pandemic potential RNA viruses. Graphical abstract available at: https://doi.org/10.1016/j.xcrm.2023.101024
  • Item
    A Comparison of the Immunometabolic Effect of Antibiotics and Plant Extracts in a Chicken Macrophage-like Cell Line during a Salmonella Enteritidis Challenge
    (Antibiotics, 2023-02-08) Giovagnoni, Giulia; Perry, Famatta; Tugnoli, Benedetta; Piva, Andrea; Grilli, Ester; Arsenault, Ryan J.
    Immunometabolic modulation of macrophages can play an important role in the innate immune response of chickens triggered with a multiplicity of insults. In this study, the immunometabolic role of two antibiotics (oxytetracycline and gentamicin) and four plant extracts (thyme essential oil, grape seed extract, garlic oil, and capsicum oleoresin) were investigated on a chicken macrophage-like cell line (HD11) during a Salmonella Enteritidis infection. To study the effect of these substances, kinome peptide array analysis, Seahorse metabolic assay, and gene expression techniques were employed. Oxytetracycline, to which the bacterial strain was resistant, thyme essential oil, and capsicum oleoresin did not show any noteworthy immunometabolic effect. Garlic oil affected glycolysis, but this change was not detected by the kinome analysis. Gentamicin and grape seed extract showed the best immunometabolic profile among treatments, being able to both help the host with the activation of immune response pathways and with maintaining a less inflammatory status from a metabolic point of view.
  • Item
    Effects of microencapsulated blend of organic acids and botanicals on growth performance, intestinal barrier function, inflammatory cytokines, and endocannabinoid system gene expression in broiler chickens
    (Poultry Science, 2023-01-20) Bialkowski, Sofia Bialkow; Toschi, Andrea; Yu, Liang-en; Schlitzkus, Lydia; Mann, Peter; Grilli, Ester; Li, Yihang
    With restricted usage of growth-promoting antibiotics, identifying alternative feed additives that both improve intestinal barrier function and reduce inflammation is the center to improve chickens’ health. This study examined the effects of a microencapsulated feed additive containing citric acid, sorbic acids, thymol, and vanillin on intestinal barrier function and inflammation status. A total of 240 birds were assigned to either a commercial control diet or control diet supplemented with 500 g/MT of the microencapsulated additive product. Birds were raised by feeding a 2-phase diet (starter, d 1 to d 21; and grower, d 15 to d 42). Growth performance was recorded weekly. At d 21 and d 42, total gastrointestinal tract permeability was evaluated by FITC-dextran (FD4) oral gavage. Jejunum-specific barrier functions were evaluated by Ussing chamber. Intestinal gene expression of selected epithelial cell markers, tight junction (TJ) proteins, inflammatory cytokines, and endocannabinoid system (ECS) markers were determined by RT-PCR. Statistical analysis was performed using Student t test. Results showed significant improvement of feed efficiency in the birds supplemented with the blend of organic acids and botanicals. At d 21, both oral and jejunal FD4 permeability were lower in the supplemented group. Jejunal transepithelial resistance was higher in the supplemented birds. At d 21, expression of TJs mRNA (CLDN1 and ZO2) was both upregulated in the jejunum and ileum of supplemented birds, while CLDN2 was downregulated in cecum. Proliferating cell marker SOX9 was higher expressed in jejunum and ceca. Goblet cell marker (MUC2) was upregulated, while Paneth cell marker (LYZ) was downregulated in the ileum. Proinflammatory cytokine expressions of IL1B, TNFA, and IFNG were downregulated in jejunum, while anti-inflammatory IL10 expression was higher in jejunum, ileum, cecum, and cecal tonsil. The ECS markers expressions were upregulated in most intestinal regions. Together, these results demonstrated that the blend of organic acids and botanical supplementation reduced inflammation, improved the TJs expression and intestinal barrier function, and thus improved chicken feed efficiency. The activated ECS may play a role in reducing intestinal tissue inflammation.
  • Item
    Effect of Homo-Fermentative Lactic Acid Bacteria Inoculants on Fermentation Characteristics and Bacterial and Fungal Communities in Alfalfa Silage
    (Fermentation, 2022-11-10) Li, Yanbing; da Silva, E. B.; Li, Jingchun; Kung, L. Jr.
    We evaluated the effects of a homo-fermentative lactic acid bacteria (homo-LAB) inoculant on the fermentation and microbial communities of alfalfa ensiled at two dry matter (DM) contents of 38 and 46% DM. At both DMs, alfalfa was treated or not with an inoculant containing Pediococcus acidilactici, Enterococcus faecium and Lactobacillus plantarum at a targeted application rate of 165,000 cfu/g of fresh weight and stored for 3, 30 and 60 days. Treatment with the inoculant resulted in a lower drop in pH and, in general, higher lactic acid and lower acetic acid when applied to medium DM silage. For the four most abundant microbial genera, increased abundances of Bacteroides and Lactobacillus (p < 0.05), as well as decreased abundances of Muribaculaceae were observed in high DM and inoculated silages. The abundance of Prevotellaceae-UCG-001 was lower in medium DM control silages than in high DM control silages. Inoculation and DM affected abundances of Vishniacozyma (p < 0.05). Increased abundances of Vishniacozyma, as well as decreased abundances of Leucosporidium were observed in medium DM-inoculated silages. Changes in the relative abundance (RA) of the main populations of bacteria and yeasts did explain the fermentation and nutrition differences among treatments.
  • Item
    3’UTR-Seq analysis of chicken abdominal adipose tissue reveals widespread intron retention in 3’UTR and provides insight into molecular basis of feed efficiency
    (PLoS ONE, 2022-07-01) Wang, Ziqing; Özçam, Mustafa; Abasht, Behnam
    Feed efficiency (FE) is an important trait in the broiler industry due to its direct correlation to efficient muscle growth instead of fat deposition. The present study characterized and compared gene expression profiles in abdominal fat from broiler chickens of different FE levels to enhance the understanding of FE biology. Specifically, traditional whole-transcript RNA-sequencing (RNA-seq) and 3’ UTR-sequencing (3’ UTR-seq) were applied to 22 and 61 samples, respectively. Overall, these two sequencing techniques shared a high correlation (0.76) between normalized counts, although 3’ UTR-seq showed a higher variance in sequencing and mapping performance statistics across samples and a lower rate of uniquely mapped reads. A higher percentage of 3’ UTR-seq reads mapped to introns suggested the frequent presence of cleavage sites in introns, thus warranting future research to study its regulatory function. Differential expression analysis identified 1198 differentially expressed genes (DEGs) between high FE (HFE) and intermediate FE (IFE) chickens with False Discovery Rate < 0.05 and fold change > 1.2. The processes that were significantly enriched by the DEGs included extracellular matrix remodeling and mechanisms impacting gene expression at the transcriptional and translational levels. Gene ontology enrichment analysis suggested that the divergence in fat deposition and FE in broiler chickens could be associated with peroxisome and lipid metabolism possibly regulated by G0/G1 switch gene 2 (G0S2).
  • Item
    Coordination of SARS-CoV-2 wastewater and clinical testing of university students demonstrates the importance of sampling duration and collection time
    (Science of the Total Environment, 2022-03-29) Anderson-Coughlin, Brienna L.; Shearer, Adrienne E.H.; Omar, Alexis N.; Litt, Pushpinder K.; Bernberg, Erin; Murphy, Marcella; Anderson, Amy; Sauble, Lauren; Ames, Bri; Damminger, Oscar Jr; Ladman, Brian S.; Dowling, Timothy; Wommack, K. Eric; Kniel, Kalmia E.
    Wastewater surveillance has been a useful tool complementing clinical testing during the COVID-19 pandemic. However, transitioning surveillance approaches to small populations, such as dormitories and assisted living facilities poses challenges including difficulties with sample collection and processing. Recently, the need for reliable and timely data has coincided with the need for precise local forecasting of the trajectory of COVID-19. This study compared wastewater and clinical data from the University of Delaware (Fall 2020 and Spring 2021 semesters), and evaluated wastewater collection practices for enhanced virus detection sensitivity. Fecal shedding of SARS-CoV-2 is known to occur in infected individuals. However, shedding concentrations and duration has been shown to vary. Therefore, three shedding periods (14, 21, and 30 days) were presumed and included for analysis of wastewater data. SARS-CoV-2 levels detected in wastewater correlated with clinical virus detection when a positive clinical test result was preceded by fecal shedding of 21 days (p < 0.05) and 30 days (p < 0.05), but not with new cases (p = 0.09) or 14 days of shedding (p = 0.17). Discretely collected wastewater samples were compared with 24-hour composite samples collected at the same site. The discrete samples (n = 99) were composited examining the influence of sampling duration and time of day on SARS-CoV-2 detection. SARS-CoV-2 detection varied among dormitory complexes and sampling durations of 3-hour, 12-hour, and 24-hour (controls). Collection times frequently showing high detection values were between the hours of 03:00 to 05:00 and 23:00 to 08:00. In each of these times of day 33% of samples (3/9) were significantly higher (p < 0.05) than the control sample. The remainder (6/9) of the collection times (3-hour and 12-hour) were not different (p > 0.05) from the control. This study provides additional framework for continued methodology development for microbiological wastewater surveillance as the COVID-19 pandemic progresses and in preparation for future epidemiological efforts.
  • Item
    Functional annotation of regulatory elements in cattle genome reveals the roles of extracellular interaction and dynamic change of chromatin states in rumen development during weaning
    (Genomics, 2022-02-10) Gao, Yahui; Liu, Shuli; Baldwin, Ransom L. VI; Connor, Erin E.; Cole, John B.; Ma, Li; Fang, Lingzhao; Li, Cong-jun; Liu, George E.
    We profiled landscapes of bovine regulatory elements and explored dynamic changes of chromatin states in rumen development during weaning. The regulatory elements (15 chromatin states) and their coordinated activities in cattle were defined through genome-wide profiling of four histone modifications, CTCF-binding, DNA accessibility, DNA methylation, and transcriptome in rumen epithelial tissues. Each chromatin state presented specific enrichment for sequence ontology, methylation, trait-associated variants, transcription, gene expression-associated variants, selection signatures, and evolutionarily conserved elements. During weaning, weak enhancers and flanking active transcriptional start sites (TSS) were the most dynamic chromatin states and occurred in tandem with significant variations in gene expression and DNA methylation, significantly associated with stature, production, and reproduction economic traits. By comparing with in vitro cultured epithelial cells and in vivo rumen tissues, we showed the commonness and uniqueness of these results, especially the roles of cell interactions and mitochondrial activities in tissue development.
  • Item
    Survival of Salmonella Typhimurium and Escherichia coli O157:H7 on blueberries and impacts on berry quality during 12 weeks of frozen storage after washing with combinations of sodium dodecyl sulfate and organic acids or hydrogen peroxide
    (Journal of Food Safety, 2021-12-28) Li, Yingying; Wu, Changqing
    Salmonella spp. and Escherichia coli are well tolerant of freezing. This study was to investigate survival of the foodborne pathogens during storage at −18 ± 2°C for 12 weeks on blueberries after washing with: 500 ppm acetic acid plus 5,000 ppm sodium dodecyl sulfate (SDS) (AA/SDS), 20 ppm peroxyacetic acid plus 5,000 ppm SDS (PPA/SDS), or 200 ppm hydrogen peroxide plus 5,000 ppm SDS (H2O2/SDS), when compared with findings from no wash, or wash with water, 80 ppm PPA or 200 ppm chlorinated water. Following a 60 s contact with one of the three new solutions, the treatments showed 3.3–3.9 log10 CFU/g reductions in Salmonella Typhimurium and E. coli O157:H7 counts. After 2 weeks of frozen storage, 3.9–4.2 log10 CFU/g reductions of Salmonella and E. coli were observed. After 12 weeks of frozen storage, Salmonella and E. coli survivors were below detection limits (0.39 log10 CFU/g) in berries washed with new solutions. The frozen storage had a significant impact (p < .05) on microbial counts of both treated and nontreated blueberries. Although none of these washings decreased the total phenolic and anthocyanins contents and apparent quality at time 0, frozen storage caused significant damage on the texture of both treated and nontreated blueberries. Interestingly, no significant decrease in the total phenolic, anthocyanins content, and apparent quality was observed during the 12-week frozen storage. The counts of total bacteria, yeasts, and molds decreased throughout storage for treated and untreated berries. This demonstrates that the three wash solutions enhance the safety of frozen berries.
  • Item
    The impact of differential lignin S/G ratios on mutagenicity and chicken embryonic toxicity
    (Journal of Applied Toxicology, 2021-08-27) Zhang, Xinwen; Levia, Delphis F.; Ebikade, Elvis Osamudiamhen; Chang, Jeffrey; Vlachos, Dionisios G.; Wu, Changqing
    Lignin and lignin-based materials have received considerable attention in various fields due to their promise as sustainable feedstocks. Guaiacol (G) and syringol (S) are two primary monolignols that occur in different ratios for different plant species. As methoxyphenols, G and S have been targeted as atmospheric pollutants and their acute toxicity examined. However, there is a rare understanding of the toxicological properties on other endpoints and mixture effects of these monolignols. To fill this knowledge gap, our study investigated the impact of different S/G ratios (0.5, 1, and 2) and three lignin depolymerization samples from poplar, pine, and miscanthus species on mutagenicity and developmental toxicity. A multitiered method consisted of in silico simulation, in vitro Ames test, and in vivo chicken embryonic assay was employed. In the Ames test, syringol showed a sign of mutagenicity, whereas guaiacol did not, which agreed with the T.E.S.T. simulation. For three S and G mixture and lignin monomers, mutagenic activity was related to the proportion of syringol. In addition, both S and G showed developmental toxicity in the chicken embryonic assay and T.E.S.T. simulation, and guaiacol had a severe effect on lipid peroxidation. A similar trend and comparable developmental toxicity levels were detected for S and G mixtures and the three lignin depolymerized monomers. This study provides data and insights on the differential toxicity of varying S/G ratios for some important building blocks for bio-based materials.
  • Item
    A Standard Scale to Measure Equine Keeper Status and the Effect of Metabolic Tendency on Gut Microbiome Structure
    (Animals (MDPI), 2021-07-01) Johnson, Alexa C. B.; Biddle, Amy
    Thriftiness in horses has been associated with more efficient nutrient harvesting in digestion, absorption and/or utilization, but the relative contribution of the gut microbiome to host metabolic tendency is not well understood. Recognizing the unreliability of owner reported assignment of keeper status, this research describes a novel tool for calculating whether a horse is an easy (EK) or hard (HK) keeper and then characterizes microbiome differences in these groups. The Equine Keeper Status Scale (EKSS) was developed and validated based on data gathered from 240 horses. Estimates of dietary energy intakes and requirements to achieve the optimal BCS score of 5 were used in EKSS assignments. Sixty percent of owners’ characterizations disagreed with EKSS identified keeper assignments. Equine fecal 16S rRNA profiles (n = 73) revealed differences in α and β diversities and taxa abundances based on EKSS assignments. EK communities had more Planctomycetes and fewer Euryarcheaota, Spirochaetes and Proteobacteria than HK indicating functional differences in nutrient harvesting between groups. Differences in the gut microbiomes of horses based on keeper assignment point to host/microbial interactions that may underlie some differences in metabolic tendency. The EKSS enables robust, repeatable determination of keeper status which can be used by researchers and horse owners.
  • Item
    Unique genetic responses revealed in RNAseq of the spleen of chickens stimulated with lipopolysaccharide and short-term heat
    (PLoS (Public Library of Science), 2017-02-06) Van Goor, Angelica; Ashwell, Chris M.; Persia, Michael E.; Rothschild, Max F.; Schmidt, Carl J.; Lamont, Susan J.; Angelica Van Goor, Chris M. Ashwell, Michael E. Persia, Max F. Rothschild, Carl J. Schmidt, Susan J. Lamont; Schmidt, Carl J.
    Climate change and disease have large negative impacts on poultry production, but little is known about the interactions of responses to these stressors in chickens. Fayoumi (heat and disease resistant) and broiler (heat and disease susceptible) chicken lines were stimulated at 22 days of age, using a 2x2x2 factorial design including: breed (Fayoumi or broiler), inflammatory stimulus (lipopolysaccharide (LPS) or saline), and temperature (35ÊC or 25ÊC). Transcriptional changes in spleens were analyzed using RNA-sequencing on the Illumina HiSeq 2500. Thirty-two individual cDNA libraries were sequenced (four per treatment) and an average of 22 million reads were generated per library. Stimulation with LPS induced more differentially expressed genes (DEG, log2 fold change 2 and FDR 0.05) in the broiler (N = 283) than the Fayoumi (N = 85), whereas heat treatment resulted in fewer DEG in broiler (N = 22) compared to Fayoumi (N = 107). The double stimulus of LPS+heat induced the largest numbers of changes in gene expression, for which broiler had 567 DEG and Fayoumi had 1471 DEG of which 399 were shared between breeds. Further analysis of DEG revealed pathways impacted by these stressors such as Remodelling of Epithelial Adherens Junctions due to heat stress, Granulocyte Adhesion and Diapedesis due to LPS, and Hepatic Fibrosis/Hepatic Stellate Cell Activation due to LPS+heat. The genes and pathways identified provide deeper understanding of the response to the applied stressors and may serve as biomarkers for genetic selection for heat and disease tolerant chickens.
  • Item
    WebGIVI: a web-based gene enrichment analysis and visualization tool
    (BioMed Central, 2017-05-04) Sun, Liang; Zhu, Yongnan; Mahmood, A. S. M. Ashique; Tudor, Catalina O.; Ren, Jia; Vijay-Shanker, K.; Chen, Jian; Schmidt, Carl J.; Liang Sun, Yongnan Zhu, A. S. M. Ashique Mahmood, Catalina O. Tudor, Jia Ren, K. Vijay-Shanker, Jian Chen and Carl J. Schmidt; Sun, Liang; Mahmood, A. S. M. Ashique; Tudor, Catalina O.; Ren, Jia; Vijay-Shanker, K.; Schmidt, Carl J.
    BACKGROUND: A major challenge of high throughput transcriptome studies is presenting the data to researchers in an interpretable format. In many cases, the outputs of such studies are gene lists which are then examined for enriched biological concepts. One approach to help the researcher interpret large gene datasets is to associate genes and informative terms (iTerm) that are obtained from the biomedical literature using the eGIFT text-mining system. However, examining large lists of iTerm and gene pairs is a daunting task. RESULTS: We have developed WebGIVI, an interactive web-based visualization tool (http://raven.anr.udel.edu/webgivi/) to explore gene:iTerm pairs. WebGIVI was built via Cytoscape and Data Driven Document JavaScript libraries and can be used to relate genes to iTerms and then visualize gene and iTerm pairs. WebGIVI can accept a gene list that is used to retrieve the gene symbols and corresponding iTerm list. This list can be submitted to visualize the gene iTerm pairs using two distinct methods: a Concept Map or a Cytoscape Network Map. In addition, WebGIVI also supports uploading and visualization of any two-column tab separated data. CONCLUSIONS: WebGIVI provides an interactive and integrated network graph of gene and iTerms that allows filtering, sorting, and grouping, which can aid biologists in developing hypothesis based on the input gene lists. In addition, WebGIVI can visualize hundreds of nodes and generate a high-resolution image that is important for most of research publications. The source code can be freely downloaded at https://github.com/sunliang3361/WebGIVI. The WebGIVI tutorial is available at http://raven.anr.udel.edu/webgivi/tutorial.php.